
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 8, 2022 

568 | P a g e  

www.ijacsa.thesai.org 

Grover’s Algorithm for Data Lake Optimization 

Queries 

Mohamed CHERRADI, Anass EL HADDADI 

Data Science and Competitive Intelligence Team (DSCI) 

ENSAH, Abdelmalek Essaadi University 

Tetouan, Morocco 

 

 
Abstract—Now-a-days, the use of No-SQL databases is one of 

the potential options for storing and processing big data lakes. 

However, searching for large data in No-SQL databases is a 

complex and time-consuming task. Further, information retrieval 

from big data management suffers in terms of execution time. To 

reduce the execution time during the search process, we propose 

a fast and suitable approach based on the quantum Grover 

algorithm, which represents one of the best-known approaches 

for searching in an unstructured database and resolves the 

unsorted search query in O (√ ) time complexity. To assess our 

proposal, a comparative study with linear and binary search 

algorithms was conducted to prove the effectiveness of Grover's 

algorithms. Then, we perform extensive experiment evaluations 

based on ibm_qasm_simulator for searching one item out of eight 

using Grover’s search algorithm based on three qubits. The 

experiments outcomes revealed encouraging results, with an 

accuracy of 0.948, well in accordance with the theoretical result. 

Moreover, a discussion of the sensitivity of Grover's algorithm 

through different iterations was carried out. Then, exceeding the 

optimal number of iterations round (
 

 
√ ), induces low accuracy 

of the marked state. Furthermore, the incorrect selection of this 

parameter can outline the solution. 

Keywords—Big data; data management; information retrieval; 

quantum computing 

I. INTRODUCTION 

In the last decades, database management systems have 
occupied a significant area in IT due to their efficiency in 
managing massive amounts of heterogeneous datasets. Indeed, 
the investigation of database research leads to the evolution of 
special concepts, processes, and algorithms. However, big data 
lake, recent big news, depicts a recommended solution for 
dealing with heterogeneous datasets in any format, structured, 
semi-structured, or unstructured. Thus, numerous 
contributions, such as No-SQL databases, have been offered 
for the optimization of processing times on the Big Data Lake 
[1] [2] [3]. Faced with this challenge, this paper aims to 
investigate the data lake optimization queries through an 
efficient and powerful approach based on the Grover 
algorithm. As the volume of data generated grows, the 
requirements for a large data processing supercomputer has 
attracted increasing interest due to their various applications. 
Therefore, using quantum computers as very fast calculators 
represents one of the hot topics for accelerating big data 
processing. It allows us to drastically reduce the execution time 
when searching for data in a large space. The Grover algorithm 

was introduced as one of the most beneficial algorithms for 
data lakes. 

Although various classical data retrieval methods have been 
proposed, most of them remain heavy in query execution for a 
big data space, which is characterized by volume, variety, and 
veracity, among other v-properties. This constitutes a 
significant issue, as several applications are defined in large-
scale environments with heterogeneous data in which the 
majority of the data is unstructured, almost 80%. Furthermore, 
searching in an unstructured database using quantum 
algorithms is one of the most widely used techniques to speed 
up classical search algorithms. It allows finding a more generic 
research solution to a very wide range of problems [4]. The 
search time required for a database depends on the size of the 
database and the quantum hardware. Therefore, it turns out that 
it is necessary to analyze the design of the quantum circuit. 

To address the execution latency issue when searching in a 
challenging big data space. In this paper, we propose to 
investigate data lake optimization queries using an efficient and 
powerful approach based on the Grover algorithm, which is the 
fastest quantum algorithm for searching an unsorted database 
with a quandratic complexity of O (√(N)) time, as opposed to 
classical algorithms with a linear complexity of O(N) time. 
Roughly speaking, a standard analogy for Grover’s algorithm 
is to look up the name of a person in a phone book who only 
knows their phone number. The phone book remains an 
unsorted database, and a classical search algorithm appears 
tedious. On average, this would take N requests, or N/2 in the 
worst case, depending on the position of the desired element, 
with N denoting the number of entries in the telephone 
annuaire. Yet, if the correlation between phone name and 
number is encoded or embedded with quantum bits, the search 
phone number is reduced approximately to √(N) requests. 
Thus, quantum computing is a fast-evolving domain, and it is 
reaching significant accelerations compared to classical 
algorithms [6] [7] [8] [9]. Considering the speed at which data 
is growing every day, it is necessary to think of powerful 
algorithms with the ability to process data quickly and 
efficiently. Based on this, the principal motivation of this 
research article is to propose the quantum design of the Grover 
algorithm and benefit from its speed-up to efficiently manage 
and extract the hidden relevant information from the 
heterogeneous data lake. Our proposed, implement IBM 
Quantum Composer to build the Grover quantum circuit. 
Indeed, IBM provides multiple quantum computers to the 
public through its IBM cloud service, accessible via the 
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application programming interface such as Qiskit [5]. The 
experiments prove Grover's algorithm as one of the most 
beneficial algorithms for data lakes. 

