
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Computational Study of Quantum Coherence from
Classical Nonlinear Compton Scattering with Strong

Fields

Huber Nieto-Chaupis
Universidad Autónoma del Perú
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Abstract—From the covariant formulation of radiation inten-
sity of Hartemann-Kerman model entirely constructed in the
classical electrodynamics scenario, a formulation of coherent
states has been obtained in an explicit manner represented by
the infinite sum of integer-order Bessel functions. Both linear
and nonlinear Compton scattering are included, suggesting that
Compton processes can be perceived as coherent states of light-
matter interaction.
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I. INTRODUCTION

Compton scattering is seen as a “golden processes” inside
Quantum Electrodynamics [1]. This has played in the under-
standing role in the understanding of quantum mechanics of
light-matter interactions. In fact it is pure quantum effect in the
which the electron absorbs one single photon and emits one
photon with different kinematics than the first one. In a full
quantum theory, the Lagrangian of interaction can be written
as:

LINT = −ie
∫
dx4Ψ̄γµA

µΨ, (1)

with Ψ̄ and Ψ the final and initial states, while γ the
4×4 matrices, and Aµ the 4-vector potential that satisfies the
Lorentz’s gauge ∂µA

µ = 0. In a nutshell the incorporation
of a propagator in Eq. (1) and the subsequent operations
yields commonly the well-known Feynman’s diagrams [2].
Compton scattering was also boarded at the scenario of strong
electromagnetic fields. In this case the states Ψ̄ and Ψ are
solutions of Volkov and obey the equation of Dirac with
a external field. In the scenario of high regime where the
incoming electromagnetic field has a high density of photons
it is usual to define the intensity parameter:

ξ2 =
e2A2

m
. (2)

introduced by I.I. Goldman [3] who derived the energy of
emitted photon given by:

ω′ =
2nEω

E(1 + Cosθ) + [2nω + m2(1+ξ2)
E (1− Cosθ)]

, (3)

where the product nω is denoting the absorption of n pho-
tons. From this n = 1 the Klein-Nishina formula is restored.

The integer n is linked to the nonlinear processes at the which
the electron can absorb various photons simultaneously. These
non-linearities can be compacted in the language of Quantum
Electrodynamics (QED in short) as a Dirac-Delta function:

δ(EI + nω − EF −mω′), (4)

that indicates the conservation of energy with m an integer
number. This non-linearity is theoretically obtained in the
emission and absorption of various laser photons by Reiss
[4] and Ritus [5] whom have derived quantization of laser
in a semi-classical arena with the laser modeled through an
circularly polarized infinite wave. This was also seen at [6] and
the works of Eberly [7]. A noteworthy attention was paid at the
90s because the prospective construction of a photon-photon
collider [8] and the potential apparition of non-linearities as
corroborated at the experiments observed at SLAC [9] where
nonlinear Compton was observed with strong lasers supporting
the fact that these processes can be well modeled by an
infinite classical monochromatic wave. In photon collisions
one expects that the Compton backscattering can create new
particles in according to the reactions:

γ + γ ⇒ ℓ̃+ + ℓ̃− +

Q∑
q

Ξq

with the production of Q particles, was predicted inside
the framework of new physics of elementary particles [10]. In
1996 nonlinear Compton backscattering have been obtained
in an entire arena of classical electrodynamics by Hartemann
and Kerman [11] (HK model in short) from the intensity of
radiation dI(ω)

dΩ =

ω2

4π2c2

∣∣∣∣∫ dt

∫
d3xn× [n× J(x, t)]eiω[t−

n·x
c ]

∣∣∣∣2 . (5)

Here, it was shown that Compton scattering governs the
low intensity whereas in super-strong fields the nonlinear
Compton scattering emerges as the apparition of high harmon-
ics that are interpreted as emission of photons with different
frequencies. Based at all this background where quantum
effects can be retrieved from classical formalisms, this paper
tries to derive the quantum coherence from the HK theory.
Inspired at the theory of Glauber [12][13], coherent states
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proportional to Bessel functions are derived. In second section
Compton processes are derived from classical electrodynamics.
In third section the quantum coherence is derived. Finally at
last section the conclusion of paper is presented.

Fig. 1. Classical Distributions of Radiated Energy from Eq. 7 Once the
Bessel Expansion as Done at Eq. 14 are Plotted. Up: q Runs from 2 to 5.

Down: q from 4 to 7. It should be Noted the Peaks at χ=1.0, Denoting the
Simple Classical Compton Scattering.

