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Abstract—Refactoring on the design level artifact such as the 
class diagram was already done using the threshold-based 
agglomerative hierarchical clustering method, specifically class 
decomposition. The approach produced a better cluster based on 
the label name similarity of attribute and method. But, some 
problems emerge from the experiment result. The negative 
Silhouettes element still exist in the cluster. And, there is an 
unusable cluster that only consists of one attribute element. This 
paper has proposed the evaluation process to optimize the result 
of clustering. This evaluation process is an additional process 
that aims to move the negative Silhouettes element to the other 
cluster. The movement is also to get the better value of element 
Silhouettes value. The evaluation process can produce a better 
result for clusters. The clusters produced from the evaluation 
process have higher Silhouettes values. The average Silhouettes 
value is increased by about 40%. Ultimately, the result shows no 
unusable cluster as mentioned in the previous research. 

Keywords—Refactoring; design level refactoring; software 
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I. INTRODUCTION 
Refactoring the software design artifact is essential to 

maintain the design's internal structure [1]. Changes or 
alteration to the design artifact is easier than source code. The 
easiness is because of the original character of the model. The 
model is easy to change because the model is an abstract 
description of something more detailed. Refactoring at the 
design level means the refactoring activity is using the 
software design artifact as an object. The easiness of alteration 
and simulation of quality measurement using the specific 
metric is one of the benefits of refactoring software design 
artifacts. The software design artifact is a model bridging the 
requirement and implementation artifact and is the center of 
the software development process [2]. The changes will impact 
both sides, requirement and implementation artifact. In the 
case of software maintenance, refactoring activity is one way 
to decrease the maintenance cost [3], [4]. In the case of 
software development, the refactoring activity can be used as 
the evaluation process to maintain the internal quality of the 
design artifact before it is implemented into the source code. 
The design level refactoring increases the quality awareness of 
the design artifact as early as possible. 

Shifting the object of refactoring activity to a higher level 
of abstraction has a specific problem. There is a limitation of 
information in the design artifact rather than the 
implementation artifact [5]. Therefore, excavation or mining 
and in-depth information analysis of the design artifacts are 
necessary [6]–[8]. Generally, the information on the design 

artifact is only written on the artifact. Sometimes, the 
information contains a hidden meaning that needs extra 
analysis to mean it. Natural language processing or semantic 
analysis is one approach that provides the functionality to gain 
the meaning of information [7]. Different from that, the source 
code level information clearly defines a specific element. The 
software developer can easily use it as data to analyze and 
measure quality, for example, the number of operand or 
operators in the source code to measure the complexity of the 
source code. The developer also can easily know the relation 
between attribute and method by reading the internal source 
code. They can figure it out by looking at the assigning value 
statement to the specific attribute. 

Refactoring activity begins from the existence of the smell 
in the software artifacts. The smell is the indicator that there is 
something wrong in it. The quality of the artifacts decayed 
because of the smell. Finding the smell in the artifact is the 
first activity before refactoring itself. Researchers have already 
researched the smell detection process in the software artifacts. 
Smell detection mostly uses the source code as an object, 
known as code smell detection.  Nowadays, the design of smell 
detection has started to emerge [9]–[11]. The terms and 
characteristics between code and design smells are different. 
The differentiation is based on the object, and the information 
lies in it. But, the previous research tried to use the code smell 
term and characteristics to find the smell in the design artifacts 
[8]. As a result, the Blob smell is detected using the class 
diagram information. Semantic analysis was used to determine 
the relation between class elements based on the name labels to 
enrich the class diagram information. 

Blob smell is one of the lacks of internal structure quality 
indicators. It indicates the greedy process of the class. One 
class has a lot of process in it, whereas the other class nearby is 
only the data provider. The blob class monopolizes data 
processing provided by the nearby classes [8]. This 
phenomenon can happen due to software changes or the 
developer's lack of clean architecture theory. The clean 
architecture theory explains that the class must comply with 
the Single Responsibility Principle [12]. During the 
development or evolution cycle, the class has to have only one 
reason to change. The reason to change is related to the process 
or functionality of the specific class. If the class has more than 
one function or manipulates many operations, it will be the 
candidate that there is much reason to change it during the 
software cycle. 

Furthermore, the blob class in the software system will 
increase the maintenance cost because it affects the class's 
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understandability [13]. The refactoring activity can resolve the 
problems of the Blob class. One of the refactoring processes to 
solve the blob class problem is class decomposition. Mostly, a 
source code became the field of the class decomposition 
process. Much research has been conducted using source code 
information on the class decomposition process. Shifting the 
decomposition process to the design level is interesting due to 
the possibility of decreasing the cost of the change, easiness of 
change simulation, and early quality awareness. 

