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Abstract—In Deep Learning (DL), Generative Adversarial
Networks (GAN) are a popular technique for generating synthetic
images, which require extensive and balanced datasets to train.
These Artificial Intelligence systems can produce synthetic images
that seem authentic, known as Deep Fakes. At present, data-
driven approaches to classifying medical images are prevalent.
However, most medical data is inaccessible to general researchers
due to standard consent forms that restrict research to medical
journals or education. Our study focuses on GANs, which can
create artificial fundus images that can be indistinguishable
from actual fundus images. Before using these fake images, it
is essential to investigate privacy concerns and hallucinations
thoroughly. As well as, reviewing the current applications and
limitations of GANs is very important. In this work, we present
the Cycle-GAN framework, a new GAN network for medical
imaging that focuses on the generation and segmentation of
retinal fundus images.DRIVE retinal fundus image dataset is used
to evaluate the proposed model’s performance and achieved an
accuracy of 98.19%.

Keywords—DeepFakes; deep learning; retinal fundus image
synthesis; segmentation; generative adversarial network (GAN);
variational autoencoder (VAE)

I. INTRODUCTION

An eye’s retina is a sensitive membrane responsible for
vision.As shown in Figure 1, three primary anatomical com-
ponents are the Optic Disc, Macula, and Blood Vessels.

Fig. 1. Picture of the Retina on the Left; The Segmented Image on the Right.

To categorize the GAN’s working capability, we divided
them into seven categories: synthesis, segmentation, recon-
struction, detection, de-noising, registration, and classification.
The use of GANs has been studied across many different
imaging modalities, including MRI (magnetic resonance imag-
ing), CT (computed tomography), OCT (optical coherence
tomography), chest X-rays, dermoscopy, ultrasound, PET, and
microscopy.

A classic area of study in computer vision is image
classification. A large, well-balanced dataset is frequently
needed for training deep neural networks. However, because
of the unbalanced dataset, most networks’ performance will
suffer while classifying medical images. Moreover, collecting

pathological instances takes time in the domain of medical
images. The ideal option is to create new, high-quality, diverse
photographs of minority classes[1].

Artificial intelligence (AI) has gained popularity in recent
years for use in medical imaging jobs [2]. However, even
while medical data sets are more widely available, most of
them only apply to certain medical diseases, and collecting
data for machine learning methods is still tricky [3,4]. Some
initiatives have focused on adding to the existing data to get
beyond this obstacle. Numerous techniques for data augmen-
tation have been proposed in this regard. Despite this, only
minor adjustments, such as overfitting in learning processes
or geometric modifications, have been made to meet the
urgent requirement to provide data sets more meaningful [5,6].
However, considerable improvement has been accomplished
by introducing synthetic data augmentation to extend training
sets. For example, synthetic data can present novel photos to
existing data sets. It might contribute to increased diversity
within a dataset and, eventually, to more robust machine
learning algorithms if such a strategy is adopted.

To achieve the mentioned improvements: 1) GANs exploit
density ratio estimation in an indirect manner of supervision
to maximize probability density over the data-generating dis-
tribution; 2) By discovering the latent distribution of high-
dimensional data, GANs have improved the performance of
visual feature extraction.

For all these Deepfakes comes into picture because Deep-
fakes have gained public attention for their sinister uses, but
they have also investigated in several medical fields [7,8]. As
ophthalmology has been at the forefront of the DL revolution,
synthetic images can be used for various purposes, including
fundus[9,10,11] and OCT. Several potential uses of GANs in
ophthalmology have yet to be investigated, including how they
can be applied to DL development and medical education
[12,13] and the implications of their use for privacy regula-
tions. This study had two goals:

• A GAN applied to synthetic images generated by us-
ing DRIVE database was tested to determine whether
the machine could identify the authentic fundus im-
ages.

• In addition, GANs are being examined for their uses
in ophthalmology, as well as their limitations.

The remaining portions of this paper take place in multiple
sections—first, the related work regarding Image translation
and Image synthesis is discussed in Section II Then, Sections
III goes on with Materials & Methods for retinal image
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generation. Next, the proposed network and its importance will
discuss in Section IV Next, the experimentation findings take
part in Section V where the segmentation’s performance and
execution time are concerned with existing techniques. Later
on, concluding with a discussion in Section VI. Finally, Section
VII contains a conclusion.

