
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

204 | P a g e

www.ijacsa.thesai.org

An Adaptation Layer for Hardware Restrictions of

Quadruple-Level Cell Flash Memories

Se Jin Kwon

Department of AI Software

Kangwon National University

Samcheok, South Korea

Abstract—In recent years, major flash memory vendors have

produced SSDs and fusion memories as substitution for hard

disks. However, there has been a lack of studies on access

restriction of QLC flash memory, since most researches have

targeted small capacity flash memory. As a solution, we propose

to implement an adaptation layer between the file system and

FTL (Flash Translation Layer). Instead of immediately writing

data given from file system to flash memory, the adaptation layer

gathers and adjusts data in the unit of a page, and separates

random data from sequential data. By implementing the

adaptation layer, previous FTL algorithms can be fully applied

on the QLC flash memory. According to our experiment, the

adaptation layer forms smaller number of pages than the current

data gathering algorithm.

Keywords—Cache storage; flash memory; SSD; nonvolatile

memory

I. INTRODUCTION

The capacity of flash memory has been rapidly growing as
it has been introduced as a new solution for substituting the
hard disks. Current QLC flash memories such as SSDs and
fusion memories contain pages that are four to eight times
larger than file system’s data sector [1]. Due to the large page
size of QLC flash memories, it is required to re-access a page
to write multiple file system’s data sectors within a page.
However, the number of partial programming (NOP) within a
page is limited to only one to avoid program-disturb errors [2].
Therefore, QLC flash memory uses an internal buffer to gather
data in a unit of a page before writing onto the flash memory.

Unfortunately current well-optimized FTLs do not contain
data gathering algorithm for NOP restriction, since they are
designed for small capacity flash memories [3]. In this paper,
we are not concerned with developing efficient mapping
algorithm, since the small capacity based FTL algorithms
already give various solutions. Instead, we propose to
implement an adaptation layer between file system and FTL. It
enables the small capacity based FTL algorithms to be fully
applied on the QLC flash memory. Instead of immediately
writing data given from the file system to the flash memory,
the adaptation layer gathers the data sectors and rearranges
them suitably for the QLC flash memory.

II. RELATED WORK

Fig. 1 shows the overall architecture of large capacity flash
file system. The file system issues write commands along with
logical sector numbers and data. In case of small capacity flash

memories, the given logical sector number (LSN) is directly
converted into a physical sector number of flash memory by the
mapping algorithm provided by FTL [4]. However, in case of
QLC flash memory, the following problem should be
considered.

A. Problem Definition 1

In QLC flash memory, a page size is four to eight times
larger than file system’s data sector, although the NOP allowed
within a page is only one [6]. With restricted NOP, the flash
memory does not allow any additional access to a page [7].
Therefore, the QLC flash memory requires a data gathering
algorithm which gathers data in the unit of a page before
writing onto the flash memory.

The current basic data gathering algorithm [5] is used to
gather data with same logical page number (LPN). When the
file system issues a write command as “w LSN data: write data
in the logical sector (LSN)”, the basic data gathering algorithm
calculates LPN by dividing LSN with the number of sectors
per page. Each write command’s data are collected in the
buffer until a write command with different LPN appears.

Fig. 2 shows an example of the basic data gathering
algorithm. In this figure, we assume there are four sectors
within a page and one NOP per page. w 0 A, w 1 B, and w 2 C
are gathered into one page, since all of them belong to LPN 0
(=0/4, =1/4, =2/4). However, when w 9 D (LPN 2 =9/4)
occurs, the data in the buffer is sealed as a page and is written
onto the flash memory. Finally the buffer is flushed and data D
is written onto the emptied buffer. Likewise, other write
commands are performed.

Fig. 1. Architecture of Flash File System.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

205 | P a g e

www.ijacsa.thesai.org

① w 0 A

② w 1 B

③ w 2 C

④ w 9 D ⑤ w 3 E

LPN 0

(0/4, 1/4, 2/4)

⑥ w 9 F ⑦ w 24 G
⑧ w 16 H

⑨ w 17 I

total number of page write operations: 5, current data in buffer: H, I

LPN 2

(9/4)

LPN 0

(3/4)

LPN 2

(9/4)

LPN 6

(24/4)

LPN 4

(16/4, 17/4)

Fig. 2. Basic Data Gathering Algorithm.