II. CLASSICAL NONLINEAR AND LINEAR COMPTON
SCATTERING

The HK model was developed under a covariant framework
in the sense that ϕ = kµ · xµ yielding the well-known
radiation intensity of a single electron in an external super
intense polarized laser. The radiation intensity is depending
on the Doppler-shifted frequency χ. As seen in HK model,
Compton and nonlinear Compton scattering was obtained for
different values of pulse width. Therefore, one can arrive to
the fundamental equation of HK model that can be written
down as the distribution of energy radiated per solid angle
and frequency and with the definition:

λ =
e2

4π2
u20χ

2, (6)

then the fundamental equation of covariant HK model can
be written as:

d2I

dωdΩ
= λ

∣∣∣∣∫ +∞

−∞
Ax(ϕ)exp

{
iχ

[
ϕ+

∫ ϕ

−∞
A

2
(ψ)dψ

]
dϕ

}∣∣∣∣2 . (7)

Clearly one can appeal to different mathematical ap-
proaches to extract the quantum mechanics (if any) of Eq. 7 in
different ways. At [14], from the HK model the argument of
Dirac delta functions have been obtained as well as interpreted

as the absorption and emission of photons even when the
external field was an infinite wave as commonly expected
from QED. Although of course the applicability of advanced
mathematical methodologies cannot guarantee not any kind of
quantization of external field, a suitable methodology turns out
to be the usage of the Fourier expansion. In fact, consider the
identity based in the series of Fourier-Bessel so that from the
exponential of Eq.7 one gets:

Exp

{
iχ

[
ϕ+

∫ ϕ

−∞
A2(ψ)dψ

]}
=

∞∑
∞
Jq(χ)Exp[iqθ], (8)

with the usage of the crude approximation:

sinθ =

[
ϕ+

∫ ϕ

−∞
A2(ψ)dψ

]
(9)

⇒ θ = sin−1

[
ϕ+

∫ ϕ

−∞
A2(ψ)dψ

]
, (10)

that to some extent θ can be seen as a phase. In this manner
by putting Eq. 8 and Eq. 9 into Eq. 7 one can see that the
Bessel functions can be out of the integration. With this Eq. 7
can be written in a more transparent manner as:

d2I

dωdΩ
= λ

∣∣∣∣∣∣
+∞∑
−∞

Jq(χ)

∣∣∣∣∣∣
2 ∣∣∣∣∫ +∞

−∞
dϕAx(ϕ)Exp

(
iqsin

−1
[θ(ϕ)]

)∣∣∣∣2 . (11)

As expressed in the HK model, the external field is a super
intense laser that is characterized by the width ∆ϕ that is
entirely an experimental input. Therefore one can define a
function depending on ϕ in the sense that:

F (∆ϕ) =

∣∣∣∣∫ +∞

−∞
dϕAx(ϕ)Exp

(
iqsin−1[θ(ϕ)]

)∣∣∣∣2 . (12)

It is because once the integration is done through the
variable ϕ it yields only a pure dependence on the pulse’s
width ∆ϕ then one can rewrite Eq.11 as:

d2I

dωdΩ
= λ

∣∣∣∣∣
+∞∑
−∞

Jq(χ)

∣∣∣∣∣
2

F (∆ϕ). (13)

Subsequently, one can arrive to a normalized backscattered
spectrum that would depend on the Doppler-shifted frequency
χ. On the other hand by knowing the input value for ∆ϕ then
F (∆ϕ) can opt a finite value, for instance ρ. When λ is written
in an explicit manner from Eq. 6 and inserting it into Eq. 13
then the resulting radiation intensity can be written as:

4π2

e2µ2
0ρ

d2I

dωdΩ
= I(Q,χ) = χ2

∣∣∣∣∣
Q∑
q

Jq(χ)

∣∣∣∣∣
2

. (14)

The way as it is written Eq. 14 allows to displayed it in
a straightforward manner. In fact, in Fig. 1 the normalized
backscattered spectrum is plotted for two scenarios. Here
4π2

e2µ2
0ρ

≈ ξ. For this exercise, the Up-panel displays various
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curves of radiated classical energy. Here the sum ran from 2
to the 5th harmonic as given by:

I(Q,χ) = 25χ2

∣∣∣∣∣
Q∑
q=2

Jq(3.2χ+ 1)

∣∣∣∣∣
2

. (15)

One can see there, the Grey color line is denoting the sum
of all 4 orders, and it is peaked denoting the fact that still at the
classical formulation, scattering Compton can be derived. At
the Down-panel where the sum runs from 4 to 7, is exhibiting
for instance the Grey liine, a deformed shape in contrast to
Up-panel.