II. RELATED WORK

Deep learning-based computer systems that assist in med-
ical diagnostics are greatly interested. But because of restric-
tions on data access due to proprietary and privacy issues,
these systems’ development and improvement cannot be sped
up by contributions from the general public [14]. For example,
without the patient’s consent, it might be challenging for
medical personnel to publish most medical pictures [15].
Furthermore, the publicly accessible datasets frequently have
an insufficient size and expert annotations, making them un-
suitable for training data-hungry neural networks. As a result,
only academics with access to private data can create these
systems, which restricts the development and potential of this
area of study.

A. GAN & VAE

In addition to GAN, Variational Autoencoder(VAE) is an-
other family of deep generative models that should investigate
for medical imaging tasks. Latent (random) vectors are the
input for GAN. However, one must carefully modify the
GAN output to create synthetic images with the required
characteristics. To deal with this issue, VAE had introduced.
An encoder and a decoder are the two components of a VAE.
Utilizing multilayer convolutional neural networks, the encoder
turns input images into latent vectors of random variables with
corresponding mean and standard deviations.

VAE, unlike GAN, starts with samples selected from the
latent vector associated with the input and then sends them
to the decoder for reconstruction. Thus, we can manipulate
VAE directly to create specific synthetic output images for
clear input photos. However, due to the loss function of
the mean square error, the output of the VAE could appear
hazy. Combining the advantages of VAE and GAN creates
an adversarial network for similarity measures to address this
problem. The application of VAE in medical imaging is quite
innovative [16,17] and needs further investigation to process
retinal images.

B. Image-to-Image Translation

In picture-to-image translation, an altered version of an
existing image is created synthetically. Therefore, a sizable
dataset of matched instances is often needed when training
a model for image-to-image translation. For which a paired
sample dataset is traditionally required to prepare an image-
to-image translation model. In other words, a sizable dataset
with several examples of modified versions of the input image
X that can be utilised as the intended output image Y. These
datasets, particularly in the medical field, are time-consuming,
expensive, and sometimes impossible to compile. The image-
to-image translation framework can be applied to a variety of
computer vision problems, including image super-resolution
[18], image inpainting [19], and style transfer [20]. It is

possible to employ both supervised and unsupervised methods
[21,22,23].

C. Retinal Image Synthesis

Surgical simulations using an anatomic model of the eye
and surrounding face were one of the first applications of reti-
nal image synthesis. Nevertheless, the segmentation module’s
performance heavily influences the quality of the generated
images. To reduce the requirement for annotated samples and
to improve the representativeness (for example, the variability)
of synthesized images [24], a generative adversarial approach
is used in conjunction with a style transfer algorithm. Recent
implementations like the retinal background and fovea have
been modelled using a dictionary of small images without
vessels [25]. In addition, it’s an idea that training a segmen-
tation network with authentic retinal images combined with
synthesized ones leads to better segmentation results.

D. GAN’s on Retinal Image Synthesis: Present Status

GANs have shown the ability to produce impressively real-
istic synthetic medical images. This section describes existing
work on GANs for synthesising coloured retinal fundus images
[26,27,28,29,30,31]. (Table I)

III. MATERIALS & METHODS

A. Dataset

The DRIVE dataset initially consisted of 40 photos, but
we expanded it to 120 images, using 125 for training, 55 for
validation, and 20 for testing. This image used with a field
view of 45 degrees and a dimension of 565 x 584 pixels. It
has 540 pixels in diameter and a FOV of 540 pixels. As seen
in Fig 2, each image in the DRIVE dataset has a mask to aid
in identifying the field of view (FOV) region.

Fig. 2. DRIVE Database Sample (a) Original Image. (b) Mask Image.

B. Image Preparation

A black-and-white retinal vasculature map was created for
each image using a U-Net trained on 154 photos from the
DRIVE database [32].The unaided eye cannot detect pigmen-
tation and choroidal blood vessel patterns on vessel maps, so
information about them is removed. In addition, a circular
mask with black background was placed on all retinal images
with suitable vascular maps to create photos of the synthetic
retinal fundus images.
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TABLE I. LIST OF ARTICLES ON THE CREATION OF COLOURED RETINAL IMAGES