The remainder of this article is organized as follows: 
Section II provides the necessary background for readers to 
fully understand our article. Section III presents the different 
stages of Grover’s algorithm. Moreover, results and 
discussions are examined in Section IV. Finally, we conclude 
with a summary and some perspectives in Section V. 

II. RELATED WORK 

In this section, we review some preliminary and necessary 
background information needed for the readers to fully 
understand the rest of our article. We start by examining the 
data lake concept as a storage space for heterogeneous data 
sources. Thus, we will give an overview of all the concepts 
related to quantum computing. 

A. Data Lake Concept 

In the last decades, the amount of data produced every day 
is absolutely horrible. So-called big data refers to the 
exponential growth of massive data. In this context, J. Dixon 
[10] introduced the data lakes concept to address the challenges 
and issues induced by big data. Among one of the principal 
issues studied in the literature is metadata management, 
proposed with the objective of avoiding the transformation of 
data lakes into data swamps, i.e., useless data [11] [12] [13] 
[14]. Thus, data lakes have evolved into data management 
solutions capable of meeting big data needs and producing a 
high level of advanced data analysis. They accept various data 
sources and can accommodate a resilient ecosystem for making 
creative, data-driven business determinations. Also, Data Lake 
has a data-centric approach, which refers to an architecture in 
which data is the primary and permanent asset. Therefore, the 
data lake has developed as a strong and adaptable concept 
better suited to data analytics, allowing enterprises to take 
advantage of this complicated data and generate new 
commercial industrial activities. While traditional ETL is used 
in data warehouses to prepare data for integration into a 
structured relational database, ELT (Extract, Load, and 
Transform) paradigms are used in data lakes to process 
unstructured data [15] [16] [17]. Data is loaded into the lake 
“as-is”, with no data transformation. This makes it easier to set 
up jobs because all that is required is a declaration of the origin 
and destination locations. As a result, one can reduce the time 
spent on the data transformation phase, which is considered the 
most expensive stage in any data project, accounting for over 
60% of the total time spent on the project. 

Since 2016, the contributions of data lakes in both industry 
and the academic community have been growing. But most of 
the data lake proposals are abstract and depend on a specific 
use case. In our case, we will try to project Grover’s algorithm 
into the data lake as being an unstructured data search space. 
Since this algorithm applies to unstructured data, it adapts 
perfectly to the data lake to find crucial information stored in 
the lake. 

B. Quantum Computing 

Today’s conventional computers are marked with “classical 
bits” (cbits), which are the basic units of data. With one bit, it 
takes either the value 0 or 1. Yet, this type of computer faces a 
limit when challenged with a multivariate problem. In this 
case, each calculation is a unique path to a unique result. 
Furthermore, classical computers are less efficient in terms of 
computation compared to quantum computers due to the limits 
of classical physics principles, which constitute the core of 
classical computer components [18] [19]. Thereby, due to 
recent hardware advancements, quantum computing is a 
rapidly evolving research field. The principles of quantum 
mechanics enable quantum computers to solve certain classes 
of problems very quickly compared to classical computers. 
Such as factorization and searching databases [21] [22] [23]. 
Moreover, quantum computers are classified as 
supercomputers because they exploit the strengths of quantum 
mechanics, including the quantum superposition principle and 
entanglement [20]. The superposition principle reflects the 
possibility of considering a quantum system to be in multiple 
states at the same time. While quantum entanglement defines 
the correlation between two (or more) quantum particles even 
though they are distantly separated. 

Following the classical nature of the binary bit, the qubit 
tries to design a superposition of the states |0⟩ and |1⟩. Since a 
quantum system can be prepared in a superposition state, the 
quantum computer can perform 2

n
 calculations in a single 

physical step, where n represents the number of qubits used 
during this process [24]. Furthermore, the quantum computer 
can execute jobs in exponentially fewer steps than a 
conventional computer. A qubit can be expressed as a unit 
vector in a complex vector space, C

2
. Constantly written in the 

form of ket and bra, which corresponds to the notation of Dirac 
[25]. Hence, the qubit at state zero is written as |0⟩ and the 
qubit at state one is written as |1⟩. |0⟩ and |1⟩ represent the basis 
vectors in the complex vector space of quantum states. A Bloch 
sphere, observed in Fig. 1, is used as a geometric 
representation of the qubit. The state |1⟩ is represented by the 
south pole of the sphere, while the state |0⟩ is represented by 
the north pole. A state |ψ⟩ = α0 |0⟩ + α1 |1⟩ is defined as the 
angle point (θ, ϕ), where α0 and α1 validate the normalization 
condition, i.e. α0 

2
 + α1 

2
 = 1. Thus, it is written in the 

geometric form with α0 = cos θ/2 and α1 = e 
iϕ

 sin θ/2. Yet, the 
Bloch sphere can be very useful as a geometric representation 
to visualize the quantum state and its transformation. 

