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Abstract—Fault diagnosis of roller bearings is a crucial and 

challenging task to ensure the smooth functioning of modern 

industrial machinery under varying load conditions. Traditional 

fault diagnosis methods involve preprocessing of the vibration 

signals and manual feature extraction. This requires domain 

expertise and experience in extracting relevant features to 

accurately detect the fault. Hence, it is of great significance to 

implement an intelligent fault diagnosis method that involves 

appropriate automatic feature learning and fault identification. 

Recent research has shown that deep learning is an effective 

technique for fault diagnosis. In this paper, a hybrid model based 

on 1D-CNN (One-Dimensional Convolution Neural Networks) 

with Bi-LSTM (Bi-directional Long-Short Term Memory) is 

proposed to classify 12 different fault types. Firstly, vibration 

signals are given as input to 1D-CNN to extract intrinsic features 

from the input signals. Then, the extracted features are fed into a 

Bi-LSTM model to identify the faults. The performance of the 

proposed method is enhanced by applying Softsign activation 

function in the Bi-LSTM layer and Spatial Dropout in the neural 

network. To analyze the effectiveness of the proposed method, 

Case Western Reserve University (CWRU) bearing data is 

considered for experimentation. The results demonstrated that 

the proposed model has attained an accuracy of 99.84% in 

classifying the various faults. The superiority of the proposed 

method is verified by comparing the predictive accuracy of the 

proposed method with the existing fault diagnosis methods. 

Keywords—Fault diagnosis; roller bearing; deep learning; 1D-

CNN; Bi-LSTM; spatial dropout 

I. INTRODUCTION 

Roller Bearing (RB) is a key component of any rotating 
machinery where rotation is involved. It is widely used in 
various industries such as transportation, agriculture, 
aerospace, medical domain and so on. RB is more susceptible 
to damage due to its continuous rotation with varying loads and 
pressure. Due to which there‘s a break-down of the entire 
machine which results in magnificent economic loss and severe 
safety accidents [1]. Therefore, it is very much essential to 
diagnose the roller bearing fault accurately because each fault 
type exhibits distinct characteristics and the fault may exist in 
any of the components such as Inner Race (IR), Outer Race 
(OR) and Ball. 

Traditional vibration-based bearing fault diagnosis methods 
involved mainly three steps as data pre-processing, feature 
extraction, and fault classification. The vibration signals 
collected from sensors represents the information about bearing 

condition. In order to classify and detect the faults, many signal 
processing techniques have been discussed through analysis of 
signal characteristics in various domains such as time, 
frequency and time-frequency domain [2]. Due to the non-
stationary nature of vibration signal, various feature extraction 
techniques such as Short-Time Fourier Transform (STFT), 
Wavelet Analysis (WA), Empirical Mode Decomposition 
(EMD), etc. were applied to extract the features [3]. Once the 
features are extracted and selected then those features are fed 
into the network model for classification. 

Recently, Deep Learning (DL) technology has gained more 
importance in various domains such as image processing, 
natural language processing, speech recognition and so on. It 
uses multiple layers of the network to learn and extract relevant 
features from raw data and identifies the pattern for 
classification or recognition problems. Roller bearing‘s 
vibration data has similar dimensionality as that of image or 
speech. Hence, DL architecture can be used to diagnose roller 
bearing fault by transforming vibration signal into the 
framework of pattern recognition problem. DL model has an 
ability in automatic feature learning and classification that 
involves automatic feature extraction and identification of the 
faults accurately [4-5]. 

In this research, a hybrid method based on 1D-CNN-Bi-
LSTM with Spatial Dropout is proposed for multiple fault 
diagnosis of roller bearing. Initially, one-dimensional raw 
vibration signal is collected and input into CNN model. Then, 
CNN extracts feature information from the signals and these 
extracted features are provided to Bi-LSTM network model to 
acquire the failure information to identify 12 types of bearing 
faults. For experimentation, CWRU dataset is being used to 
analyze the effectiveness of the method. 

The rest of this paper is organized as follows: In Section II 
related work is discussed; Section III describes proposed 
methodology architecture which includes one-dimensional 
CNN and Bi-LSTM models. Section IV illustrates an 
experimental setup of bearing data collection; and Section V 
shows the discussion of results and its analysis. 

