
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Enhancement of Design Level Class Decomposition
using Evaluation Process

Bayu Priyambadha1, Tetsuro Katayama2
Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki, Japan1, 2

Faculty of Computer Science, Universitas Brawijaya, Malang, Jawa Timur, Indonesia1

Abstract—Refactoring on the design level artifact such as the
class diagram was already done using the threshold-based
agglomerative hierarchical clustering method, specifically class
decomposition. The approach produced a better cluster based on
the label name similarity of attribute and method. But, some
problems emerge from the experiment result. The negative
Silhouettes element still exist in the cluster. And, there is an
unusable cluster that only consists of one attribute element. This
paper has proposed the evaluation process to optimize the result
of clustering. This evaluation process is an additional process
that aims to move the negative Silhouettes element to the other
cluster. The movement is also to get the better value of element
Silhouettes value. The evaluation process can produce a better
result for clusters. The clusters produced from the evaluation
process have higher Silhouettes values. The average Silhouettes
value is increased by about 40%. Ultimately, the result shows no
unusable cluster as mentioned in the previous research.

Keywords—Refactoring; design level refactoring; software
refactoring; class decomposition; software quality

I. INTRODUCTION
Refactoring the software design artifact is essential to

maintain the design's internal structure [1]. Changes or
alteration to the design artifact is easier than source code. The
easiness is because of the original character of the model. The
model is easy to change because the model is an abstract
description of something more detailed. Refactoring at the
design level means the refactoring activity is using the
software design artifact as an object. The easiness of alteration
and simulation of quality measurement using the specific
metric is one of the benefits of refactoring software design
artifacts. The software design artifact is a model bridging the
requirement and implementation artifact and is the center of
the software development process [2]. The changes will impact
both sides, requirement and implementation artifact. In the
case of software maintenance, refactoring activity is one way
to decrease the maintenance cost [3], [4]. In the case of
software development, the refactoring activity can be used as
the evaluation process to maintain the internal quality of the
design artifact before it is implemented into the source code.
The design level refactoring increases the quality awareness of
the design artifact as early as possible.

Shifting the object of refactoring activity to a higher level
of abstraction has a specific problem. There is a limitation of
information in the design artifact rather than the
implementation artifact [5]. Therefore, excavation or mining
and in-depth information analysis of the design artifacts are
necessary [6]–[8]. Generally, the information on the design

artifact is only written on the artifact. Sometimes, the
information contains a hidden meaning that needs extra
analysis to mean it. Natural language processing or semantic
analysis is one approach that provides the functionality to gain
the meaning of information [7]. Different from that, the source
code level information clearly defines a specific element. The
software developer can easily use it as data to analyze and
measure quality, for example, the number of operand or
operators in the source code to measure the complexity of the
source code. The developer also can easily know the relation
between attribute and method by reading the internal source
code. They can figure it out by looking at the assigning value
statement to the specific attribute.

Refactoring activity begins from the existence of the smell
in the software artifacts. The smell is the indicator that there is
something wrong in it. The quality of the artifacts decayed
because of the smell. Finding the smell in the artifact is the
first activity before refactoring itself. Researchers have already
researched the smell detection process in the software artifacts.
Smell detection mostly uses the source code as an object,
known as code smell detection. Nowadays, the design of smell
detection has started to emerge [9]–[11]. The terms and
characteristics between code and design smells are different.
The differentiation is based on the object, and the information
lies in it. But, the previous research tried to use the code smell
term and characteristics to find the smell in the design artifacts
[8]. As a result, the Blob smell is detected using the class
diagram information. Semantic analysis was used to determine
the relation between class elements based on the name labels to
enrich the class diagram information.

Blob smell is one of the lacks of internal structure quality
indicators. It indicates the greedy process of the class. One
class has a lot of process in it, whereas the other class nearby is
only the data provider. The blob class monopolizes data
processing provided by the nearby classes [8]. This
phenomenon can happen due to software changes or the
developer's lack of clean architecture theory. The clean
architecture theory explains that the class must comply with
the Single Responsibility Principle [12]. During the
development or evolution cycle, the class has to have only one
reason to change. The reason to change is related to the process
or functionality of the specific class. If the class has more than
one function or manipulates many operations, it will be the
candidate that there is much reason to change it during the
software cycle.

Furthermore, the blob class in the software system will
increase the maintenance cost because it affects the class's

130 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

understandability [13]. The refactoring activity can resolve the
problems of the Blob class. One of the refactoring processes to
solve the blob class problem is class decomposition. Mostly, a
source code became the field of the class decomposition
process. Much research has been conducted using source code
information on the class decomposition process. Shifting the
decomposition process to the design level is interesting due to
the possibility of decreasing the cost of the change, easiness of
change simulation, and early quality awareness.

Class decomposition is the process of separating one class
into many classes. The decomposition is based on the specific
characteristics defined before the separation process. Many
researchers proposed the class decomposition mechanism at
the source code or design level. Most of the class
decomposition mechanism approach uses the clustering
process [13]–[19], in which the elements in the class are
separate based on each element's closeness characteristic. This
method aims to make the separation process result following
the Single Responsibility Principle concept. The Threshold-
based Agglomerative Hierarchical Clustering was tried to
implement on both source code [19] and design level artifacts
[5]. Each clustering process is based on the metrics generated
from each source code and design artifacts. The design level
class decomposition on the class diagram uses two metrics,
syntactic (𝑠𝑦𝑛𝑛) and semantic (𝑠𝑒𝑚) [5]. Both metrics are
calculated by considering syntactic and semantic closeness
from the element's label name. Using the closeness of syntactic
and semantic of the label name, the Threshold-based
Agglomerative Hierarchical Clustering created a more compact
cluster compared to the result of clustering on the source code
level. The compactness of clusters was observed from the
value of the Silhouettes value of every cluster. However, the
decomposition results still show the elements with a negative
Silhouette value. A negative Silhouette value indicates that an
element's distance from the others in its cluster is large. The
negative Silhouette elements are considered the worst in the
relation with the concept of single responsibility principle. It is
important to enhance the element placement mechanism of the
negative element. Additionally, some clusters are considered
unable to implement because, in case implemented as a class, it
will instantiate objects that cannot interact with each other. A
cluster with only one element, especially if the element
includes a private modifier, is deemed worthless or useless. As
a result, it is seen to be critical to incorporate the modifier
aspect in the decomposition process.