Class decomposition is the process of separating one class 
into many classes. The decomposition is based on the specific 
characteristics defined before the separation process. Many 
researchers proposed the class decomposition mechanism at 
the source code or design level. Most of the class 
decomposition mechanism approach uses the clustering 
process [13]–[19], in which the elements in the class are 
separate based on each element's closeness characteristic. This 
method aims to make the separation process result following 
the Single Responsibility Principle concept. The Threshold-
based Agglomerative Hierarchical Clustering was tried to 
implement on both source code [19] and design level artifacts 
[5]. Each clustering process is based on the metrics generated 
from each source code and design artifacts. The design level 
class decomposition on the class diagram uses two metrics, 
syntactic (𝑠𝑦𝑛𝑛 ) and semantic (𝑠𝑒𝑚 ) [5]. Both metrics are 
calculated by considering syntactic and semantic closeness 
from the element's label name. Using the closeness of syntactic 
and semantic of the label name, the Threshold-based 
Agglomerative Hierarchical Clustering created a more compact 
cluster compared to the result of clustering on the source code 
level. The compactness of clusters was observed from the 
value of the Silhouettes value of every cluster. However, the 
decomposition results still show the elements with a negative 
Silhouette value. A negative Silhouette value indicates that an 
element's distance from the others in its cluster is large. The 
negative Silhouette elements are considered the worst in the 
relation with the concept of single responsibility principle. It is 
important to enhance the element placement mechanism of the 
negative element. Additionally, some clusters are considered 
unable to implement because, in case implemented as a class, it 
will instantiate objects that cannot interact with each other. A 
cluster with only one element, especially if the element 
includes a private modifier, is deemed worthless or useless. As 
a result, it is seen to be critical to incorporate the modifier 
aspect in the decomposition process. 

The validity of the class decomposition's result is 
important. It is related to the class's applicability when 
implemented in the real case or source code. The existence of 
negative elements in the resulting cluster and a single private 
element in one cluster is a big problem for the applicability of 
the class. This condition requires in-depth attention, especially 
to validate the result of the decomposition process. The basic 
validation mechanism is to move the specific element from the 
origin cluster to the other cluster. The moving mechanism aims 
to put the specific element (negative element) to the other 
cluster to get a better Silhouette value. The other problem is 
the existence of the private single-member cluster. It also 
decreases the applicability of the class when it is implemented 
into the software's source code. In the previous approach, the 

clustering process is based on the two metrics 𝑠𝑦𝑛𝑛 and 𝑠𝑒𝑚. 
The addition of other metrics is important to solve the unusable 
class. 

This research is conducted to propose the validation 
mechanism to solve previous research's problems. The basic 
idea is to move the elements in the cluster that are not well-
positioned. The new metric is proposed to increase every 
cluster's placement accuracy and compactness. All descriptions 
of the proposed algorithm of the validation mechanism and the 
experiment are organized as follows. Section II summarizes 
the state of the arts of the class decomposition approach. Then 
continue the description of the class usability and compactness 
of the class in the decomposition process in Section III. 
Section IV and V explain the proposed algorithm and the 
research scenarios. Section VI describes the result and 
discussion. Then the last is the conclusion and future work in 
Section VII. 

II. RELATED WORK 
Many researchers published methods for class 

decomposition based on a specific type of smell. The research 
has two object studies, source code, and class diagram. The 
following section summarizes the history of research in the 
area of class decomposition. 

A. Class Decomposition on Source Code 
Bavota et al. presented a number of methods that could be 

used to decompose classes at the level of source code. Bavota's 
research history used the two-step decomposition techniques 
and MaxFlow-MinCut algorithms to extract classes [14]–[16]. 
The research involved considering both structural and semantic 
characteristics of the class. There are three metrics used: 
Structural Similarity between Methods (SSM), Call-based 
Interaction between Methods (CIM), and Conceptual 
Similarity between Methods (CSM). According to a study, 
transitive closure was calculated using metrics based on the 
values of distance between class elements. The other method 
uses the graph to represent the relatedness between elements 
and the weight to represent the closeness between elements. 
The transitive closure is able to split a Blob class into more 
than two classes, which is a significant improvement over the 
MaxFlow-MinCut approach. Furthermore, it can automatically 
determine how many classes should be extracted from a Blob. 

A discussion of metric-based refactoring opportunities 
identification for object-oriented software systems is presented 
in an article by Isong Bassey et al. [20]. They conducted a 
thorough analysis of sixteen (16) primary studies in order to 
identify the state of the practice in ROI. The purpose of this 
article is to summarize all existing refactoring opportunities. 
The analysis was divided into three categories: structural, 
semantic, and structural and semantic. Using metrics to 
identify refactoring opportunities is the focus of this paper. Al 
Dallal's structural approach and Bavota's structural and 
semantic approaches previously published elsewhere are 
summarized in this paper. 

According to Wang Ying et al., weighted clustering is 
automatically used to refactor software [13]. This article 
focuses on class-level refactoring. A network is considered to 
be a representation of the relationship of dependencies between 
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methods (as nodes). There are three matrices that illustrate the 
relationships between methods, (i) attribute sharing (Sharing 
Attribute Weight/ SAW), (ii) method invocation (Method 
Invocation Weight/ MIW), and (iii) functional coupling 
(Functional Coupling Weight/ FCW). A combination of three 
matrices as well as semantic similarity weights (SSW) is used 
to compute edge weights. Thus, the most advantageous cluster 
with the appropriate weight is selected. Wang compares his 
method with Bavota and Fokaefs. Wang's approach improves 
cohesion and coupling without affecting the code's behavior. 
Furthermore, it improves code's understandability, flexibility, 
reusability, and maintainability. 