I(Q,χ) = 25χ2

∣∣∣∣∣
Q∑
q=4

Jq(3.2χ+ 1)

∣∣∣∣∣
2

. (16)

In on the other side, the Grey line the sum of all four
orders, is revealing that high orders might be distorting the
peaked centered at χ=1. It is because the highest order are
certainly connected to nonlinear Compton scattering. In fact,
such deformation at the Grey line is due also to the contribution
of more photons to the state of absorption by the electron at
the strong electromagnetic field, so that the electron has much
energy to emit. Of course, although it is argued in a fully
classical scenario, the implementation of integer-order Bessel
functions, allows to examine the radiated energy spectra from
this perspective. Under the hypothesis that Eq. 14 is an element
of an infinite sum then one can generalize it with the change
ξ = 4π2

e2µ2
0ρ

one can write below that:

1 + ξ
d2I

dωdΩ
≈ 1 +

χ2

2!

∣∣∣∣∣
+∞∑
−∞

Jq(χ)

∣∣∣∣∣
2

+ ...+

χn

n!

∣∣∣∣∣
+∞∑
−∞

Jq(χ)

∣∣∣∣∣
n

⇒ ξ
d2I

dωdΩ
= Exp


∣∣∣∣∣χ

+∞∑
−∞

Jq(χ)

∣∣∣∣∣
2
 , (17)

so that Eq. 9 with the hypothesis that χn = 0 for n ≥ 3
thus it can finally be written as:

ξ
d2I

dωdΩ
= Exp

−

∣∣∣∣∣χ
+∞∑
−∞

Jq(χ)

∣∣∣∣∣
2
 . (18)

III. DERIVATION OF QUANTUM COHERENCE

The mathematical structure of Eq. 10 allows to link it to
the quantum mechanics territory in the sense that quantum
coherence can be extracted. For this one should assume the
following hypothesis:∣∣∣∣∣χ

Q=+∞∑
q=−∞

Jq(χ)

∣∣∣∣∣
2

=
α2

2
, (19)

by which one arrives to:

ξ
d2I

dωdΩ
= Exp

(
−|α2|

2

)
, (20)

that in the quantum scenario on gets:

| ⟨0|α⟩ |2 = Exp

(
−|α2|

2

)
, (21)

with α the eigenvalue of the equation â |α⟩ = α |α⟩. From
Eq. 20 and Eq. 21 one arrive to:

ξ
d2I

dωdΩ
= | ⟨0|α⟩ |2 = Exp

−

∣∣∣∣∣χ
+∞∑
−∞

Jq(χ)

∣∣∣∣∣
2
 , (22)

so that one finds that the quantum mechanics amplitude can
be written in terms of classical electrodynamics observables:

| ⟨0|α⟩ | =
√
ξ
d2I

dωdΩ
, (23)

and the eigen values of coherence can be expressed in terms
of interger-order Bessel functions:

α2 = 2

∣∣∣∣∣χ
+∞∑
−∞

Jq(χ)

∣∣∣∣∣
2

, (24)

indicating that the values of coherence depend on the χ
variable, the normalized Doppler-shifted frequency. It should
be noted the relevance of orthogonal polynomial at the classical
formulation of coherence [15][16][17][18] In other words, the
coherence is directly linked to the frequencies of the emitted
photons (or another observable as commonly done in quantum
mechanics [19][20][21][22][23][24]). Indeed, the eigenvalues
equation involving the annihilation operator and the states of
coherence is written below as:

â |α⟩ = α |α⟩ =
√
2

+∞∑
−∞

χJq(χ) |α⟩ (25)

In Fig. 2 (Up panel) square of coherence Eq. 19 as well as
| ⟨0|α⟩ |2 have been plotted as function of normalized Doppler-
shift frequency. Interestingly in left-side up two peaks for 2 <
χ < 10 The one of interest (blue line Q=2) because one finds
minor peaks χ = 3, 6 and χ = 9 as well as one can see a
large peak at χ = 10 for Q=10. In the right-side it is easy
to note that all lines are centered at χ = 0 indicating that
the classical view the system has null energy to emit photons
at the Compton range, however one can see minor peaks for
χ > 4. In (Down panel) the square of amplitude | ⟨0|α⟩ |2 is
plotted.Here one can see that the orange line Q=10, appears to
be deeply degraded. In the contrary case. the blue line denoting
Q=2 exhibits high values above 50%. Thus one can see that
while the lowest values of Q exhibit high values, thus one can
see that the orders of Bessel function dictated by:

x2
d2y

dx2
+ x

dy

dx
+ (x2 − q2)y = 0 (26)

might be relevant for n = 0 yielding (after of dividing over
x2) one arrives to:

d2y

dx2
+

1

x

dy

dx
+ y = 0 (27)

that might be strongly related to the high values of | ⟨0|α⟩ |2
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Fig. 2. (Up-Panel) Plotting of Eq. 19 Normalized to 1 for up to 4 Values of
Integer Q. One can See that the Normalized Coherence Plotted as it Square