The validity of the class decomposition's result is
important. It is related to the class's applicability when
implemented in the real case or source code. The existence of
negative elements in the resulting cluster and a single private
element in one cluster is a big problem for the applicability of
the class. This condition requires in-depth attention, especially
to validate the result of the decomposition process. The basic
validation mechanism is to move the specific element from the
origin cluster to the other cluster. The moving mechanism aims
to put the specific element (negative element) to the other
cluster to get a better Silhouette value. The other problem is
the existence of the private single-member cluster. It also
decreases the applicability of the class when it is implemented
into the software's source code. In the previous approach, the

clustering process is based on the two metrics 𝑠𝑦𝑛𝑛 and 𝑠𝑒𝑚.
The addition of other metrics is important to solve the unusable
class.

This research is conducted to propose the validation
mechanism to solve previous research's problems. The basic
idea is to move the elements in the cluster that are not well-
positioned. The new metric is proposed to increase every
cluster's placement accuracy and compactness. All descriptions
of the proposed algorithm of the validation mechanism and the
experiment are organized as follows. Section II summarizes
the state of the arts of the class decomposition approach. Then
continue the description of the class usability and compactness
of the class in the decomposition process in Section III.
Section IV and V explain the proposed algorithm and the
research scenarios. Section VI describes the result and
discussion. Then the last is the conclusion and future work in
Section VII.

II. RELATED WORK
Many researchers published methods for class

decomposition based on a specific type of smell. The research
has two object studies, source code, and class diagram. The
following section summarizes the history of research in the
area of class decomposition.

A. Class Decomposition on Source Code
Bavota et al. presented a number of methods that could be

used to decompose classes at the level of source code. Bavota's
research history used the two-step decomposition techniques
and MaxFlow-MinCut algorithms to extract classes [14]–[16].
The research involved considering both structural and semantic
characteristics of the class. There are three metrics used:
Structural Similarity between Methods (SSM), Call-based
Interaction between Methods (CIM), and Conceptual
Similarity between Methods (CSM). According to a study,
transitive closure was calculated using metrics based on the
values of distance between class elements. The other method
uses the graph to represent the relatedness between elements
and the weight to represent the closeness between elements.
The transitive closure is able to split a Blob class into more
than two classes, which is a significant improvement over the
MaxFlow-MinCut approach. Furthermore, it can automatically
determine how many classes should be extracted from a Blob.

A discussion of metric-based refactoring opportunities
identification for object-oriented software systems is presented
in an article by Isong Bassey et al. [20]. They conducted a
thorough analysis of sixteen (16) primary studies in order to
identify the state of the practice in ROI. The purpose of this
article is to summarize all existing refactoring opportunities.
The analysis was divided into three categories: structural,
semantic, and structural and semantic. Using metrics to
identify refactoring opportunities is the focus of this paper. Al
Dallal's structural approach and Bavota's structural and
semantic approaches previously published elsewhere are
summarized in this paper.

According to Wang Ying et al., weighted clustering is
automatically used to refactor software [13]. This article
focuses on class-level refactoring. A network is considered to
be a representation of the relationship of dependencies between

131 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

methods (as nodes). There are three matrices that illustrate the
relationships between methods, (i) attribute sharing (Sharing
Attribute Weight/ SAW), (ii) method invocation (Method
Invocation Weight/ MIW), and (iii) functional coupling
(Functional Coupling Weight/ FCW). A combination of three
matrices as well as semantic similarity weights (SSW) is used
to compute edge weights. Thus, the most advantageous cluster
with the appropriate weight is selected. Wang compares his
method with Bavota and Fokaefs. Wang's approach improves
cohesion and coupling without affecting the code's behavior.
Furthermore, it improves code's understandability, flexibility,
reusability, and maintainability.

Mohamed Hamdi discusses the Agglomerative Hierarchical
Clustering (AHC) method for class decomposition [19]. The
decomposition occurs until classes have a single responsibility
iteratively. One of the main challenges is terminating the
decomposition process. They define the threshold concept for
determining the endpoint during the decomposition process.
There are six matrices: Internal Attribute Sharing (IAS),
Internal Direct Call Dependency (IDC), Internal Indirect Call
Dependency (IIC), Internal Method Sharing (IMS), and
External Indirect Call Dependency (EIC). In this case, the
weighted AHC results are more beneficial. This approach
appeared to be a solution to the problem of the limited number
of classes resulting from the decomposition process and the
termination state.