Mohamed Hamdi discusses the Agglomerative Hierarchical 
Clustering (AHC) method for class decomposition [19]. The 
decomposition occurs until classes have a single responsibility 
iteratively. One of the main challenges is terminating the 
decomposition process. They define the threshold concept for 
determining the endpoint during the decomposition process. 
There are six matrices: Internal Attribute Sharing (IAS), 
Internal Direct Call Dependency (IDC), Internal Indirect Call 
Dependency (IIC), Internal Method Sharing (IMS), and 
External Indirect Call Dependency (EIC). In this case, the 
weighted AHC results are more beneficial. This approach 
appeared to be a solution to the problem of the limited number 
of classes resulting from the decomposition process and the 
termination state. 

B. Model-Driven Software Engineering 
Model-Driven Software Engineering (MDSE) uses a 

software model as the primary artifact of software 
development [2]. Compared to the implementation artifact 
(source code), the software model is closer to the problem 
domain. The model transformation is the heart of the MDSE 
since the MDSE aims to generate the source code from the 
models. On the other hand, there is another approach to the 
development of software called Code-centric Development 
(CcD). A comparison study between MDSE and CcD has 
already been done for over a decade. From the review paper by 
Domingo et al., many researchers have been evaluating the 
benefit of the MDSE [21]. Some works said that MDSE 
decreases development time (up to 89%) relative to Code-
centric Development (CcD). The other works suggest that the 
MDSE is suitable for academic exercise. Furthermore, the 
other works assert that MDSE is also suitable for 
inexperienced developers. Finally, Domingo et al., based on 
their review of MDSE, conclude that the MDSE is suitable for 
academic exercise and inexperienced developers [21]. 

C. Class Decomposition on Class Diagram 
The class decomposition process is shifted to the design 

level artifact taking into account the ease of change and quality 
measurement. A similarity score is calculated between the 
class's elements (attributes and methods) used in the 
decomposition process based on the metrics that are derived 
from the information found in the class diagram. There are two 
approaches to determining the similarity rates between 
elements of a class: syntactic and semantic analysis. Thus, the 
two approaches evaluate the similarity of sentences based on 
their similarity in terms of syntax and meaning. Those metrics 

are 𝑠𝑦𝑛𝑛 and 𝑠𝑒𝑚. The following formulas are defined for the 
metrics [5]. 

𝑠𝑦𝑛𝑛 = �1, 𝑠𝑖𝑖𝑚𝑖𝑖𝐴𝐴𝐴𝐴𝑟 𝑡𝑦𝑝𝑒 > 0
0, 𝑠𝑖𝑖𝑚𝑖𝑖𝐴𝐴𝐴𝐴𝑟 𝑡𝑦𝑝𝑒 ≤ 0 (1) 

and, 

𝑠𝑒𝑚 = 2.𝑤𝑖.|𝑤1∩𝑤2|+𝑤𝑠.(|𝑠(𝑤1,𝑤2)|+|𝑠(𝑤2,𝑤1)|)
|𝑤1|+|𝑤2|  (2) 

where 𝑠(𝑤1,𝑤2)  or 𝑠(𝑤2,𝑤1)  is the number of words 
that have a synonym relationship between two labels, and 
𝑤𝑖𝑖 = 1  and 𝑤𝑠 = 0.75  [22]. The closeness or similarity 
between class elements is calculated using the following 
formula. 

𝑆𝑖𝑖𝑚(𝑒1, 𝑒2) = 𝑠𝑦𝑛𝑛+𝑠𝑒𝑚
2

 (3) 

The class decomposition process uses the Threshold-based 
AHC that is used the similarity formula to calculate the 
closeness between class elements. Based on the previous 
decomposition result, the static and dynamic threshold AHC 
clusters are more compact than Hamdi's approach. The 
compactness of the clusters is measured using the Silhouette 
value. Based on the results, it is evident that there are certain 
advantages to be gained, but there are also some shortcomings 
as well. Decomposition results still show elements with 
negative Silhouette values. When the Silhouette value is 
negative, it indicates that the current element is far from the 
other elements in the cluster. In other words, negative 
Silhouette elements are considered to be the worst. Negative 
elements need to be improved in their movement mechanism. 
Moreover, some clusters are considered unable to implement 
because their objects may not be able to collaborate. It is 
considered useless to have a cluster with only one element, 
especially if the element has a private modifier. This is why the 
modifier aspect must be included in the decomposition 
process. Avoiding useless clusters is essential. 

III. PROPOSED APPROACH 

A. Scope of Study 
The research focuses on our previous research results using 

the same dataset as the previous experiment. Two formulas 
will be proposed to solve the previous problems. Those 
formulas will be focused on overcoming the negative 
Silhouette and useless cluster [5] by combining Class Usability 
(𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦) and Silhouettes value (𝑠(𝑖𝑖)). The combination 
of two metrics are used to evaluate the cluster after the 
clustering process. The whole evaluation process will be 
proposed as an evaluation algorithm. This study also uses 
classes that are not problematic to gain other insights in this 
study. 