Acquires a Similar form as the Radiation Intensities Plotted at Fig. 1.
(Down-Panel) Plotting of Eq. 22 with Colors Same as Left-Panel Indicating
that not any Peak at χ = 1. Plots of Up and Down Panels were done with

the Package [25].

A. Identifying the Doppler-Shifted Frequency Orthogonal Ba-
sis

The mathematical structure derived at Eq. 25 might be
suggesting the existence of an orthogonal basis whose de-
pendence would be given at the variable χ (see for example
[26][27][28][29][30]). In fully accordance to the quantum me-
chanics formalism it is feasible to write down the completeness
relationship for the normalized Doppler-shifted frequency χ as
follows: ∫

dχ |χ⟩ ⟨χ| = I, (28)

and in the other hand one has also that:
∫∞
−∞ dα |α⟩ ⟨α| =

I in conjunction to a discrete basis:
∑
q |q⟩ ⟨q| = I. In this way

one can combine all these completeness relationships to arrive
to:

I⊗ I =
∑
q

∫
dχ ⟨χ|q⟩ |χ⟩ ⟨q| . (29)

Now, one can include the coherent states also at the chain
of multiplication of unitary operators in the form:

I⊗ I⊗ I =
∫ ∞

−∞
dα |α⟩ ⟨α|

∑
q

∫
dχ ⟨χ|q⟩ |χ⟩ ⟨q|

=
∑
q

∫
dχ

∫ ∞

−∞
dα |α⟩ ⟨χ|q⟩ ⟨α|χ⟩ ⟨q|

and the multiplication by the ket |q⟩ in both sides one
arrives to:

I⊗ I⊗ I |q⟩ =
∑
q

∫
dχ

∫ ∞

−∞
dα |α⟩ ⟨χ|q⟩ ⟨α|χ⟩ ⟨q|q⟩

=
∑
q

∫
dα |α⟩ ⟨α|χ⟩

∫ ∞

−∞
dχ ⟨χ|q⟩

where ⟨q|q⟩ = 1. Indeed with the assumption:

⟨α|χ⟩ =
(
α

χ

)
(30)

⟨χ|q⟩ =
(
χ
d(χJq(χ))

dχ

)
(31)

then one gets from Eq. 27 in a straightforward manner the
integration over χ:∫ ∞

−∞
dχ
d(χJq(χ))

dχ
= χJq(χ) (32)

so that the integral over α is trivial:

∫ √
2
√
2

0

dαα =
√
2 (33)

and by putting these integrations into Eq.27 then one can
see that Eq. 25 is restored:

I⊗ I⊗ I |q⟩ = |q⟩ =
√
2

+∞∑
q=−∞

χJq(χ) |α⟩ (34)

and multiplying Eq. 34 by the ⟨q| in both sides and with the
definition of the polynomial ⟨q|α⟩ ⇒ ⟨α|q⟩ =

(
α
d(αJq(α))

dα

)
derived from Eq. 31, then one can arrive to:

√
2

+∞∑
q=−∞

χJq(χ)

(
α
d(αJq(α))

dα

)
= I (35)

Therefore, the derivative can be carry out:

+∞∑
q=−∞

[
αχJ2

q (α) + χα2Jq(χ)
dJq(α)

dα

]
=

1√
2

(36)
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IV. CONCLUSION

In this paper, the quantum coherence has been extracted
from the backscattered radiation intensity obtained in classical
electrodynamics. While the HK model has been used, the
results of this paper confirms that in the super intense regime
the classical picture can restore quantum effects in particular
the coherence of emitted radiation that to some extent is
encompassing with requirements of advanced experiments that
require backscattered radiation at the GeV energies to create
unseen states of matter. Because these results can be under-
stood as preliminary, in a next work the derivations from the
HK model and its validation with current theories of quantum
optics [31][32] shall be done.
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