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Abstract—The aim of this paper is to investigate the hypothet-
ical duality of classical electrodynamics and quantum mechanics
through the usage of Machine Learning principles. Thus, the
Mitchell’s criteria are used. Essentially this paper is focused on
the radiated energy by a free electron inside an intense laser. The
usage of mathematical strategies might be correct to some extent
so that one expects that classical equation would contain a dual
meaning. The concrete case of Compton scattering is analyzed.
While at some quantum field theories might not be scrutinized by
computer algorithms, contrary to this Quantum Electrodynamics
would constitute a robust example.
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I. INTRODUCTION

The science of Machine Learning is been applying to a
wide spectrum of disciplines in both basic sciences as well
as engineering. Mainly the purpose of this application is the
improvement of the functionalities of systems. This is often
linked to a kind of optimization of the critic variables of
systems. Thus to get the best scenario for each system one
needs firstly to identify the relevant pieces that would play a
critic role in the chain of processes. Clearly one here would
argue that Machine Learning is actually applicable to all those
input-output systems whose black-box might be unknown. In
this manner emerges the necessity of differentiating the one-
way path that do not allows to come back at the beginning
of the processes. Among the plethora of Machine Learning
philosophies one finds the one invented by Tom Mitchell that
establishes that system can learn from a triplet of postulates:

• All system has explicitly a concrete task that allow it
to develop in a sustained manner.

• In order to accomplish the nominal task the system
must to apply a coherent strategy based on a method-
ology that would have to exhibit a well-designed
performance.

• Once the system has accomplished its task then it
would analyze if the performance of the used strate-
gies were the right ones against other alternatives.
Only if the task was solved without to expends the
system resources then one calculated the efficiency of
the involved processes. When this is high enough the
one can say that the system has enough learning to be
applied successively.

Motivated by the Mitchell’s criteria, in this paper the energy
radiated by a free electron inside an external super intense laser

is treated with these criteria. In essence the study is centered in
the following question: Given a relativistic electron in a strong
laser, under what conditions the classical physics is abandoned
to pass a entire scenario governed by quantum mechanics.

These so-called hybrid theories that combines criteria from
classical physics and quantum mechanics have been studied
at an entire framework of quantum electrodynamics (QED in
short) by R. P. Feynman [1]. Subsequently have appeared the
works of Volkov [2], Narozhnyi [3], Vachaspati [4], Kibble
[5], Reiss [6], Eberly [7] that have studied QED with infinite
waves that can be seen as classical fields without quantization.
For example consider the QED Lagrangian:

L = −ie
∫
dx4Ψ̄γµA

µΨ (1)

where the spinors Ψ̄ and Ψ satisfy the Dirac equation
and Aµ the external field expressed as an 4-dimension vector
without any type of quantization in contrast with the Dirac
spinors. As it is well-known in field theories, from Eq.1 one
can extend it to others types of elementary interactions by
which is usual to derive the well-known diagrams of Feynman.

This paper is entirely focused on the implications of the
vectorial potential A inside classical electrodynamics that
allows to estimate observables such as energy radiated as well
as to make predictions at the generation of new sources of
powerful light at the super-intense regime. Thus emerges the
following questions:

• Under what conditions the energy radiated by an
electron is quantized?

• There is an exact boundary that separates the quan-
tum mechanics and classical description of radiation
emitted by an relativistic electron?

• Is the interaction electron and external field a system
that can be described by the principles of Machine
Learning?

This paper explores the capabilities of Machine Learning
[8] to measure the limits between classical electrodynamics
and QED in the concrete case when a relativistic electron is
inside a external super-intense laser. For this end the Mitchell
criteria [9] are employed to distinguish the scenarios where
a transition from the classical to quantum takes place. In
second section the theoretical machinery is presented. In third
section the implementation of Mitchell criteria at the classical
formalism and its link to QED is presented and discussed. In
last section the conclusion of paper is presented.
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II. THEORETICAL MACHINERY