B. Problem Accomplishment 
The previous research’s result mentioned that there were 

two problems found. The first is the negative Silhouette 
element, and the second is the cluster that is predicted to be 
unusable. That is why the evaluation process must consider 
two aspects: the Silhouette value and the usability of the class 
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(that will be quantified in the form of a metric). The following 
formula calculates the Eval value (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴. 𝑠(𝑖𝑖) + 𝑏.𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦 (4) 

𝑠(𝑖𝑖) shows the Silhouette value, and 𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦shows the 
class usability value. 𝐴𝐴 and 𝑏 is the weight that describes the 
proportion of each value to the evaluation value. 𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦 
has measured the usability of the class by considering the 
number of public methods that existed in the cluster. The class 
is usable if it at least consists of one public method. In other 
words, if the class has a public method, the class will be able to 
collaborate with the others (useful). The 𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦  is 
calculated using the following formula. 

𝐶𝑈𝑠𝐴𝐴𝑏𝑖𝑖𝐴𝐴𝑖𝑖𝑡𝑦 =  �0 ,𝑚𝑝𝑢𝑏 = 0
1 ,𝑚𝑝𝑢𝑏 ≥ 1 (5) 

The 𝑚𝑝𝑢𝑏 is the number of public methods in the class 
candidate (in the cluster). The silhouette value is calculated 
using the following formula [23]. 

𝑠(𝑖𝑖) = 𝑏(𝑖)−𝑎(𝑖)
max (𝑎(𝑖),𝑏(𝑖))

 (6) 

Where, 

• 𝐴𝐴(𝑖𝑖) = the average dissimilarity of 𝑖𝑖 to all other objects 
of A, then, 

• 𝑑(𝑖𝑖,𝐾) =  the average dissimilarity of 𝑖𝑖  to all object 
cluster 𝐾, when 𝐾 ∈ 𝐶𝐴𝐴𝑢𝑠𝑡𝑒𝑟 𝐴𝐴𝑛𝑛𝑑 𝐾 ≠ 𝐴𝐴, 

• 𝑏(𝑖𝑖) = 𝑀𝐼𝑁�𝑑(𝑖𝑖,𝐾)�,𝐾 ≠ 𝐴𝐴. 

The proposed evaluation algorithm has the main process of 
selecting the negative element and then moving it to the other 
cluster by comparing the Eval value before and after moving. 
The algorithm will be appended to the previous algorithm as 
the evaluation process. 

C. Preliminary Experiment 
Before the algorithm is confirmed, a preliminary 

experiment is conducted to ensure the performance of the 
evaluation process. The preliminary experiment uses one study 
case from the Landfill dataset, Class Transfer (Blob class from 
HSQLDB). The preliminary experiment is an early evaluation 
of the proposed algorithm (implementation of the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
formula) that uses a combination of weights 𝐴𝐴 and 𝑏. In the 
case of Class Transfer, using a combination of weights with 
the value 𝐴𝐴 bigger than 𝑏 in the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 formula, the process was 
always run because the negative element always existed. As a 
result, the process of evaluation is never stopped. Based on this 
result, it was tried to print out the difference of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  value 
(before and after moving) every iteration and draw it into the 
line graph to show the trend. Fig. 1 shows the line graph of 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  value differences in the case Class Transfer using 
weights 𝐴𝐴 = 0.9 and 𝑏 = 0.1. The trend shows that the values 
are shifted alternately in the mid to late iterations. It seems that 
the specific element was moved and moved back to the same 
cluster because the value of Silhouettes of that particular 
element is always negative in both clusters (origin and 
destination cluster). 

 
Fig. 1. Eval Value Differences of Class Transfer. 

 
Fig. 2. The Average of Eval Value. 

Fig. 1 shows the graph of the Eval value in every iteration. 
In the middle of the graph, Fig. 1, the data show a pattern that 
causes the unstoppable process. Even though it shows the 
pattern, the data seems unstable (continually moving from 
positive to negative). So, it needs to calculate to get a more 
stable value. Starting from iteration number 37, the Eval value 
between before and after moving is 0.00977 and -0.00977. 
Then, it tried to use the average formula to get a more stable 
value. 

Fig. 2 shows the result after the values are averaged. The 
graph shows the flat value starting from iteration number 37, 
and it is easier to use as a termination condition for the 
algorithm for Class Transfer. The flat value of Class Transfer 
is about 0.4. The value of 0.4 cannot be used in the other study 
cases. It is only suitable for Class Transfer. Therefore, it is 
possible to be different from the other study cases. The other 
calculation is necessary to find a universal value to get the 
stopping condition. 

D. Stopping Condition of Algorithm 
The stopping condition in the decomposition process was 

the new problem that emerged in the preliminary experiment. 
One formula that can be used to find the pattern is by 
calculating the average Eval value between pre and post-
movement to the other cluster. The following formula 
represents how the average of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 can be calculated. 

-0.05

0

0.05

0.1

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Eval Value Differences (Class Transfer) 

-0.1
0

0.1
0.2
0.3
0.4
0.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77

Average of Eval Value 

133 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 8, 2022 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 = 𝐸𝑣𝑎𝑙𝑛+𝐸𝑣𝑎𝑙𝑛−1
2

 (7) 

Where, 

• 𝑛𝑛 is the number of decomposition iterations, 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛−1  is Eval value before moving to the other 
cluster, 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 is Eval value after moving to the other cluster. 