The basic data gathering algorithm generates a total of five
page write operations in Fig. 2, although there are only nine
write commands. If each page were fully filled with data, nine
write commands should generate only two to three pages since
each page can store four write commands. As a solution, we
propose to implement an adaptation layer between file system
and FTL. The adaptation layer considers the following problem
to fully gather data.

B. Problem Definition 2

The adaptation layer is required to separate random data
from the gathering page. A file consists of sequential data and
random data. The random data refers to file’s meta data in
which its LSNs are irregularly allocated and its data is
frequently updated [3]. The irregular LSN allocation refers to
the fact that the random data’s LSNs are unlikely to be relevant
to nearby LSNs. For example, in Fig. 2, the data corresponding
to LSN 9 and LSN 24 are random data. Due to the update of
LSN 9 and irregular allocation of LSN 24, the gathering page
is sealed as a page whenever write commands with LSN 9 or
LSN 24 appear. In order to solve Problem Definition 2, the
adaptation layer contains an undefined buffer and two RAM
pages: sequential and random.

Definition 1: The undefined buffer is an instant buffer
which stores the write command that cannot be immediately
decided as random or sequential. The adaptation layer requires
maximum of two previous LSNs for decision; therefore, the
capacity of undefined buffer is two sectors.

Definition 2: The sequential RAM page (SRP) and random
RAM page (RRP) store the write commands that are defined as
sequential and random respectively. The size of each RP is one
page.

Each write command’s LSN and its corresponding data is
dynamically inserted into the undefined buffer or one of two
RPs depending on the following algorithm.

1) Is the write command sequential to SRP?

2) Is the write command an update?

3) Analyze the write command with other LSNs of the

undefined buffer.

First, the adaptation layer checks whether the write
command belongs to SRP (<1>). If the write command does
not belong to SRP, the adaptation layer checks whether the
write command is an update of previous write commands. If
the write command is an update, it is inserted into RRP since
the update is one of characteristics of random data. However,
when the write command does not belong to <1> or <2>, it is
analyzed with other LSNs of the undefined buffer. The main
role of <3> is to define LSNs with irregular LSN allocation as

random data. The data gathering algorithm of adaptation layer
is explained in detail in Section III.

NO

Is there zero/one

LSN in undef_buf?

Is LSN sequential

to undef_buf?

NO

NO

YES

Insert LSN to undef_buf.YES

Transfer first buf_LSN to RCRP.

Insert LSN into undef_buf.

<3.1>

<3.2>

W LSN DLSN

YES

NO

<1>

<2>

SRP_insert_pro(LSN)

SRP_insert_pro(buf_LSN)

YES
Is any LSN in RPs

identical to LSN?

Is LSN sequential

to current SRP?
SRP_insert_pro(LSN)

Transfer LSN to RRP.

Update data.

(a)

YES

NO

Is SRP full of data?

Insert LSN to SRP.

Form SRP as a page.

Transfer page to FTL.

Flush SRP.

Insert LSN into SRP.

(b)

Fig. 3. (a) Data Gathering Algorithm, (b) SRP Insertion Procedure.

III. DATA GATHERING ALGORITHM OF ADAPTATION LAYER

When the system is initiated, there is no data stored in SRP
or RRP. The adaptation layer requires previous LSNs to
analyze the pattern of LSNs. Therefore, the adaptation layer
simply accumulates the write commands with same LPN until
a write command with different LPN appears. Finally the
adaptation layer stores the write command with different LPN
in the undefined buffer and finishes the initialization.

Example (Fig. 4(a)): For convenient understanding, we
assume there are only four sectors per page. We have
arbitrarily written LSN and its corresponding data within each
sector as (LSN, data). Initially there is no data in SRP or RRP.
(0, A), (1, B), and (2, C) are stored in SRP, since all of them
belong to LPN 0 (=0/4, = 1/4, =2/4). (9, D) is stored in the
undefined buffer since it belongs to LPN 2 (=9/4).

The write commands subsequent to the initialization follow
the data gathering algorithm as shown in Fig. 3. Fig. 3 is a
detailed view of the data gathering algorithm aforementioned
in Section II. Each procedure of Section II corresponds to the
procedure of Section III respectively except <3>, which is
described in two parts (<3.1> and <3.2>) in Fig. 3. When the
file system issues a write command, the adaptation layer
checks whether the LSN is sequential to the SRP as shown in
<1> of Fig. 3(a). The write command’s LSN is decided as the
sequential data when the differential between the write
commands’ LSN and the last LSN of SRP equals to the
differential between two immediate last LSNs of SRP.