A. Classical Backscattering Radiation

An important example of the transition from classical to
quantum dynamics of light is given by the classical Compton
backscattering. Commonly the theory demands to employ
the covariant notation given by φ=kµxµ=k · x based from
the definition xµ=(x0,~x). From this the 4-vector kµ=(1,0,0,1)
describes an incident field along the +z direction yielding
φ=x0− z. Thus the 4-vector Aµ≡ (0,~A) with ~A= Ax(φ). For
the concrete case of backscattered radiation the direction must
be opposite to the incident field and written as -k̂, which is
means that the emitted radiation travels along the -z direction.
With the definition of ξ =

e2u2
0χ

2

4π2 one can write down:

d2I(ω,n⇒ −z)
dωdΩ

=

ξ

∣∣∣∣∣
∫ +∞

−∞
Ax(φ)exp

{
iχ

[
φ+

∫ φ′

−∞
A2(ψ)dψ

]
dφ

}∣∣∣∣∣
2

. (2)

That is the backscattered radiation intensity derived in [10]
with χ the shifted Doppler frequency that can be interpreted in
classical electrodynamics as the harmonics of radiated energy
and at the quantum mechanics language as the number of
emitted laser photons. One can see that the quantity |...|2 con-
tains all the information of the processes of classical radiation.
Although above nonlinear Compton scattering was derived
from Eq. 2, then one can speculate about the possible quantum
mechanics that it might contain. Now one can go through
the integration of the exponential which is the focus of this

paper. In the case of linear polarization the laser field which is
assumed to be super-intense is defined as A(ψ)=asin(ψ)~i then
the integrand is written as a2

∫ φ′

−∞ sin2(ψ)dψ. The integration
can be done in a straightforward manner yielding the product
of three exponential:

exp

{
iχ

[
φ+

∫ φ′

−∞
A2(ψ)dψ

]
dφ

}

= exp(iχφ)exp(i
iχa2

2
φ′)exp(−iχa

2

2
sin2φ′) (3)

These changes have as objective to create infinite series
using the basis of integer-order Bessel’s functions guided by
the formulation of Ritus and Nishikov [11] as follows:

exp(iχsinφ) =
∑
`

J`(χ)exp(i`φ) (4)

exp(i
χa2

2
sinφ′) =

∑
m

Jm(
χa2

2
)exp(imφ′) (5)

exp(−iχa
2

2
sin2φ′) =

∑
n

Jn(
χa2

2
)exp(−in2φ′) (6)

the usage of this technique that favorably ends in a kind of
quantization of the intense field but working in a fully QED
scenario given by the Volkov’s states. Thus, with all these
expansions and inserting them in Eq.3 and therefore inserting
the result in Eq. 2 then one arrives to an important relation
written below as:

d2I(ω,−z)
dωdΩ

= ξ

∣∣∣∣∣
∫ +∞

−∞
Ax(φ)

∑
`

J`(χ)exp(i`φ)
∑
m

Jm(
χa2

2
)exp(imφ′)

∑
n

Jn(
χa2

2
)exp(−in2φ′)dφ

∣∣∣∣∣
2

= ξ

∣∣∣∣∣
∫ +∞

−∞
Ax(φ)

∑
`

∑
m

∑
n

J`(χ)Jm(
χa2

2
)Jn(

χa2

2
)exp(i`φ)exp(imφ′)exp(−in2φ′)dφ

∣∣∣∣∣
2

. (7)

It should be noted that Eq. 7 is a fully classical relation so
that in a first instance it is impossible to link it to any fact done
inside the quantum mechanics framework. In fact, one can see
the it is pure emitted radiation done by a relativistic electron.
Nevertheless the work of Ritus [12] it was proposed the
connection between a semi-classical description a quantization
of external light. In order to follow the Ritus’s view the
covariant quantities are explicitly written as φ′ = k′µx

µ and
φ = kµx

µ. With this the argument of product of exponentials
in Eq. 7 is written as: i`kµxµ + imk′µx

µ − 2ink′µx
µ. When it

is conveniently ordered then one gets i[`kµ− (2n−m)k′µ]xµ.
Clearly one has only information of light either emitted or
absorbed despite the fact that the electron is the responsible of
these processes. To homogenize the physics of this event it is
also convenient to introduce the exponential exp[i(pµ−p′µ)xµ].
To note that it is possible only if pµ−p′µ ≈ 0 at the space-point
xµ. Logically the purpose of this is twofold:

• The conservation of 4-momentum.

• To force a kind of quantization of external field.