The 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 for every iteration is represented in a line 
graph in Fig. 2. The easiest way to find the stopping condition 
is to calculate the differences of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  between two 
iterations using the following formula. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛−1 (8) 

Then the stop condition is represented as follows. 

𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑛𝑑𝑖𝑖𝑡𝑖𝑖𝑜𝑛𝑛 =  �𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 = 0 , 𝑡𝑟𝑢𝑒
𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 ≠ 0 , 𝑓𝑓𝐴𝐴𝐴𝐴𝑠𝑒 (9) 

Where, 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛  is Average Eval value from iteration 
number 𝑛𝑛, 

• 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛−1  is Average Eval value from iteration 
number 𝑛𝑛 − 1. 

The main idea of the stopping condition is to find zero (0) 
differences of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 between iterations. If the differences 
of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  are zero (0), then it means that there is no 
increment of Eval value even if the specific element is moved 
to the other cluster. Then the last position of the cluster will be 
chosen as the best solution. Fig. 3 shows the line graph of 
𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 as the representation of the differences of 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
before and after movement. 

E. Proposed Algorithm 
The algorithm is proposed to answer the problems that 

emphasize the previous class decomposition approach. The 
new algorithm is the representation of an additional process on 
the class decomposition. The evaluation algorithm is described 
in Fig. 4. In the design level class decomposition research, the 
decomposition process is done by the Threshold-based 
Hierarchical Agglomerative Clustering. First, two metrics are 
used to calculate the closeness between elements in the class 
decomposition process, 𝑠𝑦𝑛𝑛 , and 𝑠𝑒𝑚 . Then, the process 
continues to the evaluation process. That is aim is to evaluate 
the placement of every element. This process is focused on the 
element that has the negative silhouette value. The evaluation 
process's main idea is to move the negative element to the 
other cluster to get a better silhouette value. The evaluation 
process is an iteration process that considers the increment of 
silhouette value and stopping condition that is defined in the 
previous section. 

 
Fig. 3. The Line Graph 𝐴𝐴𝐴𝐴𝐴𝐴𝐷𝐷𝑖𝑖𝑓𝑓𝑓𝑓 

 
Fig. 4. The Evaluation Algorithm 
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IV. THE EXPERIMENT SCENARIO 
The class decomposition experiment uses ten study cases 

taken from the open-source Java application. The test cases are 
classes in several open-source Java application that is indicated 
as Blob smell according to the Landfill smell dataset [24]. 
Table I shows the list of test cases. All test cases will be 
decomposed using the threshold-based hierarchical 
agglomerative clustering and static and dynamic thresholds. 
Then evaluate using the proposed approach in various 
combinations of weights. The weights are set to start from 
a=0.1 and b=0.9 until a=0.9 and b=0.1, with the increment and 
decrement of 0.1. 

The combination of weights has aimed to find the best 
composition of weights in the class decomposition process 

based on the compactness and usability of clusters. 

TABLE I.  LIST OF TEST CASES 

No. Class Name Application 
1. AudioFile aTunes 
2. JDBCBench HSQLDB 
3. Interpreter jEdit 
4. SVGOutputFormat jHotDraw 
5. Transfer HSQLDB 
6. Import agroUML 
7. StringConverter HSQLDB 
8. RipCdDialog aTunes 
9. DefaultDrawingViewTransferHandle jHotDraw 
10. MDIApplication jHotDraw 

TABLE II.  THE RESULT OF STATIC THRESHOLD DECOMPOSITION 

Class Threshold a=0.1;b=0.9 a=0.2;b=0.8 a=0.3;b=0.7 a=0.4;b=0.6 a=0.5;b=0.5 a=0.6;b=0.4 a=0.7;b=0.3 a=0.8;b=0.2 a=0.9;b=0.1 

AudioFile 
Clusters 2 2 2 2 2 2 2 2 2 
Eval 0.932 0.864 0.796 0.728 0.661 0.593 0.525 0.457 0.389 
Silhouettes 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.322 0.322 

JDBCBench 
Clusters 2 2 2 2 2 2 2 2 2 
Eval 0.935 0.871 0.807 0.743 0.679 0.615 0.551 0.487 0.423 
Silhouettes 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 0.359 

Interpreter 
Clusters 1 1 1 1 1 1 2 2 2 
Eval 0.928 0.856 0.784 0.712 0.64 0.569 0.436 0.372 0.309 
Silhouettes 0.281 0.281 0.281 0.281 0.281 0.281 0.246 0.246 0.246 

SVGOutputFormat 
Clusters 2 2 2 2 2 2 2 2 2 
Eval 0.919 0.839 0.759 0.679 0.599 0.519 0.439 0.359 0.279 
Silhouettes 0.199 0.199 0.199 0.199 0.199 0.199 0.199 0.199 0.199 

Transfer 
Clusters 1 1 1 1 1 2 2 2 2 
Eval 0.929 0.859 0.788 0.718 0.648 0.418 0.266 0.225 0.258 
Silhouettes 0.296 0.296 0.296 0.296 0.296 0.216 0.179 0.228 0.291 