II. RELATED WORK 

Many researchers have applied various deep learning 
models for fault diagnosis such as Deep Neural Networks [6], 
Long Short-Term Memory [7], Deep Belief Networks [8], 
Deep Auto-encoders [9], Gated Recurrent Unit Networks [10], 
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and Convolutional Neural Networks [11] and so on. Among 
these, CNN has received more importance in the study of roller 
bearing defect diagnosis. Abed et al. [12] proposed a robust 
approach for fault diagnosis of Brushless DC Motors through 
feature extraction and reduction using discrete wavelet 
transform (DWT) and orthogonal fuzzy neighborhood 
discriminant analysis (OFNDA) from vibration and current 
signals and RNN model was used for classification of faults. P. 
Zou et al. [13] focused on empirical mode decomposition 
(EMD) method which was combined with LSTM to obtain 
kurtosis value by extracting intrinsic mode functions (IMF) 
components and long-term dependencies from vibration signals 
to monitor the health status of an electrical machine. Cao, 
Lixiao et al. [14] constructed a fault diagnosis framework by 
extracting ten time-domain statistical features from vibration 
signals under varying load conditions and these features were 
fed into deep Bi-directional LSTM to identify the faults of 
Wind Turbine Gearbox. In [15], Mel Frequency Cepstral 
Coefficient features are obtained from vibration signals and 
given these features as input to Random Forest and eXtreme 
Gradient Boosting algorithms for diagnosis of roller bearing 
fault. 

Zheng Wang et al. [16] discussed an architecture to obtain 
unsupervised H-statistic value from sensor time-series data 
based on deep LSTM and CNN for performance degradation 
valuation of roller bearing. Shichao and Haibin proposed a 
bearing fault diagnosis model in which 1D-CNN with LSTM is 
implemented, which adaptively extracted potential features 
from the original vibration signal and ensured the validity of 
the features through merging of pooling layers of max and 
average values to down sample the features. Then, LSTM was 
employed to acquire the dependencies among features of time-
domain signals to perform fault classification [17]. Zhe Yuan 
et al. [18] presented a fault recognition approach for roller 
bearing using Multiscale CNN and Gated Recurrent Unit 
Network (GRUN) by providing multiple time scaled vibration 
data into the CNN to train the model and added the gated 
recurrent unit network to make the model predictive with an 
attention mechanism. In [19], the proposed adaptive anti-noise 
neural network architecture employed random sampling 
approach and boosted CNN with the exponential linear 
activation function to enhance the adaptability of the network 
without manual feature selection. GRUN was implemented to 
learn the features processed by CNN and classify the faults. 
This approach solved the problem of bearing fault diagnosis 
under changing load conditions and heavy noise. 

Wenbing Yu et al. [20] discussed an intelligent fault 
diagnosis method for identifying ten different bearing faults 
based on lightweight MobileNet CNN by considering Western 
Reserve University dataset for evaluating the model and also 
computed average precision, recall and F1 score which resulted 
into 96%, 82% and 88%, respectively. Kai Gu et al. [21] 
discussed a novel diagnostic method to accurately identify the 
fault status of bearing based on LSTM and DWT for multi-
sensors by obtaining fault details in both frequency and time 
scales through DWT and LSTM algorithm was used to 
characterize the long-term dependency information hidden in 
the time series data of a signal. In [22], a combined wavelet 
regional correlation threshold denoising (WRCTD) algorithm 

with CNN-LSTM was proposed for fault detection. WRCTD 
algorithm utilized the regional association of the wavelet 
decomposition coefficients and 3σ criterion to reduce noise in 
the raw sensor data and CNN-LSTM model reduced the hidden 
features of the pre-processed signal data to identify the fault 
type of the harmonic reducer under multiple working 
conditions. A novel fault diagnosis method was presented 
through application of sliding window processing to integrate 
the feature and time delay information from multivariate time 
series samples and then, the samples obtained were fed into the 
CNN-LSTM model to perform feature learning and capture 
time delay information to diagnose the fault of Tennessee 
Eastman chemical process [23]. A robust approach was 
proposed in [24] to predict the Remaining Useful Life (RUL) 
of roller bearing with combination of Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) and LSTM 
to detect the damage state and identify the abnormal state of 
bearing to estimate the RUL through feature extraction from 
signals. A new convolution-based bidirectional long and short-
term memory network method was proposed to predict RUL, 
in which CNN was used to obtain feature information and BI-
LSTM to acquire time-frequency information from the signals 
to construct health indicators (HI) and the experiments 
conducted on the PRONOSTIA bearing dataset showed that 
the proposed method performed better compared to other 
methods [25]. 