 

Fig. 1. Bloch Sphere [19]. 
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Further, quantum computing, as one of the rapidly 
emerging research topics, has fundamentally altered the 
computing world. Quantum software development continues to 
be one of the most active investigative study fields [26]. This 
implies the proposal of new algorithms that adapt to a specific 
type of new information processing technology. Therefore, 
quantum computing fascinates the scientific community of 
researchers because it shows the computing power of big data 
in a reduced time. Thereby, quantum computing could 
stimulate scientific progress by leveraging quantum 
mechanical theories. 

However, before we can assess the quantum computer’s 
advantages, several restrictions must be addressed. The most 
famous one is the decoherence phenomenon, which is the 
major obstacle. Indeed, to calculate much faster than a 
conventional computer, the quantum computer uses 
superposition and entanglement of states that are significantly 
more sensitive to the environment than classical states [27]. 
The more qubits you add to a system, the more parallel 
operations you will increase. Then, since the environment 
interacts with qubits, quantum measurement uncontrollably 
changes quantum states. This is called decoherence and is 
caused by a variety of factors in the environment, including 
changes in magnetic and electric fields, radiation from nearby 
hot objects, or uncontrolled interactions between qubits, among 
others. Subsequently, decoherence affects the state of 
superposition and disrupts quantum information processing. It 
is the biggest barrier to the development of quantum 
technology. Furthermore, it is crucial to examine quantum 
computing technologies and algorithms. 

1) Technologies of quantum computing: The quantum 

computing field has seen tremendous technological 

advancement over the past decades. Nonetheless, the state of 

the art related to quantum computing technologies [28] is 

provided by web giants, such as IBM, Google, Intel, and 

Microsoft. IBM is one of the major corporations that has made 

significant investments in quantum computing [29]. At the 

time of writing this article, IBM had almost 12 simulators, 

which had up to 5000 qubits, corresponding to a simulator 

called “simulator stabilizer”. Thus, there is a simulator with 

only one qubit, which corresponds to a simulator called ”ibmq 

armonk”. IBM’s simulators employ IBM QISKit, a highly 

handy python library, to process asynchronously run jobs [30] 

[31]. Qiskit is an open-source framework for quantum 

computing. It provides the necessary tools that can be used to 

create and manipulate quantum programs and run them on 

prototype quantum devices on the IBM Q Experience or 

simulators on a local computer. Furthermore, once a job 

process is completed, the user receives the results in the form 

of the job run time (seconds) and the measurement of each 

state. Moreover, IBM provides multiple quantum computers to 

the public through its IBM cloud service. The ibmqx5 is a 16-

qubit superconductivity-based quantum computer, ready 

through an Application Programming Interface (Python-API) 

called QISKit. 

2) Quantum algorithms: In the quantum computing era, a 

quantum algorithm is a quantum computation solution that 

works on a practical quantum model [32]. It is often designed 

as a quantum circuit. Moreover, a classical (or non-quantum) 

algorithm is a sequence of instructions for solving a problem. 

One of the most well-known classical search algorithms is that 

of sequential and interval search. 

a) Sequential search: One of the most basic and 

simplest search algorithms that fall under the category of 

searches is linear. This type of algorithm works sequentially 

(without jumping) through a list by comparing each element 

with the value we want to find [33]. In the worst case, the time 

complexity corresponds to the order of N, indicated as O(N), 

where N represents the number of elements in the list. This 

algorithm has the advantage of not requiring the list to be 

sorted because it works regardless of the order in which the 

list’s elements appear. However, finding the element you’re 

seeking takes a long time. As long as the number of elements 

in the list is large, the algorithm takes a lot of time. 

b) Interval search: One of the frequently used 

implementations in interval search is the binary search. In fact, 

the search space must be ordered. Furthermore, this sort of 

algorithm divides the collection of elements that make up the 

search space into intervals [34], such that if the search value is 

smaller than the value in the middle of the interval, in this 

case, the search is not performed only at a level of less than 

half the interval. Otherwise, the search is carried out at the 

upper level. This process is repeated until the element marked 

is found in logarithmic time. 