Example (Fig. 4(b)): w 3 E is sequential to SRP, because
both result of LSN 3-LSN 2 and LSN 2-LSN 1 equals to one.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

206 | P a g e

www.ijacsa.thesai.org

When a LSN is sequential to the SRP, the adaptation layer
searches an empty sector within the SRP as explained in Fig.
3(b). If the SRP contains an empty sector, the LSN and its
corresponding data can be directly inserted into the SRP. On
the other hand, if the SRP is full of data, the data in SRP is
sealed as a page, and it is sent to the FTL to be written onto the
flash memory. Finally the SRP is flushed, and the LSN and its
corresponding data are written to the SRP.

When a LSN does not belong to <1>, the adaptation layer
checks whether the write command’s LSN has previously
appeared in the undefined buffer or RPs as explained in <2> of
Fig. 3(a). If an identical LSN exists, the LSN’s corresponding
data is defined as the random data because one of random
data’s characteristics is the frequent update as mentioned in
Section II. Therefore, the LSN is transferred to the RRP, and its
corresponding data is updated.

Example (Fig. 4(c)): When w 9 F is issued from the file
system, the adaptation layer searches for LSN 9. Due to (9, D),
LSN 9 and its data F are written to the RRP and old data D is
deleted.

If the write command’s LSN does not belong to <1> or
<2>, the adaptation analyzes the pattern of trace by comparing
the write command’s LSN with other undefined LSNs. Our
algorithm requires two previous undefined LSNs for analysis;
therefore, the LSN is temporarily stored in the undefined buffer
(undef_buf) when there are less than two undefined LSNs as
explained in <3.1> of Fig. 3(a).

Example (Fig. 4(d)): w 24 G does not belong to <1>,
because LSN 24-LSN 3 does not equal to LSN 3-LSN 2. It
does not belong to <2>, because there is no identical LSN in
the undefined buffer or RPs. Thus, w 24 G must be compared
to other undefined write commands. Unfortunately there is less
than two LSNs in the undefined buffer so (24, G) is just stored
in the undefined buffer. With same reason, next write
command, w 16 H, is also stored into the undefined buffer.

When the undefined buffer contains two undefined LSNs,
the adaptation layer checks whether the write command’s LSN
is sequential to them or not as shown in <3.2> of Fig. 3(a). The
write command’s LSN is considered as sequential, if the
differential between the write commands’ LSN and the last
LSN of undefined buffer equals to the differential between two
immediate last LSNs of undefined buffer. If the LSN is
sequential to the undefined buffer, the undefined LSNs and
write command’s LSN are inserted into the SRP.

On the other hand, if the write command’s LSN is not
sequential to the undefined buffer, the first LSN and data of the
undefined buffer is transferred to RRP, and the write
command’s LSN is newly inserted into the undefined buffer.

Example (Fig. 4(e)): When w 17 I is issued from the file
system, the undefined buffer contains two LSNs: (24, G) and
(16, H). The adaptation layer checks whether w 17 I is
sequential to the undefined buffer or not. w 17 I is not
sequential to the undefined buffer, because LSN 17-LSN 16
does not equal to LSN 16-LSN 24. In this case, (24, G) is
transferred into RRP, and LSN 17 and its corresponding data I
is newly inserted into the undefined buffer.

In Fig. 4(e), we have defined (24, G) as random data, even
though LSN 24 has not appeared before. The adaptation layer
defines the first LSN of the undefined buffer as random data
due to the characteristic of irregular LSN allocation. The first
undefined LSN is not sequential to the SRP and it does not
have any chance of being a portion of sequential data in future.
For example, (24, G) is not sequential to the SRP, and it is not
sequential to next two commands: (16, H) and (17, I). On the
other hand, second undefined LSN, LSN 16, remains in the
undefined buffer, since it still has chance of being a portion of
sequential data depending on the next write command (w 18 J).