In this manner the argument of the resulting product can
be written below as:

Exp
[
i(pµ + `kµ − (2n−m)k′µ − p′µ

)
xµ. (8)

Thus one can easily to recognize that there is a pure
conservation with the initial and final states of 4-momentum
given by:

PIN = pµ + `kµ, (9)
PFI = (2n−m)k′µ + p′µ. (10)

As mentioned above the fact that emerge integer numbers
it might not be directly linked to a case of quantization as
noted by Ritus. Thus this kind of artificial quantization in a
theoretical framework would have to be verified experimentally
within a valid window of accuracy [13].
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III. THE MACHINE LEARNING ANALYSIS

Although classical electrodynamics has been entirely de-
veloped as a robust branch of physics, the requirement of
using advanced algorithms to minimize a biased interpretation
of the equations might be seen as an advantage more than a
disadvantage at the sense that one gets a kind of hybrid theory
with a tuned interpretation. In the following the well-known
Mitchell’s criteria shall be used to provide a fair interpretation
of Eq. 7. These criteria are classified and conceptualized as
follows:

• The Task: any system might to have one or more tasks
that justifies its existence.

• The Performance: once the task is identified, the
system opts by a strategy that must to exhibit a well-

defined performance.

• The Experience: depending on the performance and
the completion of task, the system should be able to
assess the experience along the chain of events. At
the cases of an acceptable experience the system can
claim that it was a kind of learning to be repeated in
subsequent task.

Turning back to Eq. 7, then one can wonder if it requires
to isolate a concrete task? And if it is required then for what?
One can argue that the manner as Eq. 7 is written, then it
represents already a task in the sense that one should figure
out the best way to extract a reasonable interpretation through
a rather clear procedure of integration without any ambiguity.
With Eq. 9 and Eq. 10, Eq. 7 can now be written as:

d2I(ω,−z)
dωdΩ

= ξ

∣∣∣∣∣∣
∫ +∞

−∞
Ax(φ)

∑
`,m,n

J`(χ)Jm(
χa2

2
)Jn(

χa2

2
)exp[−i(pIN − pFI)µx

µ]dφ

∣∣∣∣∣∣
2

. (11)

In addition, the task can also be seen as the demonstration
that Eq. 7 is a hybrid formulation of radiated energy by a
relativistic free electron. In other words, one can also wonder
about the concrete capabilities of classical electrodynamics to
exhibit a dual formulation of a fundamental process such as
Compton scattering (or it can also be Thomson scattering [14]
to some extent, for instance). From Eq. 11 one can wonder if it
is quantum mechanics expression or it is needed to corroborate
such hypothesis. By following the Mitchell’s criteria it is
desirable to define a clear route to argument that in fact Eq. 11
is a hybrid expression so that quantum mechanics laws apply.
From Eq. 11 to demonstrate that it is a quantum mechanics
description of process of interaction between a field and a
relativistic free electron, the proposed performance requires
only the verification at the energy or momentum. For the
sake of simplicity the present analysis shall use the energy
integration. This demands to employ φ = kµxµ = ωt that

gives dφ=tdω under the assumption that the photon 4-vector
momentum is (1,0,0,0). Thus one arrives to:

i[E + `ω − (2n−m)ω′ − E ′]t. (12)

With Eq. 12 one clearly finds that its inclusion in Eq.11
turns out to be a Dirac-delta function in the sense that one
gets: ∫

exp[i(`ω + E − (2n−m)ω′ − E ′)t]ωdt

ωδ(`ω + E − (2n−m)ω′ − E ′). (13)

Eq. 13 is an important result in the sense that at least at the
energy variable one finds conservation if only if the argument
of Dirac-delta function is null. By inserting Eq. 13 into Eq. 11
one arrives to:

d2I(ω,−z)
dωdΩ

= ξω2a2

∣∣∣∣∣∣
∑
`,m,n

J`(χ)Jm(
χa2

2
)Jn(

χa2

2
)δ[(`+ 1)ω + E − (2n−m)ω′ − E ′]

∣∣∣∣∣∣
2

. (14)

Eq. 14 can be normalized to introduce into a scenario of
probabilities. In this manner it is needed that:

N2 d
2I(ω,−z)
dωdΩ

= 1. (15)

Therefore, the constant N can be explicitly written as:

N =

√√√√ 1

ξω2a2
∣∣∣∑`,m,n J`(χ)Jm(χa

2

2 )Jn(χa
2

2 )δ[(`+ 1)ω + E − (2n−m)ω′ − E ′]
∣∣∣2 . (16)

www.ijacsa.thesai.org 678 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Fig. 1. Classical Distributions of Radiated Energy: Up:
|H(χ, a)|2=0.16|J0(χ)J1 (0.001χ) J0(0.001χ)|2 (Magenta Color), and
|H(χ, a)|2=0.5|J0(χ+ 0.01)J1 (0.01χ + 0.01) J0(0.01χ+ 0.01)|2