III. GROVER’S ALGORITHM 

The study of quantum algorithms has recently been one of 
the most difficult scientific issues that has radically 
transformed the way people think about computers. Indeed, 
quantum computing remains a part of worldwide reality, and 
its advancement cannot be overlooked. Working on this 
research topic was also the goal of former researchers [35]. The 
principles of quantum physics, like, for example, the use of 
superconducting quantum processors, have a major peculiarity 
[36]. Exercising superconducting quantum circuit technology 
enables the researchers to contribute a list of contributions 
related to the quantum algorithms. In 2016, IBM introduced the 
Quantum Experience program, which provides a set of online 
quantum simulators that allow anyone interested to execute 
their quantum circuit [37]. The IBM Quantum Experience 
handbook gives users a hands-on experience with all of the 
criteria for building a quantum circuit that solves a specific 
problem perfectly. 

Grover’s algorithm offers a quick search through a mass of 
unstructured data to find the desired information. It has proven 
a significant speedup compared to the classical algorithm and 
produced a promising result, motivating extensive investigation 
into the viability of applying Grover’s algorithm to a variety of 
domains. In this paper, we examine a search space of size N 
with no prior knowledge of how the data will be presented. 
This problem has a polynomial complexity with classical 
solutions, whereas the quantum search algorithm has a 
quadratic complexity O(√(N)) [38]. Through this paper, we 
have proposed an overview in algorithmic form, summarizing 
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the different stages of Grover’s algorithm. As shown in 
algorithmic prototype 1. 

Algorithm 1 Grover’s Algorithm for data lake 

Input: Heterogeneous datasets form a data lake DL = {x0,   x1, 
xN−1} 

Output: Get the index of the marked element x ∗ ∈ N 

Step 1: The quantum register’s initialization: 

             Set the state of all qubits x ⊗n to the state |0⟩         and set 
the oracle qubit to |1⟩ state : |ψ0⟩ = |0⟩ ⊗n |1⟩ 

Step 2: Deploy the register in a distributed uniform 
superposition: 

               Apply the Hadamard gate H: 

               |ψ1⟩  
 

√ 
 ∑   ⟩  ⊗

  ⟩     ⟩

√ 
 

   

   
 

Step 3: Repeat Grover’s iterations: 

              for round(
 

 
√ ) times; do 

a- Apply the oracle: 

|x⟩  → (−1) f(x)  |x⟩ 

b- Execute Grover operator (reflection about the mean) 

1. Apply H ⊗n 

2. Conditionally shift phase 

3. Apply H ⊗n 

      End for 

Step 4: Quantum register measurement 

Finding the index of the target element in a list of N = 2
n
 

entries is the problem of searching in an unordered list. With n 
denoting the number of qubits and N denoting the list’s length. 
Moreover, an unstructured search is commonly expressed as a 
database search query in which we want to find an item that 
meets a set of criteria specified in the query. We refer to the 
problem search as “unstructured” because we have no control 
over how the data is organized in the database. If we have an 
ordered database, we can use a binary search to find the 
predicted element in logarithmic time. However, if we don’t 
know the sequence of the database items, the task remains 
difficult to complete in terms of execution, and we can’t get 
better results with the conventional approach. If there is no 
indication of where the desired item might be found, in this 
case, any classical algorithm must examine each element 
individually. Furthermore, the number of tries required to find 
the sought item equals the number of items in the list. As we 
can see, using quantum mechanics principles, only O(√(N)) 
attempts are required. To meet this requirement, Grover’s 
algorithm uses two registers, the first one linked with quantum 
qubits, in which we shall create a superposition of all 2

n
 basis 

states {|0⟩, ..., |2N − 1⟩}. This can be done by applying the 
Hadamard gate to all the initial qubits. While the second 
register is linked to classical bits to persist the measurement 
results, it takes either the value of 0 or 1. For the sake of 
precision, we describe the different stages of Grover’s 
algorithm: 

A. Initialization 

The Grover algorithm starts by initializing the qubits in the 
state |0⟩ by performing a uniform superposition of all basic 
inputs. A Hadamard quantum gate, given by the matrix (1), is 
implemented to create a superposition of the set of quantum 
states [39]. 

H=
 

√ 
 *
  
   

+              (1) 

By applying the Hadamard gate to state |0⟩, we obtain the 
following state. 