B. Model-Driven Software Engineering
Model-Driven Software Engineering (MDSE) uses a

software model as the primary artifact of software
development [2]. Compared to the implementation artifact
(source code), the software model is closer to the problem
domain. The model transformation is the heart of the MDSE
since the MDSE aims to generate the source code from the
models. On the other hand, there is another approach to the
development of software called Code-centric Development
(CcD). A comparison study between MDSE and CcD has
already been done for over a decade. From the review paper by
Domingo et al., many researchers have been evaluating the
benefit of the MDSE [21]. Some works said that MDSE
decreases development time (up to 89%) relative to Code-
centric Development (CcD). The other works suggest that the
MDSE is suitable for academic exercise. Furthermore, the
other works assert that MDSE is also suitable for
inexperienced developers. Finally, Domingo et al., based on
their review of MDSE, conclude that the MDSE is suitable for
academic exercise and inexperienced developers [21].

C. Class Decomposition on Class Diagram
The class decomposition process is shifted to the design

level artifact taking into account the ease of change and quality
measurement. A similarity score is calculated between the
class's elements (attributes and methods) used in the
decomposition process based on the metrics that are derived
from the information found in the class diagram. There are two
approaches to determining the similarity rates between
elements of a class: syntactic and semantic analysis. Thus, the
two approaches evaluate the similarity of sentences based on
their similarity in terms of syntax and meaning. Those metrics

are 𝑠𝑦𝑛𝑛 and 𝑠𝑒𝑚. The following formulas are defined for the
metrics [5].

𝑠𝑦𝑛𝑛 = �1, 𝑠𝑖𝑖𝑚𝑖𝑖𝐴𝐴𝐴𝐴𝑟 𝑡𝑦𝑝𝑒 > 0
0, 𝑠𝑖𝑖𝑚𝑖𝑖𝐴𝐴𝐴𝐴𝑟 𝑡𝑦𝑝𝑒 ≤ 0 (1)

and,

𝑠𝑒𝑚 = 2.𝑤𝑖.|𝑤1∩𝑤2|+𝑤𝑠.(|𝑠(𝑤1,𝑤2)|+|𝑠(𝑤2,𝑤1)|)
|𝑤1|+|𝑤2| (2)

where 𝑠(𝑤1,𝑤2) or 𝑠(𝑤2,𝑤1) is the number of words
that have a synonym relationship between two labels, and
𝑤𝑖𝑖 = 1 and 𝑤𝑠 = 0.75 [22]. The closeness or similarity
between class elements is calculated using the following
formula.

𝑆𝑖𝑖𝑚(𝑒1, 𝑒2) = 𝑠𝑦𝑛𝑛+𝑠𝑒𝑚
2

 (3)

The class decomposition process uses the Threshold-based
AHC that is used the similarity formula to calculate the
closeness between class elements. Based on the previous
decomposition result, the static and dynamic threshold AHC
clusters are more compact than Hamdi's approach. The
compactness of the clusters is measured using the Silhouette
value. Based on the results, it is evident that there are certain
advantages to be gained, but there are also some shortcomings
as well. Decomposition results still show elements with
negative Silhouette values. When the Silhouette value is
negative, it indicates that the current element is far from the
other elements in the cluster. In other words, negative
Silhouette elements are considered to be the worst. Negative
elements need to be improved in their movement mechanism.
Moreover, some clusters are considered unable to implement
because their objects may not be able to collaborate. It is
considered useless to have a cluster with only one element,
especially if the element has a private modifier. This is why the
modifier aspect must be included in the decomposition
process. Avoiding useless clusters is essential.

III. PROPOSED APPROACH

A. Scope of Study
The research focuses on our previous research results using

the same dataset as the previous experiment. Two formulas
will be proposed to solve the previous problems. Those
formulas will be focused on overcoming the negative
Silhouette and useless cluster [5] by combining Class Usability
(𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦) and Silhouettes value (𝑠(𝑖𝑖)). The combination
of two metrics are used to evaluate the cluster after the
clustering process. The whole evaluation process will be
proposed as an evaluation algorithm. This study also uses
classes that are not problematic to gain other insights in this
study.

B. Problem Accomplishment
The previous research’s result mentioned that there were

two problems found. The first is the negative Silhouette
element, and the second is the cluster that is predicted to be
unusable. That is why the evaluation process must consider
two aspects: the Silhouette value and the usability of the class

132 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

(that will be quantified in the form of a metric). The following
formula calculates the Eval value (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴. 𝑠(𝑖𝑖) + 𝑏.𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦 (4)

𝑠(𝑖𝑖) shows the Silhouette value, and 𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦shows the
class usability value. 𝐴𝐴 and 𝑏 is the weight that describes the
proportion of each value to the evaluation value. 𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦
has measured the usability of the class by considering the
number of public methods that existed in the cluster. The class
is usable if it at least consists of one public method. In other
words, if the class has a public method, the class will be able to
collaborate with the others (useful). The 𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦 is
calculated using the following formula.

𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦 = �0 ,𝑚𝑝𝑢𝑏 = 0
1 ,𝑚𝑝𝑢𝑏 ≥ 1 (5)

The 𝑚𝑝𝑢𝑏 is the number of public methods in the class
candidate (in the cluster). The silhouette value is calculated
using the following formula [23].

𝑠(𝑖𝑖) = 𝑏(𝑖)−𝑎(𝑖)
max (𝑎(𝑖),𝑏(𝑖))

 (6)

Where,

• 𝐴𝐴(𝑖𝑖) = the average dissimilarity of 𝑖𝑖 to all other objects
of A, then,

• 𝑑(𝑖𝑖,𝐾) = the average dissimilarity of 𝑖𝑖 to all object
cluster 𝐾, when 𝐾 ∈ 𝐶𝐴𝐴𝑢𝑠𝑡𝑒𝑟 𝐴𝐴𝑛𝑛𝑑 𝐾 ≠ 𝐴𝐴,

• 𝑏(𝑖𝑖) = 𝑀𝐼𝑁�𝑑(𝑖𝑖,𝐾)�,𝐾 ≠ 𝐴𝐴.