Import 
Clusters 2 2 2 2 2 2 2 2 2 
Eval 0.917 0.835 0.753 0.671 0.588 0.506 0.424 0.342 0.26 
Silhouettes 0.177 0.177 0.177 0.177 0.177 0.177 0.177 0.177 0.177 

StringConverter 
Clusters 2 2 2 2 2 2 2 2 2 
Eval 0.952 0.904 0.856 0.808 0.76 0.712 0.664 0.616 0.569 
Silhouettes 0.521 0.521 0.521 0.521 0.521 0.521 0.521 0.521 0.521 

RipCdDialog 
Clusters 2 2 2 2 2 2 2 2 2 
Eval 0.876 0.807 0.739 0.67 0.602 0.534 0.443 0.388 0.292 
Silhouettes 0.26 0.26 0.26 0.26 0.26 0.26 0.276 0.276 0.238 

DefaultDrawingView 
TransferHandle 

Clusters 2 2 2 2 2 2 2 2 2 
Eval 0.93 0.86 0.791 0.721 0.652 0.582 0.513 0.443 0.374 
Silhouettes 0.304 0.304 0.304 0.304 0.304 0.304 0.304 0.304 0.304 

MDIApplication 
Clusters 2 2 2 2 2 2 2 2 2 
Eval 0.927 0.854 0.782 0.709 0.637 0.564 0.492 0.419 0.347 
Silhouettes 0.274 0.274 0.274 0.274 0.274 0.274 0.274 0.274 0.274 

TABLE III.  THE RESULT OF DYNAMIC THRESHOLD DECOMPOSITION 

Class Threshold a=0.1;b=0.9 a=0.2;b=0.8 a=0.3;b=0.7 a=0.4;b=0.6 a=0.5;b=0.5 a=0.6;b=0.4 a=0.7;b=0.3 a=0.8;b=0.2 a=0.9;b=0.1 

AudioFile 
Clusters 7 7 7 7 7 7 7 9 7 
Eval 0.951 0.903 0.855 0.807 0.759 0.711 0.663 0.404 0.567 
Silhouettes 0.519 0.519 0.519 0.519 0.519 0.519 0.519 0.28 0.519 

JDBCBench 
Clusters 2 2 2 2 2 6 6 6 7 
Eval 0.935 0.871 0.807 0.742 0.678 0.361 0.266 0.239 0.266 
Silhouettes 0.357 0.357 0.357 0.357 0.357 0.016 0.185 0.23 0.292 

Interpreter 
Clusters 1 1 1 1 6 5 11 9 6 
Eval 0.928 0.856 0.758 0.712 0.413 0.402 0.372 0.352 0.293 
Silhouettes 0.281 0.281 0.281 0.281 -0.013 0.138 0.154 0.31 0.268 

SVGOutputFormat 
Clusters 5 5 5 5 10 9 9 8 6 
Eval 0.936 0.873 0.81 0.746 0.46 0.418 0.345 0.4 0.44 
Silhouettes 0.366 0.366 0.366 0.366 0.029 0.104 0.158 0.305 0.378 

Transfer Clusters 2 2 1 1 7 12 14 12 14 
Eval 0.902 0.829 0.788 0.718 0.461 0.259 0.246 0.288 0.331 
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Silhouettes 0.249 0.249 0.296 0.296 -9.682 0.119 0.282 0.382 0.377 

Import 
Clusters 2 2 2 2 3 5 6 7 7 
Eval 0.862 0.843 0.765 0.687 0.472 0.368 0.392 0.376 0.39 
Silhouettes 0.227 0.219 0.219 0.219 0.078 0.214 0.474 0.403 0.403 

StringConverter 
Clusters 3 3 3 3 3 3 3 3 3 
Eval 0.942 0.885 0.827 0.77 0.712 0.655 0.597 0.54 0.482 
Silhouettes 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 

RipCdDialog 
Clusters 3 3 3 3 3 4 5 5 7 
Eval 0.927 0.855 0.783 0.711 0.638 0.495 0.465 0.418 0.409 
Silhouettes 0.277 0.277 0.277 0.277 0.277 0.307 0.307 0.314 0.362 

DefaultDrawingView 
TransferHandle 

Clusters 3 3 3 3 3 3 3 3 3 
Eval 0.922 0.845 0.768 0.69 0.613 0.536 0.458 0.381 0.304 
Silhouettes 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227 0.227 

MDIApplication 
Clusters 5 5 5 5 5 5 5 6 5 
Eval 0.923 0.846 0.77 0.693 0.616 0.54 0.463 0.375 0.31 
Silhouettes 0.233 0.233 0.233 0.233 0.233 0.233 0.233 0.239 0.233 

V. RESULT AND DISCUSSION 

A. Result of the Experiment 
The proposed algorithm was implemented in the prototype 

applications. Ten study cases of the Blob class are ready to use 
to ensure the new approach's final result. All of the classes 
were decomposed using a prototype application that was 
already updated using a new algorithm. Every result using the 
static and dynamic threshold decomposition is described in the 
following tables (Table II for the static and Table III for the 
dynamic threshold). 