 

√ 
 *
  
   

+ *
 
 
+   

 

√ 
*
 
 
+  

Which has mapped: 

  ⟩  
  ⟩     ⟩

√ 
  

If we instead initialize the qubit to |1⟩ and apply a 
Hadamard gate: 

 

√ 
 *
  
   

+ *
 
 
+   

 

√ 
*
  
  
+  

Which has mapped: 

  ⟩  
  ⟩     ⟩

√ 
  

As a result, to generalize the Hadamard gate application to 
the initial state |0⟩, we obtain the following formula: 

H
 ⊗n

 |0⟩ = ∑     
   i   ⟩ 

Where αi represents the amplitude probability. Indeed, all 

quantum states have the same amplitude, i.e., αi = 
 

√ 
. 

 

Fig. 2. The Grover Algorithm’s Initialization Step. 

As illustrated in Fig. 2, for the case of the number of qubits 
N = 4. Therefore, the number of possible states corresponds to 
N = 2

n
 = 2

2
 = 4. Each state is associated with equiprobable 

amplitudes, αi =
 

√ 
 
 

 
. 

B. Oracle 

After having initialized the circuit with the Hadamard gate 
to create a superposition of quantum states, Grover’s algorithm 
will proceed through its first iteration, which corresponds to 
what is known as the quantum oracle. The oracle, also known 
as a “black-box” function, modifies the quantum state of the 
item’s index we’re seeking [40] [41]. The change of the 
quantum state by the oracle Grover was performed without 
transforming it into a classical state. If the system is located in 
the right state, then the oracle will turn the phase by the angle 
π. Otherwise, no action will be taken. The function f 
corresponds to the oracle expressed as follows: 
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f(x)=,
                                

               
           (2) 

The quantum circuit implements the function f described by 
the unitary operator denoted by O. 

|ψ⟩ ∑   
f(i) 

|i⟩             (3)

The function f verifies the searched item by transforming 
the sign of its probability amplitude if f(x) = 1. Otherwise, 
nothing happens. To illustrate the operation of the oracle, we 
take an example of two qubits. To create a superposition state, 
we apply the Hadamard gate. 

ϕ⟩
 

√ 
|00⟩ + |01⟩ + |10⟩ + |11⟩)            (4)

Suppose that the item we’re looking for is the index marked 
by |i⟩ = |i∗⟩ = |10⟩. By applying the oracle to the state |ϕ⟩, we 
get the state |10⟩ signed by a phase of factor -1. Grover’s 
algorithm oracle step is depicted in Fig. 3. 

ϕ⟩
 

√ 
|00⟩ + |01⟩ - |10⟩ + |11⟩)             (5)

 

Fig. 3. The Grover Algorithm’s Oracle Step. 

C. Amplification 

The amplification step performs a reflection around the 
average of the amplitudes. It flips the target state by increasing 
its amplitude probability and decreasing other states. Yet, this 
step can be implemented by a combination of the following 
gates: HRH. Here, H designates the Hadamard gate, and and R 
designates a phase shift transform [21]. Fig. 4 depicts Grover’s 
algorithm amplification step. 

 

Fig. 4. The Grover Algorithm’s Amplification Step. 

D. Measurement 

The measurement of each qubit in a quantum circuit is 
performed as the last step of the calculation to produce an 
output in the classical bit [42]. Indeed, we cannot say that a 
qubit has an actual value, but rather that it contains a 
probability of being found in a particular state when measured. 
Moreover, the measurement step is necessary to derive a result 
from the quantum state computation. The quantum gate 
associated with this step (the measurement gate) represents the 
only non-reversible quantum gate. 

IV. RESULTS AND DISCUSSIONS 

Suppose we want to find the name of a well-described 
article with a set of metadata (Fig. 5). Each article that exists is 
indexed by an integer belonging to segment {0, ..., N −1}. 

Given that, we’re looking for an article with an index i = I∗. 
The articles are not ordered, and we need to get a particular 
record from the list of articles. If we use the classical 
algorithm, we may be lucky and find the article we are looking 
for in the first index, i.e., i = I∗ = 0, or we may not find the 
article until the last index i = I∗ = N–1. Furthermore, for a 
search in the unstructured database, an average of 
approximately N/2 (or N in the case where we found the article 
in the last index) of queries is required to find the article that 
adapts to the search criteria. It is important to point out that in 
the case of a uniform probability, we have a probability of 1/N 
of finding an article among the N articles. Then, we can prove 
the average number of queries needed to find the right article, 
according to the equations below. 