The proposed evaluation algorithm has the main process of
selecting the negative element and then moving it to the other
cluster by comparing the Eval value before and after moving.
The algorithm will be appended to the previous algorithm as
the evaluation process.

C. Preliminary Experiment
Before the algorithm is confirmed, a preliminary

experiment is conducted to ensure the performance of the
evaluation process. The preliminary experiment uses one study
case from the Landfill dataset, Class Transfer (Blob class from
HSQLDB). The preliminary experiment is an early evaluation
of the proposed algorithm (implementation of the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
formula) that uses a combination of weights 𝐴𝐴 and 𝑏. In the
case of Class Transfer, using a combination of weights with
the value 𝐴𝐴 bigger than 𝑏 in the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 formula, the process was
always run because the negative element always existed. As a
result, the process of evaluation is never stopped. Based on this
result, it was tried to print out the difference of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value
(before and after moving) every iteration and draw it into the
line graph to show the trend. Fig. 1 shows the line graph of
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value differences in the case Class Transfer using
weights 𝐴𝐴 = 0.9 and 𝑏 = 0.1. The trend shows that the values
are shifted alternately in the mid to late iterations. It seems that
the specific element was moved and moved back to the same
cluster because the value of Silhouettes of that particular
element is always negative in both clusters (origin and
destination cluster).

Fig. 1. Eval Value Differences of Class Transfer.

Fig. 2. The Average of Eval Value.

Fig. 1 shows the graph of the Eval value in every iteration.
In the middle of the graph, Fig. 1, the data show a pattern that
causes the unstoppable process. Even though it shows the
pattern, the data seems unstable (continually moving from
positive to negative). So, it needs to calculate to get a more
stable value. Starting from iteration number 37, the Eval value
between before and after moving is 0.00977 and -0.00977.
Then, it tried to use the average formula to get a more stable
value.

Fig. 2 shows the result after the values are averaged. The
graph shows the flat value starting from iteration number 37,
and it is easier to use as a termination condition for the
algorithm for Class Transfer. The flat value of Class Transfer
is about 0.4. The value of 0.4 cannot be used in the other study
cases. It is only suitable for Class Transfer. Therefore, it is
possible to be different from the other study cases. The other
calculation is necessary to find a universal value to get the
stopping condition.

D. Stopping Condition of Algorithm
The stopping condition in the decomposition process was

the new problem that emerged in the preliminary experiment.
One formula that can be used to find the pattern is by
calculating the average Eval value between pre and post-
movement to the other cluster. The following formula
represents how the average of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 can be calculated.

-0.05

0

0.05

0.1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Eval Value Differences (Class Transfer)

-0.1
0

0.1
0.2
0.3
0.4
0.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Average of Eval Value

133 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 = 𝐸𝑣𝑎𝑙𝑛+𝐸𝑣𝑎𝑙𝑛−1
2

 (7)

Where,

• 𝑛𝑛 is the number of decomposition iterations,

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛−1 is Eval value before moving to the other
cluster,

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 is Eval value after moving to the other cluster.

The 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 for every iteration is represented in a line
graph in Fig. 2. The easiest way to find the stopping condition
is to calculate the differences of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 between two
iterations using the following formula.

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛−1 (8)

Then the stop condition is represented as follows.

𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑛𝑑𝑖𝑖𝑡𝑖𝑖𝑜𝑛𝑛 = �𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 = 0 , 𝑡𝑟𝑢𝑒
𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 ≠ 0 , 𝑓𝑓𝐴𝐴𝐴𝐴𝑠𝑒 (9)

Where,

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 is Average Eval value from iteration
number 𝑛𝑛,

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛−1 is Average Eval value from iteration
number 𝑛𝑛 − 1.

The main idea of the stopping condition is to find zero (0)
differences of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 between iterations. If the differences
of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are zero (0), then it means that there is no
increment of Eval value even if the specific element is moved
to the other cluster. Then the last position of the cluster will be
chosen as the best solution. Fig. 3 shows the line graph of
𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 as the representation of the differences of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
before and after movement.

E. Proposed Algorithm
The algorithm is proposed to answer the problems that

emphasize the previous class decomposition approach. The
new algorithm is the representation of an additional process on
the class decomposition. The evaluation algorithm is described
in Fig. 4. In the design level class decomposition research, the
decomposition process is done by the Threshold-based
Hierarchical Agglomerative Clustering. First, two metrics are
used to calculate the closeness between elements in the class
decomposition process, 𝑠𝑦𝑛𝑛 , and 𝑠𝑒𝑚 . Then, the process
continues to the evaluation process. That is aim is to evaluate
the placement of every element. This process is focused on the
element that has the negative silhouette value. The evaluation
process's main idea is to move the negative element to the
other cluster to get a better silhouette value. The evaluation
process is an iteration process that considers the increment of
silhouette value and stopping condition that is defined in the
previous section.

Fig. 3. The Line Graph 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓

Fig. 4. The Evaluation Algorithm

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

𝐴𝐴𝑣𝑣𝑔𝑔𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓

134 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

IV. THE EXPERIMENT SCENARIO
The class decomposition experiment uses ten study cases

taken from the open-source Java application. The test cases are
classes in several open-source Java application that is indicated
as Blob smell according to the Landfill smell dataset [24].
Table I shows the list of test cases. All test cases will be
decomposed using the threshold-based hierarchical
agglomerative clustering and static and dynamic thresholds.
Then evaluate using the proposed approach in various
combinations of weights. The weights are set to start from
a=0.1 and b=0.9 until a=0.9 and b=0.1, with the increment and
decrement of 0.1.