B. Compared to the Previous Approach 
In the previous paper, two study cases were used, one of 

which is MDIApplication class. The result of decomposition 
using the previous algorithm on MDIApplication (using 
𝐴𝐴 = 0.5 and 𝑏 = 0.5) is as described in Table IV and V. 

In the case of the Silhouette value, using a new approach 
(after adding the validation process using the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value), the 
result is shown as case number 10 (Tables II and III). There are 
increments of Silhouettes value of both static and dynamic 
threshold decomposition. The static threshold increased from 
0.08 to 0.274, and the dynamic threshold increased from 0.15 
to 0.233. Even though the dynamic threshold has a lower 
Silhouettes value, the dynamic threshold produces more 
clusters that match the purpose of single responsibility 
principles. More clusters are produced using a dynamic 
threshold. 

The other result compared to the previous approach is the 
useless class. The problem emerged according to the cluster 
that only has one element (Table V), and the element is private 
(cluster number 2). The element name is scrollPane which has 
-0.27 of Silhouette. After updating the algorithm using the 
evaluation process (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value), the result of decomposition is 
shown as follows (Table VI). The scrollPane element is moved 
to cluster number five, together with the other element. No 
clusters are considered unusable after updating the algorithm 
using the evaluation process. 

C. Discussion 
The previous section shows the experiment result after 

updating the algorithm using the evaluation process. Tables II 
and III show the detail of every combination of weight and 
express every case based on the cluster, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 value, and 
Silhouettes value. The result is different from one case to the 

other. For example, six cases using the dynamic threshold 
AHC produced a better value of Silhouettes than the static 
threshold AHC. Those cases are AudioFile, Interpreter, 
SVGOutputFormat, Import, and RipCDDialog. The rest of the 
cases are better using the static threshold AHC. The 
Silhouettes value is used as the consideration because the 
cluster requirement results in the high compactness of elements 
based on the similarity of syntax and semantics. 

Higher Silhouettes also show the similarity of the cluster's 
context to produce the single responsibility class. With the use 
of the evaluation process, the result of Silhouettes can be 
increased by at least 40% of Silhouettes. This result shows that 
the evaluation process can place the elements more precisely 
by considering the value of the class usability and the 
Silhouettes. Most of the results show that the combination of 
weight (𝐴𝐴 and 𝑏) that can produce the best cluster is 𝐴𝐴 higher 
portion than 𝑏. 

TABLE IV.  THE STATIC DECOMPOSITION (PREVIOUS APPROACH) 

Cluster Elements Silhouettes Index 
1    parentFrame -0.12  
     MDIApplication -0.03  
     desktopPane 0.01  
     Show -0.41  
     isSharingToolsAmongViews -0.01  
     Hide -0.39  
     serialVersionUID -0.03  
     scrollPane 0.03  
     Prefs 0.00  
2    createFileMenu 0.30  
     Init 0.01  
     getComponent 0.06  
     createViewActionMap 0.31  
     Configure 0.05  
     createModelActionMap 0.15  
     toolBarActions -0.01  
     createViewMenu 0.30  
     updateViewTitle 0.32  
     createHelpMenu 0.34  
     createWindowMenu 0.30  
     initLookAndFeel 0.11  
     wrapDesktopPane 0.04  
     createMenuBar 0.21  
     createEditMenu 0.32  
     Launch 0.05  
Average Silhouettes 0.08  
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TABLE V.  THE DYNAMIC DECOMPOSITION (PREVIOUS APPROACH) 

Cluster Elements Silhouettes Index 
1    isSharingToolsAmongViews -0.12  

    Prefs -0.08  
2    scrollPane -0.27  
3    parentFrame 0.00  

    desktopPane 0.03  
4    MDIApplication 0.27  

    serialVersionUID 0.22  
5    Show -0.19  

    Hide -0.12  
6    getComponent -0.51  
7    Launch -0.62  
8    createFileMenu -0.84  

    Init -0.39  

    initLookAndFeel -0.49  

    createMenuBar -0.58  
9    updateViewTitle 0.28  

    Configure 0.08  
10    createViewMenu 0.78  

    createHelpMenu 0.89  

    createWindowMenu 0.75  

    createEditMenu 0.73  
11    wrapDesktopPane 0.95  

    toolBarActions 0.98  
12    createViewActionMap 1.00  

    createModelActionMap 1.00  
Average Silhouettes 0.15  

TABLE VI.  RESULT OF DECOMPOSITION USING EVALUATION PROCESS 
(𝐴𝐴 = 0.5; 𝑏 = 0.5) 