∑ 
 

 

 

   

   
 

 
∑ 

 

   

 

∑ 

 

   

  
 (   )

 
 

 

 
 ∑   
   

 

 
 
 (   )

 


(   )

 
   

 

 
            (6)

Grover’s algorithm bettered the classical search method by 
a quadratic speedup. The computer scientist, Grover, found a 
quantum search algorithm that requires only O(√(n)) steps. 
Suppose, for example, N=1000; the classical search algorithms 
do 1000 iterations (or 1000/2 = 500 in the worst case) to find 
the search record. However, the Grover algorithm will only 
perform √(1000)=100 iterations. Consequently, Grover’s 
algorithm exhibits a significant acceleration. We cannot do 
great than a quadratic speedup with a complexity of order √(N). 
The N articles are numbered from 0 to N−1, requiring n qubits 
to represent the list of articles (with N = 2

n
). We can represent 

all N articles using only the principle of superposition with n 
qubits. A quantum state, |ψ⟩ is designed by a column vector of 
size (2

n
, 1) whose values are probability amplitudes. Each 

probability amplitude is associated with a well-defined article 
that is identified by an index i. 

  ⟩[

  
 
  
]       ⟩      ⟩             (7) 

The article of index i is linked to the probability amplitude 
αi. As a result, the probability of finding the article we’re 
seeking is extremely close to 1, and the amplitude of all other 
probabilities is close to 0. 

 

Fig. 5. Searching a List of Articles. 

A. Use Case Application 

Considering Data Lake (DL) as a database that stores 
heterogeneous data regardless of its format. Then, DL, which is 
made up of N = 8 data sources, is derived from scientific 
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databases (Fig. 5). Each data source represents a scientific 
article, which is identified by a collection of descriptive 
metadata such as title, authors, and publication date, as well as 
the path where the paper is placed, which provides the paper’s 
unique identity (ident). While ident ∈ {0, ..., N − 1}, we want 
to find the article titled X, which contains an identifier idk. To 
meet this requirement, we must first meet the prerequisite: 

 (idk) = 1. 

Then, 

f   ⟩  ⟩                (8)

Let us express the different quantum states at each step 
shown in the circuit. Let’s start with the first state |ψ0⟩, and end 
with the last state |ψf⟩. 

ψ0⟩    ⟩               (9)

Subsequently, by applying the Hadamard gate, the state |ψ⟩ 
becomes. 

ψ0⟩ ⊗
000⟩ = 

 

√ 
∑   ⟩ 
    = 

 

 √ 
∑   ⟩ 
    .        (10)

Consider that we are looking for the element which has the 
index i = 5. Then, |i⟩ = |5⟩ = |101⟩ (Fig. 6 depicts the quantum 
circuit that corresponds to determining the quantum state 
|101⟩). At this point, we need to specify the oracle operator that 
will be used in our use case. Indeed, when solving an NP 
problem, the defined oracle operator can mark the 
corresponding state. Therefore, the oracle operator must mark 
the element with the index 101 that we are looking for. Then, 
we have. 

Of      ⟩  ⟩  =       ⟩  ⟩. 

f   ⟩   ⟩   ⟩   ⟩                   (11)

After specifying the sought state, we need to define a vector 
orthogonal to it, denoted by |u⟩ as expressed below: 

  ⟩= 
 

√ 
∑   ⟩ 
    
   

             (12)

  ⟩= 
    ⟩     ⟩     ⟩     ⟩     ⟩     ⟩     ⟩ 

√ 


Then, we have 

ψ⟩= 
√ 

√ 
  ⟩  

 

√ 
    ⟩ =

√ 

 √ 
  ⟩  

 

 √ 
    ⟩.        (13) 

With this equality, one can determine the value of the angle 
θ as follows: 

         (
√ 

 √ 
)                  (14)

 

Fig. 6. Grover’s Algorithm Quantum Circuit over an Unstructured Database 

of Eight Elements. 

The next step is intended to apply the oracle operator |ψ1⟩ 
|−⟩. As a result, we get. 

   ⟩  ⟩ f   ⟩  ⟩)  


    ⟩     ⟩     ⟩     ⟩     ⟩     ⟩     ⟩     ⟩ 

√ 
          (15)

Note that quantum state |101⟩ is the only one that has a 
minus sign. It is now suitable to rewrite |ψ1⟩ as follows: 

ψ1⟩=   ⟩  
 

 √ 
    ⟩.           (16)

Or it can be expressed as 

ψ1⟩=
√ 

 √ 
  ⟩  

 

√ 
    ⟩            (17)

Eq. (16), is useful for the next step’s calculation. Since we 
are going to apply the formula (2 |ψ⟩ ⟨ψ| − I). The formula of 
Eq. (17), is useful to schematize the quantum state |ψ1⟩. Yet, 
the |ψ1⟩ state represents the reflection of |ψ⟩ respecting the state 
|u⟩. In the next step, we will apply the reflection again around 
the average. 