The combination of weights has aimed to find the best
composition of weights in the class decomposition process

based on the compactness and usability of clusters.

TABLE I. LIST OF TEST CASES

No. Class Name Application
1. AudioFile aTunes
2. JDBCBench HSQLDB
3. Interpreter jEdit
4. SVGOutputFormat jHotDraw
5. Transfer HSQLDB
6. Import agroUML
7. StringConverter HSQLDB
8. RipCdDialog aTunes
9. DefaultDrawingViewTransferHandle jHotDraw
10. MDIApplication jHotDraw

TABLE II. THE RESULT OF STATIC THRESHOLD DECOMPOSITION

Class Threshold a=0.1;b=0.9 a=0.2;b=0.8 a=0.3;b=0.7 a=0.4;b=0.6 a=0.5;b=0.5 a=0.6;b=0.4 a=0.7;b=0.3 a=0.8;b=0.2 a=0.9;b=0.1

AudioFile
Clusters 2 2 2 2 2 2 2 2 2
Eval 0.932 0.864 0.796 0.728 0.661 0.593 0.525 0.457 0.389
Silhouettes 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.322

JDBCBench
Clusters 2 2 2 2 2 2 2 2 2
Eval 0.935 0.871 0.807 0.743 0.679 0.615 0.551 0.487 0.423
Silhouettes 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359

Interpreter
Clusters 1 1 1 1 1 1 2 2 2
Eval 0.928 0.856 0.784 0.712 0.64 0.569 0.436 0.372 0.309
Silhouettes 0.281 0.281 0.281 0.281 0.281 0.281 0.246 0.246 0.246

SVGOutputFormat
Clusters 2 2 2 2 2 2 2 2 2
Eval 0.919 0.839 0.759 0.679 0.599 0.519 0.439 0.359 0.279
Silhouettes 0.199 0.199 0.199 0.199 0.199 0.199 0.199 0.199 0.199

Transfer
Clusters 1 1 1 1 1 2 2 2 2
Eval 0.929 0.859 0.788 0.718 0.648 0.418 0.266 0.225 0.258
Silhouettes 0.296 0.296 0.296 0.296 0.296 0.216 0.179 0.228 0.291

Import
Clusters 2 2 2 2 2 2 2 2 2
Eval 0.917 0.835 0.753 0.671 0.588 0.506 0.424 0.342 0.26
Silhouettes 0.177 0.177 0.177 0.177 0.177 0.177 0.177 0.177 0.177

StringConverter
Clusters 2 2 2 2 2 2 2 2 2
Eval 0.952 0.904 0.856 0.808 0.76 0.712 0.664 0.616 0.569
Silhouettes 0.521 0.521 0.521 0.521 0.521 0.521 0.521 0.521 0.521

RipCdDialog
Clusters 2 2 2 2 2 2 2 2 2
Eval 0.876 0.807 0.739 0.67 0.602 0.534 0.443 0.388 0.292
Silhouettes 0.26 0.26 0.26 0.26 0.26 0.26 0.276 0.276 0.238

DefaultDrawingView
TransferHandle

Clusters 2 2 2 2 2 2 2 2 2
Eval 0.93 0.86 0.791 0.721 0.652 0.582 0.513 0.443 0.374
Silhouettes 0.304 0.304 0.304 0.304 0.304 0.304 0.304 0.304 0.304

MDIApplication
Clusters 2 2 2 2 2 2 2 2 2
Eval 0.927 0.854 0.782 0.709 0.637 0.564 0.492 0.419 0.347
Silhouettes 0.274 0.274 0.274 0.274 0.274 0.274 0.274 0.274 0.274

TABLE III. THE RESULT OF DYNAMIC THRESHOLD DECOMPOSITION

Class Threshold a=0.1;b=0.9 a=0.2;b=0.8 a=0.3;b=0.7 a=0.4;b=0.6 a=0.5;b=0.5 a=0.6;b=0.4 a=0.7;b=0.3 a=0.8;b=0.2 a=0.9;b=0.1

AudioFile
Clusters 7 7 7 7 7 7 7 9 7
Eval 0.951 0.903 0.855 0.807 0.759 0.711 0.663 0.404 0.567
Silhouettes 0.519 0.519 0.519 0.519 0.519 0.519 0.519 0.28 0.519

JDBCBench
Clusters 2 2 2 2 2 6 6 6 7
Eval 0.935 0.871 0.807 0.742 0.678 0.361 0.266 0.239 0.266
Silhouettes 0.357 0.357 0.357 0.357 0.357 0.016 0.185 0.23 0.292

Interpreter
Clusters 1 1 1 1 6 5 11 9 6
Eval 0.928 0.856 0.758 0.712 0.413 0.402 0.372 0.352 0.293
Silhouettes 0.281 0.281 0.281 0.281 -0.013 0.138 0.154 0.31 0.268

SVGOutputFormat
Clusters 5 5 5 5 10 9 9 8 6
Eval 0.936 0.873 0.81 0.746 0.46 0.418 0.345 0.4 0.44
Silhouettes 0.366 0.366 0.366 0.366 0.029 0.104 0.158 0.305 0.378

Transfer Clusters 2 2 1 1 7 12 14 12 14
Eval 0.902 0.829 0.788 0.718 0.461 0.259 0.246 0.288 0.331

135 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Silhouettes 0.249 0.249 0.296 0.296 -9.682 0.119 0.282 0.382 0.377

Import
Clusters 2 2 2 2 3 5 6 7 7
Eval 0.862 0.843 0.765 0.687 0.472 0.368 0.392 0.376 0.39
Silhouettes 0.227 0.219 0.219 0.219 0.078 0.214 0.474 0.403 0.403