Cluster Elements Modifier Silhouettes 
1 MDIApplication publicMethod 0.083 

 serialVersionUID private 0.128 

 isSharingToolsAmongViews publicMethod 0.066 
2 init publicMethod 0.31 

 initLookAndFeel protectedMethod 0.149 
3 updateViewTitle protectedMethod 0.073 

 configure publicMethod 0.203 

 launch publicMethod 0.128 

 show publicMethod 0.087 

 hide publicMethod 0.053 
4 createViewMenu publicMethod 0.532 

 createHelpMenu publicMethod 0.59 

 createWindowMenu publicMethod 0.527 

 createEditMenu publicMethod 0.483 

 createFileMenu publicMethod 0.497 

 createMenuBar protectedMethod 0.326 

 createViewActionMap protectedMethod 0.572 

 createModelActionMap protectedMethod 0.282 

 parentFrame private 0.03 
5 wrapDesktopPane protectedMethod 0.331 

 toolBarActions private 0.159 

 getComponent publicMethod 0.059 

 desktopPane private 0.091 

 scrollPane private 0.035 

 prefs private 0.023 
Average Silhouettes  0.233 

TABLE VII.  ELEMENT'S CHARACTER OF STUDY CASES 

Class A B C D 
AudioFile 39 9 30 Dynamic 
JDBCBench 33 21 12 Static 
Interpreter 65 20 45 Dynamic 
SVGOutputFormat 61 9 52 Dynamic 
Transfer 80 50 30 Dynamic 
Import 30 13 17 Dynamic 
StringConverter 16 1 15 Static 
RipCdDialog 36 15 21 Dynamic 
DefaultDrawingViewTransferHandle 15 2 13 Static 
MDIApplication 25 6 19 Static 

A: Total element; B: Attribute Element; C: Method Element; D: Approach 

TABLE VIII.  CORRELATION RESULT 

No. Pair Data p-value 
1. Element - Approach 0.0134 
2. Attribute Element - Approach 0.1645 
3. Method Element - Approach 0.0247 

In the specific number, 𝐴𝐴 ≥ 0.7 is suitable to produce a 
better cluster in both static and dynamic threshold AHC. Six 
cases are good using a dynamic threshold, and four cases using 
a static threshold. This result raises curiosity about whether the 
class decomposition uses static or dynamic. 

 
Fig. 5. The Tree Visualization of Tree-Based Classification Analysis 

Based on the existing study cases in this research, every 
studied case is detailed into specific characteristics of class that 
relate to the element. For example, the number of total 
elements, the number of method elements, and the number of 
attribute elements are counted to find a correlation with the 
type of approach. Table VII shows the detail of the class based 
on the element. 

The correlation between each character to the approach that 
is used on the class decomposition is counted using a statistical 
approach. There are three data pairs; the result is shown in 
Table VIII. Two pairs of data have significant differences. It is 
determined based on the result of the p-value of each pair. The 
total element (No. 1) and method element (No. 3) has a p-value 
lower than 0.05, and the attribute element (No. 2) is higher 
than 0.05. The total element and the number of method 
elements are related to the type of approach used in the class 
decomposition process. 
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The threshold number that can be used as the decision 
point for each total element and method element is also 
interesting. The data of element characteristics were analyzed 
using the tree-based classification method (Fig. 5).  
Furthermore, the total element and method element can 
indicate when the static or dynamic threshold should be used in 
the class decomposition process. The tree visualization shows 
the threshold number for each characteristic. The total element 
and method element have the threshold numbers 33 and 19. If 
the number of each characteristic is lower than the number, 
then the static threshold AHC is better and vice versa. This 
classification analysis result has an accuracy of about 80%. 

The statistical and the threshold number analysis is only 
suitable for the current scope of the experiment. It needs more 
study cases to make the result acceptable to the larger scope of 
the experiment. 

VI. CONCLUSION AND FUTURE WORK 
The class decomposition in the level of design is worth 

doing to support the concept of model-driven software 
engineering. The optimization of the design level Threshold-
based Agglomerative Hierarchical Clustering (AHC) 
experiment has been done by adding an evaluation process. 
The evaluation process aims to move the specific element with 
negative Silhouettes value in every cluster to the other better 
cluster. The evaluation process is able to increase the average 
Silhouettes of the cluster compared to the previous approach. 
The increment of Silhouettes has averaged about up to 40%. 
The evaluation process is also able to solve the unusable 
cluster, as mentioned in the previous approach result. 

This research experiment takes ten study cases from the 
Landfill smell dataset. All data consists of Blob smell. Most of 
the good result of decomposition is using the Dynamic 
Threshold AHC. Six study cases are good using the dynamic 
threshold, and four study cases are good using the static 
threshold. And the best result is produced by using the higher 
portion of Silhouettes (𝐴𝐴) in the Eval formula. 

The results were analyzed using a statistical approach to 
get more valuable information about the result. Three variables 
are related to the class: the number of total elements, method, 
and attribute elements. The total element and method element 
affect the use of the approach (static or dynamic threshold) to 
get a better result of decomposition. In the scope of the 
experiment, both the total element and method element have 
the threshold numbers 33 and 19. A smaller number than the 
threshold will use static, and a larger will use dynamic 
threshold. 

The design-level class decomposition research is important 
to be continued in the future. The future plan aims to increase 
the optimization of the result of decomposition. In this 
experiment, the evaluation process is a separate process that is 
in sequence with the previous approach. Merging the 
algorithms became a consideration for future computational 
improvements. The increment of study cases number is worth 
increasing the algorithm's usability. Implementing the 
decomposition process at the source code level is worth doing 
in the future. The impact of changes in real implementation is 
important to study. 
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