This work uses deep learning technique for fault diagnosis 
and it‘s motivated by the fact that deep learning involve 
automatic feature extraction whereas Machine learning needs 
manual feature extraction, in which prior domain knowledge 
and expertise is required. 

III.  PROPOSED METHODOLOGY 

In this research, a multi-class fault diagnosis method is 
proposed based on 1D-CNN with Bi-LSTM to classify various 
faults. The advantage of CNN lies in automatic feature 
extraction and Bi-LSTM in handling gradient loss and 
explosion. The main goal is to diagnose the 12 different fault 
types using 1D-CNN with Bi-LSTM model by collecting 
vibration signals from CWRU dataset which contains set of 
ball bearings having localized faults. The proposed 1D-CNN-
Bi-LSTM model consists of four convolutional and pooling 
layers, a Bi-LSTM layer, a LSTM layer and one fully 
connected layer as shown in Fig. 1. 

 

Fig. 1. Block Diagram of the Multi-class Fault Diagnosis Method. 
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Firstly, the raw input signals are input to the model, then 
convolution layers and pooling layers helps in automatic 
feature extraction. Next, these features are passed to Bi-LSTM 
and LSTM layers to highlight the features and finally, dense 
layer is used to classify the various faults. Bi-LSTM layer uses 
softsign activation function to improve the performance of the 
model. For verifying the effective performance of the proposed 
method, publicly available bearing dataset is considered [26]. 
The vibration data is measured for four operational conditions 
such as: 

1) Normal Bearing- No fault, sampling frequency of 

12kHz with 1797rpm (rotations/min). 

2) Fault in Outer race - Sampling frequency of 12kHz 

with 1797rpm. 

3) Fault in Inner race - Sampling frequency of 12kHz with  

4) 1797rpm. 

5) Ball fault- Sampling frequency of 12kHz with 

1797rpm. 

Details of each layer used in the proposed method is 
explained in the following subsections. 

A. 1D-CNN 

CNN is a deep learning algorithm which was originally 
proposed for processing of visual data. It is more effective in 
identifying image patterns in a stratified way from simple to 
complex features because of the two important properties such 
as weight sharing and spatial pooling. CNN consists of 3 layers 
namely convolutional layer, pooling layer, and fully connected 
layer. The convolution layer converts the input data into 
smaller feature maps through convolutional kernels by 
performing a summation of multiplications between the vectors 
of input data and weight coefficients [27]. In this paper, 1D-
CNN is constructed, whose convolutional kernels and feature 
maps are all one-dimensional because of the one-dimensional 
characteristics of mechanical vibration signals.  

Suppose ‗x‘ is an input to 1D-CNN, then the output of the 
convolutional layer is computed as given in (1): 

y
i, j, k 

  f(∑ xi, k* wj, i
m
i  +bi)            (1) 

In equation (1), ‗f‘ represents an activation function, which 
is typically a hyperbolic tangent, ReLu (Rectified Linear Unit), 
or sigmoid function; ‗m‘ is number of samples (  ≤ i ≤ m); ‗p‘ 
is length of the convolutional kernels (  ≤ j ≤ p); ‗n‘ is length 
of the input data (  ≤ k ≤ n); * represents convolution 
operation;      is the weight and   is the bias. 

The pooling layer is the sub-sampling layer to compress the 
size of feature maps. Down sampling is performed to minimize 
the dimensionality of the output from the previous convolution 
layer by moving the filter window from starting point to the 
end of feature map. Then a maximum or average of each part 
of the feature map is considered to represent each 
corresponding area. The role of pooling layer is to reduce the 
number of parameters and the computation in the network, so 
that it prevents overfitting and improves the generalization 
ability of the model. Max pooling is frequently used in the 
pooling layer which is computed as maximum of the previous 
feature maps. It is expressed as given in (2). 

z i, j, k   max(x i- , j, k ,x i, j, k)               (2) 

where,   ≤ l ≤ m/2 

Fully connected or Dense layer plays the role of classifier 
in CNN. For a multi-class classification problem, usually 
softmax is applied in the dense layer to ensure the range of 
output value lies between 0 and 1, and sum equals to 1. The 
predicted output represents the probability and value with the 
highest probability is considered as the final predicted result. 
The output of 1D-CNN is an input to the Bi-LSTM model to 
reduce variance in time series. 