StringConverter
Clusters 3 3 3 3 3 3 3 3 3
Eval 0.942 0.885 0.827 0.77 0.712 0.655 0.597 0.54 0.482
Silhouettes 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425

RipCdDialog
Clusters 3 3 3 3 3 4 5 5 7
Eval 0.927 0.855 0.783 0.711 0.638 0.495 0.465 0.418 0.409
Silhouettes 0.277 0.277 0.277 0.277 0.277 0.307 0.307 0.314 0.362

DefaultDrawingView
TransferHandle

Clusters 3 3 3 3 3 3 3 3 3
Eval 0.922 0.845 0.768 0.69 0.613 0.536 0.458 0.381 0.304
Silhouettes 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227

MDIApplication
Clusters 5 5 5 5 5 5 5 6 5
Eval 0.923 0.846 0.77 0.693 0.616 0.54 0.463 0.375 0.31
Silhouettes 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.239 0.233

V. RESULT AND DISCUSSION

A. Result of the Experiment
The proposed algorithm was implemented in the prototype

applications. Ten study cases of the Blob class are ready to use
to ensure the new approach's final result. All of the classes
were decomposed using a prototype application that was
already updated using a new algorithm. Every result using the
static and dynamic threshold decomposition is described in the
following tables (Table II for the static and Table III for the
dynamic threshold).

B. Compared to the Previous Approach
In the previous paper, two study cases were used, one of

which is MDIApplication class. The result of decomposition
using the previous algorithm on MDIApplication (using
𝐴𝐴 = 0.5 and 𝑏 = 0.5) is as described in Table IV and V.

In the case of the Silhouette value, using a new approach
(after adding the validation process using the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value), the
result is shown as case number 10 (Tables II and III). There are
increments of Silhouettes value of both static and dynamic
threshold decomposition. The static threshold increased from
0.08 to 0.274, and the dynamic threshold increased from 0.15
to 0.233. Even though the dynamic threshold has a lower
Silhouettes value, the dynamic threshold produces more
clusters that match the purpose of single responsibility
principles. More clusters are produced using a dynamic
threshold.

The other result compared to the previous approach is the
useless class. The problem emerged according to the cluster
that only has one element (Table V), and the element is private
(cluster number 2). The element name is scrollPane which has
-0.27 of Silhouette. After updating the algorithm using the
evaluation process (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value), the result of decomposition is
shown as follows (Table VI). The scrollPane element is moved
to cluster number five, together with the other element. No
clusters are considered unusable after updating the algorithm
using the evaluation process.

C. Discussion
The previous section shows the experiment result after

updating the algorithm using the evaluation process. Tables II
and III show the detail of every combination of weight and
express every case based on the cluster, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value, and
Silhouettes value. The result is different from one case to the

other. For example, six cases using the dynamic threshold
AHC produced a better value of Silhouettes than the static
threshold AHC. Those cases are AudioFile, Interpreter,
SVGOutputFormat, Import, and RipCDDialog. The rest of the
cases are better using the static threshold AHC. The
Silhouettes value is used as the consideration because the
cluster requirement results in the high compactness of elements
based on the similarity of syntax and semantics.

Higher Silhouettes also show the similarity of the cluster's
context to produce the single responsibility class. With the use
of the evaluation process, the result of Silhouettes can be
increased by at least 40% of Silhouettes. This result shows that
the evaluation process can place the elements more precisely
by considering the value of the class usability and the
Silhouettes. Most of the results show that the combination of
weight (𝐴𝐴 and 𝑏) that can produce the best cluster is 𝐴𝐴 higher
portion than 𝑏.

TABLE IV. THE STATIC DECOMPOSITION (PREVIOUS APPROACH)

Cluster Elements Silhouettes Index
1 parentFrame -0.12
 MDIApplication -0.03
 desktopPane 0.01
 Show -0.41
 isSharingToolsAmongViews -0.01
 Hide -0.39
 serialVersionUID -0.03
 scrollPane 0.03
 Prefs 0.00
2 createFileMenu 0.30
 Init 0.01
 getComponent 0.06
 createViewActionMap 0.31
 Configure 0.05
 createModelActionMap 0.15
 toolBarActions -0.01
 createViewMenu 0.30
 updateViewTitle 0.32
 createHelpMenu 0.34
 createWindowMenu 0.30
 initLookAndFeel 0.11
 wrapDesktopPane 0.04
 createMenuBar 0.21
 createEditMenu 0.32
 Launch 0.05
Average Silhouettes 0.08

136 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

TABLE V. THE DYNAMIC DECOMPOSITION (PREVIOUS APPROACH)

Cluster Elements Silhouettes Index
1 isSharingToolsAmongViews -0.12

 Prefs -0.08
2 scrollPane -0.27
3 parentFrame 0.00

 desktopPane 0.03
4 MDIApplication 0.27

 serialVersionUID 0.22
5 Show -0.19

 Hide -0.12
6 getComponent -0.51
7 Launch -0.62
8 createFileMenu -0.84

 Init -0.39

 initLookAndFeel -0.49

 createMenuBar -0.58
9 updateViewTitle 0.28

 Configure 0.08
10 createViewMenu 0.78

 createHelpMenu 0.89

 createWindowMenu 0.75

 createEditMenu 0.73
11 wrapDesktopPane 0.95

 toolBarActions 0.98
12 createViewActionMap 1.00

 createModelActionMap 1.00
Average Silhouettes 0.15

TABLE VI. RESULT OF DECOMPOSITION USING EVALUATION PROCESS
(𝐴𝐴 = 0.5; 𝑏 = 0.5)