(Orange Color). Down: |H(χ, a)|2 = 0.52×107 J0(χ) × J1(0.001χ) ×
J0(0.001χ) (Orange Color) and |H(χ, a)|2 = 0.5×104 J0(χ− 0.01) ×

J1(0.01χ− 0.01) × J0(0.01χ− 0.01) (Magenta Color).

Once the constant N is calculated then the radiated energy
can be estimated fom a procedure based entirely at the Mitchell
criteria. Therefore, one can pass the classical electrodynamics
concepts to one dictated by principles of Machine Learning.

IV. INTERPRETATION BY MITCHELL’S CRITERIA

In this way one gets that the applied performance has
brought elements that play a concrete role at quantum elec-
trodynamics (or QED in short). Thus Eq. 14 makes us to
remind the well-known diagrams of Feynman’s. In effect, the
concordance with QED [15] as seen at the argument of Dirac-
delta function has as central implication this pseudo quantiza-
tion of electromagnetic field that although proposed initially
as classically pure, now the interpretation of Feynman’s rules
[16] would suggest that in the initial state a free electron
with initial energy E absorbs [` + 1] photons, whereas at
the corresponding final state the electron has an energy E ′
and has emitted [2n−m] photons. Actually, it is imminently
nonlinear Compton scattering as observed by Bula [17]. Since
Eq. 14 has been recognized as a potential expression that
would play a role in QED, then one expects to arrive to a
solid experience after the assumptions that the performance
has demanded. In this way one can propose that Eq. 14 is a
kind of square of sum of all allowed amplitudes that certainly it
could to involve both linear as well as nonlinear contributions
[18][19][20][21][22][23][24]. The case of simple Compton is

of particular interest. Eq. 14 can be Compton scattering is
` = 0 and 2n −m = 1. However one can see that the crude
assumption that these integer number would denote the number
of photons fails because it is required that n = m/2 fact that
is totally false in quantum mechanics. This reveals the “bugs”
of algorithm to propose an effective strategy or performance.
Thus simple Compton is restored with ` = n = 0 and m = 1.
When H(χ, a)=J0(χ)J1(χa

2

2 )J0(χa
2

2 ) the classical radiated
energy can be also interpreted as the measured quantum
mechanics observable O(χ, a), while |H(χ, a)|2 the square of
all possible amplitudes. Therefore one can write down (where
it is assumed after the integration of Dirac-delta function as
commonly done in QED):

1

ξω2a2

d2I(ω,−z)
dωdΩ

= O(χ, a)

= |Hm=1(χ, a)δ[ω + E − ω′ − E ′]|2 ≈ |Hm=1(χ, a)|2 (17)

A. Generation of Pseudo Amplitudes

In Fig. 1 (Up) one can see the plotting of
|H(1, 0, 0, χ, a)|2=|J0(χ)J1(χa

2

2 )J0(χa
2

2 )|2 for two cases: (i)
the magenta-color line denoting simple Compton scattering
with ξω2a2=0.16107 and a2 = 0.002 expressing the fact
that the laser is not super-intense as initially assumed. (ii)
the orange-color line is given by: |H(1, 0, 0, χ, a)|2=|J0(χ +

0.01)J1(χa
2

2 + 0.01)J0(χa
2

2 + 0.01)|2 resulting that the
peak is shifted to the left-side with a rough coincidence to
the value of argument of Bessel function. The added value
0.01 can be perceived as the error at the measurement of
Doppler frequency. The reader can corroborate that the case
of using −0.01 the negative case, the first peak or Compton
peak is gone. In Fig. 1 (Down) the case of |H(χ, a)|2 =
0.52×107 J0(χ) × J1(0.001χ) × J0(0.001χ) (orange color)
and |H(χ, a)|2 = 0.5×104 J0(χ− 0.01) × J1(0.01χ− 0.01)
× J0(0.01χ − 0.01) (magenta color) is plotted. While the
magenta color distribution exhibits the fact that the central
peak is shifted to right-side, the orange color distribution
the incorporates errors at the order of 0.01 at the arguments
of Bessel function given by: 0.01χ − 0.01 one can perceive
this as the degradation of radiation spectra due to quantum
mechanics effects. The product of Bessel functions from
above can be defined as a kind of pseudo amplitudes that can
be written as:

H(m,n, `, χ, a) =

∣∣∣∣J`(χ)Jm(
χa2

2
)Jn(

χa2

2
)

∣∣∣∣ . (18)

where J`(χ) acts as a propagator whereas Jm(χa
2

2 ) and
Jn(χa

2

2 ) can be understood as a kind of input and output
states. In fact, the integer number given by the order of
Bessel function, is expressing the fact that there is a kind
of “classical” absorption as well as emission. From Eq. 17,
the square |H(m,n, `, χ, a)|2 represents an observable that is
related to radiated energy. This is of importance at the sense
that Machine Learning can manage the best values of integer
number in order to find the peaks of radiation that to some
extent can be perceived as the peaks of X-rays [25][26][27].
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In this manner one has below:

H(χ, a) =
∑
m,n,`

∣∣∣∣J`(χ)Jm(
χa2

2
)Jn(

χa2

2
)

∣∣∣∣ , (19)

that emulates to some extent the sum of all possible
possibilities for absorption and emission. Then, the intensity

of radiated energy is the square of Eq. 19:

I(χ, a) =

∣∣∣∣∣∣
∑
m,n,`

J`(χ)Jm(
χa2

2
)Jn(

χa2

2
)

∣∣∣∣∣∣
2

. (20)

From Eq. 20 one can define the purity of emission at the
sense that a detector can sense Compton photons accompanied
of pile-up photons, all those that were created by parallel
processes. Then this purity is written as:

P (χ, a) =

∣∣∣∑m,n,` J`(χ)Jm(χa
2

2 )Jn(χa
2

2 )
∣∣∣2∣∣∣∑m,n,` J`(χ)Jm(χa

2

2 )Jn(χa
2

2 )
∣∣∣2 + d2IB(ωB,aB)

dωBdΩ

(21)

where IB, ωB and aB, the intensity, frequency and in-
tensity of background field. In praxis one expects actually
that the Compton photons have greater energy than their
noise in order to be efficiently detected (see for example
[28][29][30][31][32][33]). Thus one has below that:

d2IB(ωB,aB)
dωBdΩ∣∣∣∑M,N,L

m,n,` J`(χ)Jm(χa
2

2 )Jn(χa
2

2 )
∣∣∣2 << 1. (22)

In this manner, while the Machine Learning task would
consist in the identification of Compton photons still at a
classical scenario. Then, the performance would need to
have a clear procedure to accomplish the identification of that
photons (see for example [34][35][36][37][38]). Thus, it would
consist in the searching of the best values of M,N,L to satisfy
Eq. 22. Subsequently, the experience would be that of Eq. 21.
The final Sigmoid function can be derived from Eq. 21 and
Eq. 22 so that one arrives to:

S(χ, a,M,N,L) =
1

1 + Exp

[
−

d2IB(ωB,aB)

dωBdΩ

H(χ,a)

] . (23)

The sign “-” in Eq. 23 emerges from the fact that H(χ, a)
can acquire negative values due to the Bessel functions. A
deeply analysis of Eq. 23 can be a window to investigate
all those available values of classical radiation that might be
encompassing quantum mechanics. In addition, the role of
these integer number can also be correlated to the existence
of a kind of entropy that would appear from the projection of
classical observables in a quantum scenario, in the sense that
Entropy = Log[|H(χ, a)|g(r)] (see for example [39], Fig. 2).

V. CONCLUSION

In this paper, the derivation of quantum observables
have been possible with the classical electrodynamics of
Hartemann-Kerman equation. The radiated energy equation
has been derived, and its relevance in quantum mechanics
has been done through the criteria of Tom Mitchell. Along
rhis document, integer number have been obtained in a fully
analogy to the states of absorption and emission of photons of
a relativistic electron in a laser field. Thus, the resulting spectra

are strongly dependent on the integer-order Bessel functions.
Therefore, the integer number are exploited at the sense that
them allow to design a strategy inside the territory of Machine
Learning. Finally a Sigmoid function was derived. This clearly
demonstrates that classical electrodynamics appears to exhibit
a certain flexibility to be adapted to new concepts of computing
in physics theoretical as well as experimental.
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