B. Batch Normalization 

It is a regularization technique, which avoids model 
overfitting. In the training process of the deep neural networks, 
the distribution of inputs to the layers deep in the network 
which keeps changing for each mini batch as the weights are 
updated. This problem is known as ―internal covariate shift‖. It 
delays the network to converge during the training phase. To 
avoid this problem, Batch normalization standardizes the input 
to each layer after every mini-batch and hence accelerates the 
network training. It is usually applied either before or after the 
activation functions of each hidden layer. 

The process of batch normalization is shown in Fig. 2 [28]. 
It shifts the values of the input distribution to a hidden layer, 
such that the mean of these values is zero (zero centered) and 
then normalizes the inputs. It creates two parameter vectors for 
each layer, one with the scaled values and the second vector 
with the shifted values of the inputs to the layers. 

The output scale vector ‗γ‘ and the output offset vector ‗β‘ 
are learnt through backpropagation. The final input mean 
vector ‗µ‘ and the final input standard deviation vector ‗σ‘ are 
estimated using exponential moving average during training. 

C. Dropout 

In a fully connected neural network, the probability of co-
adaptation among the neurons is likely higher. As a result, the 
features extracted by the neurons for learning is more or less 
similar. This co-adaptation makes the model to overfit the 
training data and generalize poorly on unseen test data. 
Dropout is a technique to overcome this problem. It chooses a 
specified percentage of neurons randomly to be dropped during 
training by making their connection weights to zeros. Repeated 
application of this technique creates an ensemble of network 
architecture with a different set of neurons and their weights 
are dropped in each architecture as shown in Fig. 3(a) and (b) 
[29]. 

 

Fig. 2. Batch Normalization. 
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(a)    (b) 

Fig. 3. (a). Standard Neural Network. (b). Neural Networ with Dropouts. 

The weights of these dropped neurons are not updated 
during backpropagation. When some of the neurons are 
dropped, the other neurons take the responsibility of 
propagating the features to the subsequent layers of the 
network in the forward pass. Hence it prevents a sort of co-
adaptation among the neurons and makes the network less 
reliable to the learning units, their weights and existence. All 
these factors help to generalize the model well on the test 
samples. Dropouts in convolutional layers are applied to the 
individual cells of the feature map/kernel and are called spatial 
dropouts. Dropouts applied to the hidden layers are regular 
dropouts. 

D. Bi-LSTM (Bi-Directional Long-Short Term Memory) 

Bi-Directional Long-Short Term Memory is a type of 
Recurrent Neural Network (RNN), which is a deep learning 
technique that is used to categorize and regress timeseries data 
such as audio, text forecasting and so on. Bi-LSTM combines 
LSTM layers from both directions. Hence, it captures long-
term dependencies between signal patterns by making the flow 
of information in both forward and backward directions. There 
are 3 components in LSTM, namely i) forget gate, ii) update 
gate, and iii) output gate. The forget gate eliminates the 
irrelevant information which is received from the preceding 
unit. The update gate performs addition of information to the 
cell state, and the output gate selects the relevant information 
from the present cell state and gives the output [30]. The 
LSTM gating structure manages the information by enabling 
the memory cells to preserve long-term dependencies through 
selective passage. It avoids the problems of gradient loss and 
gradient explosion by strengthening the weight of relevant 
information and weakening the weight of irrelevant ones. The 
structure of the LSTM cell is shown in Fig. 4(a). 

The LSTM network cannot make use of the full data while 
processing the time series signals because it processes the data 
only in one direction. Hence, the Bi-LSTM network is 
implemented, which contains LSTM layers overlaid on each 
other in reverse direction. It improves the performance by 
enabling the model to make efficient use of the main features. 
The unit structure of the Bi-LSTM network is shown in 
Fig. 4(b). 

The internal processing of the LSTM cell is shown in 
Fig. 4(c). 

 

(a) 

 

(b) 

 
(c) 

Fig. 4. (a). LSTM Cell Structure, (b). Bi-LSTM Unit Structure, (c). The 

Internal Process of the LSTM Cell. 