Cluster Elements Modifier Silhouettes
1 MDIApplication publicMethod 0.083

 serialVersionUID private 0.128

 isSharingToolsAmongViews publicMethod 0.066
2 init publicMethod 0.31

 initLookAndFeel protectedMethod 0.149
3 updateViewTitle protectedMethod 0.073

 configure publicMethod 0.203

 launch publicMethod 0.128

 show publicMethod 0.087

 hide publicMethod 0.053
4 createViewMenu publicMethod 0.532

 createHelpMenu publicMethod 0.59

 createWindowMenu publicMethod 0.527

 createEditMenu publicMethod 0.483

 createFileMenu publicMethod 0.497

 createMenuBar protectedMethod 0.326

 createViewActionMap protectedMethod 0.572

 createModelActionMap protectedMethod 0.282

 parentFrame private 0.03
5 wrapDesktopPane protectedMethod 0.331

 toolBarActions private 0.159

 getComponent publicMethod 0.059

 desktopPane private 0.091

 scrollPane private 0.035

 prefs private 0.023
Average Silhouettes 0.233

TABLE VII. ELEMENT'S CHARACTER OF STUDY CASES

Class A B C D
AudioFile 39 9 30 Dynamic
JDBCBench 33 21 12 Static
Interpreter 65 20 45 Dynamic
SVGOutputFormat 61 9 52 Dynamic
Transfer 80 50 30 Dynamic
Import 30 13 17 Dynamic
StringConverter 16 1 15 Static
RipCdDialog 36 15 21 Dynamic
DefaultDrawingViewTransferHandle 15 2 13 Static
MDIApplication 25 6 19 Static

A: Total element; B: Attribute Element; C: Method Element; D: Approach

TABLE VIII. CORRELATION RESULT

No. Pair Data p-value
1. Element - Approach 0.0134
2. Attribute Element - Approach 0.1645
3. Method Element - Approach 0.0247

In the specific number, 𝐴𝐴 ≥ 0.7 is suitable to produce a
better cluster in both static and dynamic threshold AHC. Six
cases are good using a dynamic threshold, and four cases using
a static threshold. This result raises curiosity about whether the
class decomposition uses static or dynamic.

Fig. 5. The Tree Visualization of Tree-Based Classification Analysis

Based on the existing study cases in this research, every
studied case is detailed into specific characteristics of class that
relate to the element. For example, the number of total
elements, the number of method elements, and the number of
attribute elements are counted to find a correlation with the
type of approach. Table VII shows the detail of the class based
on the element.

The correlation between each character to the approach that
is used on the class decomposition is counted using a statistical
approach. There are three data pairs; the result is shown in
Table VIII. Two pairs of data have significant differences. It is
determined based on the result of the p-value of each pair. The
total element (No. 1) and method element (No. 3) has a p-value
lower than 0.05, and the attribute element (No. 2) is higher
than 0.05. The total element and the number of method
elements are related to the type of approach used in the class
decomposition process.

137 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

The threshold number that can be used as the decision
point for each total element and method element is also
interesting. The data of element characteristics were analyzed
using the tree-based classification method (Fig. 5).
Furthermore, the total element and method element can
indicate when the static or dynamic threshold should be used in
the class decomposition process. The tree visualization shows
the threshold number for each characteristic. The total element
and method element have the threshold numbers 33 and 19. If
the number of each characteristic is lower than the number,
then the static threshold AHC is better and vice versa. This
classification analysis result has an accuracy of about 80%.

The statistical and the threshold number analysis is only
suitable for the current scope of the experiment. It needs more
study cases to make the result acceptable to the larger scope of
the experiment.

VI. CONCLUSION AND FUTURE WORK
The class decomposition in the level of design is worth

doing to support the concept of model-driven software
engineering. The optimization of the design level Threshold-
based Agglomerative Hierarchical Clustering (AHC)
experiment has been done by adding an evaluation process.
The evaluation process aims to move the specific element with
negative Silhouettes value in every cluster to the other better
cluster. The evaluation process is able to increase the average
Silhouettes of the cluster compared to the previous approach.
The increment of Silhouettes has averaged about up to 40%.
The evaluation process is also able to solve the unusable
cluster, as mentioned in the previous approach result.

This research experiment takes ten study cases from the
Landfill smell dataset. All data consists of Blob smell. Most of
the good result of decomposition is using the Dynamic
Threshold AHC. Six study cases are good using the dynamic
threshold, and four study cases are good using the static
threshold. And the best result is produced by using the higher
portion of Silhouettes (𝐴𝐴) in the Eval formula.

The results were analyzed using a statistical approach to
get more valuable information about the result. Three variables
are related to the class: the number of total elements, method,
and attribute elements. The total element and method element
affect the use of the approach (static or dynamic threshold) to
get a better result of decomposition. In the scope of the
experiment, both the total element and method element have
the threshold numbers 33 and 19. A smaller number than the
threshold will use static, and a larger will use dynamic
threshold.

The design-level class decomposition research is important
to be continued in the future. The future plan aims to increase
the optimization of the result of decomposition. In this
experiment, the evaluation process is a separate process that is
in sequence with the previous approach. Merging the
algorithms became a consideration for future computational
improvements. The increment of study cases number is worth
increasing the algorithm's usability. Implementing the
decomposition process at the source code level is worth doing
in the future. The impact of changes in real implementation is
important to study.

REFERENCES
[1] M. Fowler et al., "Refactoring Improving the Design of Existing Code

Second Edition," Second Ed. United State of America: Pearson
Education - Wesley, 2019.