ψ2⟩= (2|ψ⟩ ⟨ψ|   I) |ψ1⟩            (18)

By using Eq. (16), we get 

ψ2⟩=  
 

 
  ⟩   

 

√ 
    ⟩            (19)

Therefore, by using Eq. (13), we get 

ψ2⟩=  
√ 

 √ 
  ⟩   

 

 √ 
    ⟩           (20)

To assert that the angle between |ψ⟩ and |ψ2⟩ is θ, note that 

cos(θ) = ⟨ψ2|ψ⟩ = 
 

 
 ⟨ψ|ψ⟩ + 

 

√ 
 ⟨     ⟩   

 

 
        (21)

Which conforms with equality (14). This completes the 
first iteration of the Grover application designated by G. The 
second and final application of the Grover operator is similar to 
the first one. The next step in our examination is the analysis of 
the state |ψ3⟩, which is found by applying the oracle operator, 
as shown below: 

ψ3⟩=  
√ 

 √ 
  ⟩   

 

 √ 
    ⟩           (22) 

Using Eq. (16), we get 

ψ3⟩=  
 

 
  ⟩   

 

 √ 
    ⟩            (23)

It is important to note that the state |ψ3⟩ represents the 
reflection of the state |ψ2⟩ with the state |u⟩. Finally, the last 
step is to apply the inversion around the mean. 

ψf ⟩=2(⟨ψ|ψ⟩     ) ψ3⟩           (24)

Using the two equations (13) and (23), we get 

ψf⟩=  
 √ 

 √ 
  ⟩   

  

 √ 
    ⟩           (25)

It is self-evident θ that is the angle formed by the two 
quantum states, |ψf⟩ and |ψ2⟩. Note that the amplitude of the 
marked state |101⟩ is greater than the other quantum states |i⟩, 
with i ≠ 101 = 5. Subsequently, measuring the state based on 
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the computation will project it into quantum state 101 with the 
following probability: 

p= |
  

 √ 
|
 

 |
   

   
|                  (26)

Therefore, after two iterations of applying Grover’s 
operator, the chance of getting the sought result, which 
corresponds to the state |101⟩ achieves an accuracy of nearly 
94.5%. In the rest of this use case, we will show how important 
it is to know the major impact of the number of iterations of the 
Grover algorithm on accuracy. Suppose the number of 
iterations is unknown in advance. In this case, we will perform 
additional Grover iterations as follows: 

ψ5⟩=  
  √ 

 √ 
  ⟩   

  

 √ 
    ⟩   

   

 
  ⟩   

 

 √ 
    ⟩         (27)

The stage of the inversion around the mean induces the 
state |ψ6⟩, which is represented. 

ψ6⟩=2(⟨ψ|ψ⟩     ) ψ5⟩ 

=2(⟨ψ|ψ⟩     ) ( 
   

 
  ⟩   

 

 √ 
    ⟩ ) 

= 
   

 
  ⟩   

 

 √ 
    ⟩ 

= 
   

 
 (
√ 

 √ 
  ⟩  

 

 √ 
    ⟩)   

 

 √ 
    ⟩ 

=  
  √ 

  √ 
  ⟩   

  

  √ 
    ⟩            (28)

The measurement of the state |ψ6⟩ turns out to be us. 

p= |
  

  √ 
|
 

 |
   

   
|                 (29)

Now, if we perform a measurement on the other states, the 

corresponding probability is calculated as below: 

p= |  
 √ 

  √ 
|
 

 |
   

   
|                 (30)

Table I shows the performance of the Grover algorithm 
according to the number of iterations. We notice that the 
probability of finding a solution for a search space of a 
specified size varies according to the number of iterations. 

TABLE I. PERFORMANCE MEASUREMENT OF THE DIFFERENT 

ITERATIONS OF GROVER’S ALGORITHM 

Simulator No. of Grover Iterations Accuracy 

ibm_qasm_simulator 

1 0.78 

2 0.945 

3 0.67 

Therefore, if we continue the number of Grover iterations 

after the optimal number of round(
 

 
 √ ), the probability of 

finding the sought state decreases while the probability of error 
increases more and more. In the event of exceeding the number 
of iterations, which in our instance is two, the accuracy 
decreases by a percentage of 0.275. Thus, we report the 
empirical implementation of Grover’s quantum search 
algorithm on the IBM quantum simulator with three qubits. 
Fig. 7 illustrates well the theoretical results that we have 

carried out. The QISKit code for the implementation can be 
found on my GitHub under the link: https://github.com/ 
cherradii/Grover_Quantum_Search_Alg. 

 

Fig. 7. Searching for Quantum State |101⟩. 

B. Iteration of Grover’s Algorithm 

Grover’s algorithm is made up of a quantum subroutine 
named Grover’s iteration, noted G, which is broken down into 
two steps: 

 Apply the oracle Uf  

 Apply the diffusion operator G on the first n qubits. 