The inputs Wi, Wo, Wf , Wc represents weights and bi, bo, bf , 

bc represents bias vectors of input gate, output gate, forget gate 

and cell state respectively. The input of current state and output 
of the previous state is represented as xt and ht− . The input 
value Ct′ at moment ‘t‘ is calculated by applying the tanh 
activation function on the result obtained by computing the 
matrix product of vector [ht− , xt] with Wc and bc as given in 
(3). 

 t
  tanh( c [ht- , xt]+ bc)             (3) 
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The parametric value for each gate i.e., ft-forget gate, it-
input gate, and ot-output gate at moment ‗t‘ is calculated by 
applying the activation function as shown in (4), (5) and (6). 

ft  σ ( f   [ht- , xt]+ bf)             (4) 

it σ ( i   [ht- , xt ]+bi)             (5) 

ot  σ ( o   [ht- ,xt])+bo             (6) 

An element-wise product of ‗ft’ with the last cell state ‗Ct−1‘ 
determines the info that is to be forgotten and remembered by 
realizing the control on Ct−1 and the element-wise product of 
‗it’ with the current input cell state Ct′ determines the info in Ct′ 
that needs to be stored and used. The state value ‗ t‘ of the 
hidden node at time ‗t’ is calculated as given in (7). 

 t ft *  t-  + it *  t
              (7) 

The output value ‗ht’ at time ‗t’ is computed as product of 
tanh function applied on unit state Ct, and output gate   , as 
given in (8). 

ht  ot * tanh( t)              (8) 

E. Softsign Activation Function 

The softsign function squishes its input to a range of -1 to 
+1 as like tanh. The function and its derivative are defined as 
given in (9) and (10). 

softsign f(x)   
x

 + |x|
              (9) 

f
  (x)  

 

( + |x|)
             (10) 

Unlike tanh, this function has a flatter curve, its derivative 
descends slowly, and is less saturated. Functions that are more 
saturated, have their gradients vanishing quickly before 
reaching the initial layers of the network during 
backpropagation [31]. Hence, softsign solves this vanishing 
gradient problem better than tanh. Softsign converges in 
polynomial time whereas tanh converges in exponential time. 
Since softsign transforms the inputs between -1 to +1, the 
negative values enable the LSTM gates to delete the 
information when required. 

IV. EXPERIMENTAL SETUP 

As the benchmark study, CWRU bearing dataset has been 
widely considered by many researchers for condition 
monitoring and fault diagnosis. An experimental setup of 
CWRU is shown in Fig. 5. It consists of a 2- hp (horsepower) 
motor, encoder, torque transducer, dynamometer, electric 
motor and so on. The deep groove ball bearing was mounted 
on the drive end of the motor to support the shaft which needs 
to be tested. An accelerometer was positioned above the 
bearing base of the drive end to measure the vibration signals. 
The load considered was about 1HP with 1772 rpm, and 
sampling rate of 12 kHz. Fault was induced in each component 
of rolling bearing by electro discharge with varying diameters 
of 0.007, 0.014, and 0.021 inches (1 inch = 25.4 mm). 

 

Fig. 5. Experimental Set-up of CWRU Data Collection. 

In total, 12 bearing fault types with respect to BF, IR, OR 
and normal bearing were considered in this work as given in 
Table I. To label the fault types, One-Hot coding technique 
was used. In this experiment, to confirm adequate training size, 
80% of the data was randomly chosen as training set and 20% 
as test set. For validation of the model, 10% of the training set 
was selected randomly to adjust model parameters. 

V. RESULTS AND DISCUSSION 

In this proposed work, the vibration data is collected for 12 
different bearing conditions that is provided by CWRU. The 
description of various fault types and count of samples 
considered for each fault class from the experimental setup is 
given in Table I. 

Time-domain features for normal and faulty bearings are 
shown in Fig. 6(a)-(d). 

The proposed hybrid model is implemented using the 
Python‘s deep learning modules i.e. Tensorflow and Keras 
[32]. 