[2] M. Brambilla, J. Cabot, and M. Wimmer, "Model-driven software
engineering in practice." Morgan & Claypool, 2012.

[3] A. Yamashita and L. Moonen, “Exploring the impact of inter-smell
relations on software maintainability: An empirical study,” in
Proceedings - International Conference on Software Engineering, 2013.

[4] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and A. De
Lucia, “On the diffuseness and the impact on maintainability of code
smells: a large scale empirical investigation,” Empir. Softw. Eng., vol.
23, no. 3, pp. 1188–1221, Jun. 2018.

[5] B. Priyambadha and T. Katayama, “Design Level Class Decomposition
using the Threshold-based Hierarchical Agglomerative Clustering,” Int.
J. Adv. Comput. Sci. Appl., vol. 13, no. 3, pp. 57–64, 2022.

[6] B. Priyambadha and T. Katayama, “Tree-based keyword search
algorithm over the visual paradigm’s class diagram XML to abstracting
class information,” 2020 IEEE 9th Glob. Conf. Consum. Electron.
GCCE 2020, pp. 280–284, 2020.

[7] B. Priyambadha, T. Katayama, Y. Kita, H. Yamaba, K. Aburada, and N.
Okazaki, “Utilizing the similarity meaning of label in class cohesion
calculation,” J. Robot. Netw. Artif. Life, vol. 7, no. 4, pp. 270–274,
2021.

[8] B. Priyambadha, T. Katayama, Y. Kita, H. Yamaba, K. Aburada, and N.
Okazaki, “The Seven Information Features of Class for Blob and
Feature Envy Smell Detection in a Class Diagram,” 2021 Int. Conf.
Artif. Life Robot., pp. 348–351, 2021.

[9] K. Alkharabsheh, Y. Crespo, E. Manso, and J. A. Taboada, “Software
Design Smell Detection: a systematic mapping study,” Softw. Qual. J.,
vol. 27, no. 3, pp. 1069–1148, 2019.

[10] B. K. Sidhu, K. Singh, and N. Sharma, “A Catalogue of Model Smells
and Refactoring Operations for Object-Oriented Software,” Proc. Int.
Conf. Inven. Commun. Comput. Technol. ICICCT 2018, pp. 313–319,
2018.

[11] B. Kaur Sidhu, “Model Smells In Uml Class Diagrams,” Int. J. Enhanc.
Res. Manag. Comput. Appl., vol. 5, pp. 2319–7471, 2016.

[12] R. C. Martin, Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. 2017.

[13] Y. Wang, H. Yu, Z. Zhu, W. Zhang, and Y. Zhao, “Automatic Software
Refactoring via Weighted Clustering in Method-Level Networks,” IEEE
Trans. Softw. Eng., vol. 44, no. 3, pp. 202–236, 2018.

[14] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “A two-step
technique for extract class refactoring,” ASE’10 - Proc. IEEE/ACM Int.
Conf. Autom. Softw. Eng., pp. 151–154, 2010.

[15] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying Extract Class
refactoring opportunities using structural and semantic cohesion
measures,” J. Syst. Softw., vol. 84, no. 3, pp. 397–414, 2011.

[16] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Automating
extract class refactoring: an improved method and its evaluation,”
Empir. Softw. Eng., vol. 19, no. 6, pp. 1617–1664, 2014.

[17] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander,
“Decomposing object-oriented class modules using an agglomerative
clustering technique,” IEEE Int. Conf. Softw. Maintenance, ICSM, pp.
93–101, 2009.

[18] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou,
“Identification and application of Extract Class refactorings in object-
oriented systems,” J. Syst. Softw., vol. 85, no. 10, pp. 2241–2260, 2012.

[19] M. Hamdi, R. Pethe, A. S. Chetty, and D. K. Kim, “Threshold-driven
class decomposition,” Proc. - Int. Comput. Softw. Appl. Conf., vol. 1,
pp. 884–887, 2019.

[20] I. Bassey, N. Dladlu, and B. Ele, “Object-Oriented Code Metric-Based
Refactoring Opportunities Identification Approaches: Analysis,” Proc. -
4th Int. Conf. Appl. Comput. Inf. Technol. 3rd Int. Conf. Comput. Sci.
Appl. Informatics, 1st Int. Conf. Big Data, Cloud Comput. Data Sci., pp.
67–74, 2017.

[21] Á. Domingo, J. Echeverría, Ó. Pastor, and C. Cetina, “Evaluating the
Benefits of Model-Driven Development,” Adv. Inf. Syst. Eng., no. June

138 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

2021, pp. 353–367, 2020.
[22] R. Dijkman, M. Dumas, B. van Dongen, R. Käärik, and J. Mendling,

“Similarity of business process models: Metrics and evaluation,” Inf.
Syst., vol. 36, no. 2, pp. 498–516, 2011.

[23] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, pp. 53–
65, 1987.

[24] F. Palomba et al., “Landfill: An Open Dataset of Code Smells with
Public Evaluation,” 2015 IEEE/ACM 12th Work. Conf. Min. Softw.
Repos., pp. 482–485, 2015.

139 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Related Work
	A. Class Decomposition on Source Code
	B. Model-Driven Software Engineering
	C. Class Decomposition on Class Diagram

	III. Proposed Approach
	A. Scope of Study
	B. Problem Accomplishment
	C. Preliminary Experiment
	D. Stopping Condition of Algorithm
	E. Proposed Algorithm

	IV. The Experiment Scenario
	V. Result and Discussion
	A. Result of the Experiment
	B. Compared to the Previous Approach
	C. Discussion

	VI. Conclusion and Future Work
	References