The iterations of Grover’s algorithm are seen from a 
geometric point of view as a rotation in the two-dimensional 
space wrapped by the two vectors |α⟩ and |β⟩. |α⟩ denotes 
normalized states of the sum of all targets, and |β⟩ denotes 
normalized states of the sum of non-targets. The initial state |S⟩ 
can be written as follows: 

S⟩=sin (θ)|α⟩ + cos (θ)|β⟩          (31)

When looking in a search space of N = 2
n
 items, there are 

M targets for searching (0≤M≤N). Since sin (θ) = √
 

 
, Apply 

Grover’s operator (G) to states |S⟩ for k times. 

GkS⟩=sin ((2k + 1)θ)|α⟩ + cos ((2k + 1)θ)|β⟩        (32)

When this appears, the target state will be explored with the 
probability of success P, formulated as follows: 

p=sin 
2
((2k + 1)θ))           (33)

Set k = 
 

 
√  , The Fig. 8 corresponds to the probability 

of success according to the proportion of target states in 
Grover’s algorithm. To make things easier, let us set the 
proportion of the target as γ = M/N. 

 

Fig. 8. The Success Probability of Grover’s Algorithm. 
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To make things easier, let us set the proportion of the target 
as γ = M/N. Analyzing Fig. 8, we notice that the minimum 
probability that Grover’s algorithm can reach is about 50% 
when γ = 0.5. Therefore, when 1/4 ≤ γ ≤ 1/2 the success 
probability of the proportion target declines rapidly. In return, 
when γ ≥ 1/2 the success probability of the proportion target 
gradually increases until it reaches 100% full accuracy when γ 
= 1. 

C. Comparison of Grover's with Classical Algorithms 

The practical implementation of Grover’s search algorithm 
proved the efficiency in terms of its accuracy. After analyzing 
the different iterations, we found that the algorithm's 
effectiveness is influenced by the number of iterations. 
Moreover, applying the Grover algorithm iterations for a total 

number of round ( 
 

 
√ ) times is the best choice to maximize 

the success probability of Grover's quantum search algorithm. 
Further, the quadratic reduction complexity of the quantum 
search Grover algorithm presents a major advantage over 
classical algorithms and exceeds any known classical algorithm 
of sub-exponential complexity. As shown in Fig. 9, Grover's 
quantum algorithm complexity time and classical counterpart 
algorithms. 

 

Fig. 9. The Average Number of Steps Needed to Find a Solution. 

Therefore, a benchmark examination comparing the 
conventional search algorithms like sequential and interval 
search with the quantum Grover algorithm is still required. 
Table II shows a benchmark study between classical search 
algorithms and their counterparts, Grover’s quantum search. 

TABLE II. COMPARISON BETWEEN THREE DIFFERENT SEARCH 

ALGORITHMS 

 
Binary 

Search 
Linear Search Grover Search 

Time complexity O(log(N)) O(N) O(√(N)) 

Database requirements 

Database 

must be 
sorted 

No 

requirements 

No 

requirements 

Algorithm type 
Divide and 

conquer 
Iterative 

Iterative and 

parallel 

Implementation Medium Easy Hard 

According to the comparison in Fig. 9, the binary search is 
the most sophisticated search, but it requires that the data be 
sorted, which is no longer possible with unstructured data. 
Linear search can override binary search if the targeted element 
exists at the beginning. However, being a search request for 
one or more elements in the heterogeneous database that 

contains data in different formats (structured, semi-structured, 
and unstructured), like the case of a data lake, Grover’s 
algorithm remains the most efficient compared to the classical 
searching algorithms. Consequently, quantum algorithms are 
more prominent and highly recommended thanks to their 
quadratic acceleration, which is very fast compared to 
exponential acceleration, which corresponds to classical 
algorithms. 

V. CONCLUSION 

In this paper, an interesting algorithm is used to solve the 
search problem for unstructured datasets. We have investigated 
a clear procedure for making use of the potential of the 
quantum search Grover algorithm by proposing the design and 
implementation of the algorithm, including the prevalence 
effect of the number of iterations to decrease data processing 
time in unsorted databases. Based on this solution, our 
experimental results are very encouraging, and demonstrate the 
usefulness of Grover's algorithm to be applied efficiently to 
solve the search problem with high accuracy. Thus, from the 
benchmark search algorithms discussed in Section IV.C, we 
have retained that Grover's algorithm appears the best solution 
to the search problem in an unstructured data space. An 
important future perspective consists of moving to a higher 
dimension to solve the larger space search challenge with a 
large number of qubits. 
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