TABLE I. SUMMARY OF 12 DRIVE END FAULT DATA OF CWRU 

Class 
Types of Bearing 

Faults 

No. of  

 samples 
Data description 

C0 0.007-Ball 319 Ball fault level =0.007 

C1 0.007-InnerRace 315 Inner Race fault level=0.007 

C2 0.007-OuterRace12 318 
Outer Race fault level at   ‘o 
clock position = 0.007 

C3 0.014-Ball 317 Ball fault level =0.014 

C4 0.014-InnerRace 317 Inner Race fault level=0.014 

C5 0.014-OuterRace6 317 
Outer Race fault level at 6‘o 

clock position = 0.014 

C6 0.021-Ball 317 Ball fault level =0.021 

C7 0.021-InnerRace 318 Inner Race fault level=0.021 

C8 0.021-OuterRace12 317 
Outer Race fault level at   ‘o 

clock position = 0.021 

C9 0.028-Ball 314 Ball fault level =0.028 

C10 0.028-InnerRace 314 Inner Race fault level=0.028 

C11 Normal 634 Normal Bearing 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6. (a). Time-domain Feature Representation for Normal Bearing, (b). 

Time-Domain Feature Representation for Outer Race Fault, (c). Time-Domain 

Feature Representation for Inner Race Fault, (d). Time-Domain Feature 

Representation for Ball Fault. 

F. Parameter Settings for CNN-Bi-LSTM Model 

The summary of the model‘s parameters set for the 
proposed hybrid CNN-Bi-LSTM architecture is shown in 
Fig. 7. 

The first four convolutional layers used batch normalization 
and spatial dropout with a value of 0.25, which could 
effectively improve the performance of the network by 
preventing the overfitting problem. Softsign activation function 

was used as a classifier in Bi-LSTM with filter size of 256 and 
Adam optimizer for compilation. The loss function categorical 
cross-entropy and batch size of 32 was set to identify the fault 
state by setting a short time of 100 epochs. 

The trainable parameters are those which are learnt by the 
model during the feature learning from the classification layers 
namely convolution, LSTM, and the fully connected layers. 
The non-trainable parameters are learnt by the model from the 
batch normalization layers. 

 

 

 

 

Fig. 7. Summary of Model‘s Parameters. 
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G. Confusion Matrix 

The confusion matrix is the representation of matching 
degree between the actual and predicted labels in the form of 
matrix. The confusion matrix for the proposed 1DCNN-Bi-
LSTM model is shown in Fig. 8. The model has correctly 
classified 4111 samples out of 4118 by demonstrating an 
accuracy of 99.84%. 

 

Fig. 8. Confusion Matrix. 

H. Learning Curve 

A learning curve is a plot of model‘s learning performance 
over experience or time. The model is evaluated during 
training phase after each update based on the training and 
validation dataset. It gives an idea of how well the model is 
learning and generalizing. The learning curve for the proposed 
method is shown in Fig. 9. It demonstrates the training and 
validation accuracy versus number of epochs. 

 

Fig. 9. Learning Curve for Hybrid CNN-Bi-LSTM Model. 

A comparative analysis of the proposed hybrid model is 
made with other existing DL models as shown in Table II. The 
performance indicates that the proposed model accomplishes 
better results in classifying multiple faults as compared to other 
models. 

TABLE II. COMPARATIVE ANALYSIS OF THE PROPOSED METHOD WITH 

OTHER DL MODELS 

Model 
Training 

Accuracy 

Test 

Accuracy 

Validation 

Accuracy 

1D-CNN only 98.18 95.99 95.45 

1D-CNN with LSTM 98.18 99.51 99.09 

1D-CNN-Bi-LSTM 98.01 98.78 99.09 

1D-CNN-Bi-LSTM 
(Softsign and  

Spatial Dropout) 

99.84 98.17 99.69 

VI. CONCLUSION 

In this research, A Hybrid 1D-CNN-Bi-LSTM model with 
Spatial Dropout for Multiple Fault Diagnosis of Roller Bearing 
is proposed. Usage of Spatial Dropout technique and Softsign 
activation function in the proposed hybrid fault diagnosis 
method has shown an improvement in the accuracy by 
performing automatic feature extraction and preventing the 
problem of overfitting. 1D-CNN extracts the features from the 
raw signal and Bi-LSTM layer fuses the feature information to 
enhance stability of the model and classify the faults. The 
efficiency of the proposed model is analysed by considering 
CWRU bearing vibration data for experimentation. A 
comparative analysis of the proposed method is made with 
other existing models. The model has shown the performance 
accuracy of 99.84% in classifying 12 different fault types. 
Therefore, the proposed hybrid 1D-CNN-Bi-LSTM (Softsign 
and Spatial Dropout) is an effective multi-class fault diagnosis 
method with the prevention of model overfitting problem. 
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