0, A

1, B

2, C

SRP RRP

9, D

Undefined buffer

① w 0 A

② w 1 B

③ w 2 C

④ w 9 D

(a)

0, A

1, B

2, C

3, E

SRP RRP

9, D

Undefined buffer

⑤ w 3 E

SRP

9, F

RRPUndefined buffer

0, A

1, B

2, C

3, E

⑥ w 9 F

9, D

(b) (c)

SRP

9, F

RRP

24, G

16, H

Undefined buffer

0, A

1, B

2, C

3, E

⑦ w 24 G

⑧ w 16 H

SRP

9, F

24, G

RRP

16, H

17, I

Undefined buffer

0, A

1, B

2, C

3, E

⑨ w 17 I

(d) (e)

Fig. 4. (a) An Example of Initialization, (b) An Example of <1> of Fig. 3(a),

(c) An Example of <2>, (d) An Example of <3.1>, (e) An Example of <3.2>.

TABLE I. NUMBER OF PAGES GENERATED BY PBM AND APRA

trace total input Basic data gathering algorithm (χ) Adaptation layer (у) difference (χ-у)

A 12,363,602 1,558,096 1,535,448 22,648

B 15,084,489 1,938,608 1,903,344 35,264

C 40,220,118 20,561,211 17,225,971 3,335,240

D 42,558,072 25,370,754 21,004,710 4,366,044

E 4,717 1,808 627 1,181

F 5,110 1,737 428 1,309

G 69,575 6,928 4,993 1,935

H 18,899 3,334 1,673 1,661

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 8, 2022

207 | P a g e

www.ijacsa.thesai.org

IV. PERFORMANCE EVALUATION

In this section, we have implemented our adaptation layer
and compared it to current basic data gathering algorithm. We
have analyzed the number of pages formed by each algorithm
with the traces retrieved from various devices. Both algorithms
are simulated on 256 Gbyte SSD, which consists of eight
sectors per page and one NOP per page.

According to Table I, the adaptation layer forms smaller
number of pages than current data gathering in overall
environments. The adaptation layer has reduced over twenty
thousand page write operations, and has reduced approximately
one thousand page write operations in embedded devices. As
we expected, separating the random data from the gathering
page has fully filled pages with data, thus significantly
reducing total number of page write operations. On the other
hand, the basic data gathering algorithm formed many pages
with empty sectors, because the page is likely to be sealed as a
page whenever the random data interferes.

V. CONCLUSION

In this paper, we have dealt with the NOP restriction
property of QLC flash memory. We have proposed to
implement an adaptation layer between file system and FTL. It
gathers and adjusts data in a unit of page so that small capacity

based FTLs can be implemented on FTL without considering
the NOP restriction. Furthermore, it separates random data
from the gathering page, in order to reduce the number of page
write operations. According to our experiment, the adaptation
layer forms smaller number of pages than the current basic data
gathering algorithm.

REFERENCES

[1] MICRON Electronics, “Cache Programming Operations,” MICRON
Electronics Technical Notes, 2022.

[2] Li-Pin Chang, “A Hybrid Approach to NAND-Flash-Based Solid-State
Disks,” IEEE Transactions on Computers, 2010.

[3] Samsung Electronics, “QLC SSD,” 2022.

[4] Tatsuo Shiozawa, Hirotsugu Kajihara, Tatsuro Endo, and Kazuhiro
Hiwada, “Emerging Usage and Evaluation of Low Latency FLASH,”
2020 IEEE International Memory Workshop (IMW), 2020.

[5] Mamoru Fukuchi, Shun Suzuki, Kyosuke Maeda, Chihiro Matsui, and
Ken Takeuchi, “BER Evaluation System Considering Device
Characteristics of TLC and QLC NAND Flash Memories in Hybrid
SSDs with Real Storage Workloads,” 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), 2021.

[6] Yoshiki Takai, Mamoru Fukuchi, Reika Kinoshita, Chihiro Matsui, and
Ken Takeuchi, “Analysis on Heterogeneous SSD Configuration with
Quadruple-Level Cell (QLC) NAND Flash Memory,” 2019 IEEE 11th
International Memory Workshop (IMW), 2019.

[7] R. Mativenga, J.-Y. Paik, J. Lee, T. S. Chung, and Y. Kim, “RFTL:
Improving performance of selective caching-based page-level FTL
through replication,” Cluster Comput., vol. 22, no. 1, pp. 1–17, 2019.