References DataSets Methods Validation
26 i-ROP PGANs Segementation and Latent space

espression
27 Messidor cGAN(Pix2Pix) ISC,Qv
28 Messidor AAE and

cGAN(Pix2Pix)
Segementation and ISC

29 Messidor cGAN(Pix2Pix) Segementation and SSIM
30 Drive, Stare and

Style references
cGAN(Pix2Pix)
and Style transfer

Segementation

31 Drive , Stare,
HRF and Style
references

cGAN(Pix2Pix)
and Style transfer

Segementation and SSIM

C. Why GANs?

GANs are deployed and used for artificial data augmen-
tation. GANs work through the creation of synthetic pictures
while simultaneously learning to distinguish between them as
actual pictures see Fig 3. In addition to their use in ophthal-
mology, GANs are helpful in molecular oncology imaging
and generated positron emission tomography (PET) pictures
[33]. Even though present radiology applications attempt to
aid in the diagnosis, human perception has not yet been
used in this situation to assess the quality of GAN created
synthetic data. In several instances, using GAN improves
medical imaging by creating fresh retinal pictures from data
consisting of pairs of retinal vascular trees [34]. Generator loss
function and Discriminator classification information about
generated images are depicted as well as Convolutional neural
networks (CNNs) are standard tools for categorizing images
and returning a scalar to represent the realness of the input
pictures.

Fig. 3. Generative Adversarial Network Training, pix2pix.

D. U-Net

In order to generate a wider range of realistic images,
we developed a pipeline instead of CNN based on this we
trained a U-Net segmentation network with our synthetic
data to generate a segmentation mask from a photorealistic
medical image to assess the credibility of the data. The u-net
design, explicitly created for biomedical images, is descended
from the auto encoder architecture, which uses unsupervised
learning for dimensionality reduction. The u-net is particularly
helpful for biomedical applications because it lacks completely
connected layers, has no restrictions on the size of input images

and permits a substantially higher number of feature channels
than a conventional CNN [35]. The decoding procedure also
concatenates the receptive fields before and after convolution.
By doing this, the network can use both the up-convolutional
and initial properties. To determine the accuracy of the GAN,
4282 image pairs were trained for 200 epochs. Following
this, synthetic retinal fundus images were created using all
the retinal vascular maps from the test data. It is one of the
key advantages of GANs that they can produce much larger
datasets than the initial ones see Fig 4.

Fig. 4. U-Net Segmentation Network

E. Segmentation

Machine learning involves segmenting images into ap-
propriate sections. Fundus pictures with low contrast, com-
plicated, and compound characteristics must be meticulously
segmented to separate retinal vessels from one another. Deep
learning systems are capable of identifying vessels against
backgrounds accurately. This method, however, did not fac-
tor in ambiguous vessels, resulting in inaccurate estimates
of vascular calibre biomarkers, such as tortuosity, length-to-
diameter ratios, branching angles, and fractal dimensions. The
proposed architecture uses long and short skip connections
along with U-Net to address the abovementioned problem.
Segmenting retinal vessels and looking for anomalies in the
retinal subspace requires an exact technique. In recent years,
several supervised and unsupervised algorithms have been
proposed to segment retinal vessels. However, manual feature
extraction is necessary for training with supervised approaches
for different applications [36], [37].In below we can see the
workflow of supervised and unsupervised algorithms.

• A minimization function is used over the tuning pro-
cess to determine which separation between the vas-
cular and background classes is the most effective. Fig
5 displays a typical unsupervised learning algorithm
workflow.
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• In supervised approaches, the segmentation algorithm
must learn the vessel segmentation rule by studying
the images manually labelled by professionals. Fig 6
depicts the workflow of a typical supervised technique.

Fig. 5. Unsupervised Learning Algorithm Workflow.

Fig. 6. Supervised Learning Algorithm Workflow.

For getting segmented image initially in the first set,
577,649 pixels (12.7 percent) are marked as vessels, while
556,532 pixels (12.3 percent) are marked as vessels in the
testing set, which is segmented twice from the training set
[38]. See Fig 7 and Fig 8 for detailed view of DRIVE
dataset segmentation and masking. Our results are comparable
to those achieved by state-of-the-art methods using U-Net
implementation to Cycle-GAN Network.

Fig. 7. A Sample from the DRIVE Dataset. (a) Training Image, (b) Vessel
Segmented of the Training Image, and (c) Mask of the Image.

Fig. 8. (a) A Sample Test Image from the DRIVE Dataset. (b) The First
Segmentation (c) The Second Segmentation (d) The Mask Image.

F. PreProcessing

During this stage, the retinal image quality is enhanced by
separating vessels from the backdrop for achieving segmen-
tation of vessels accuracy.The recommended network ensures
that the retinal vascular tree can be segmented more effec-
tively. Therefore, the trained model of the suggested network

serves as the foundation for our method for retinal vascular
segmentation, and its processing pipeline, as shown in Fig 9.
It should note that using the DL network to segment a complete
image may produce unreliable results. For the suggested neural
network to focus, it is necessary to crop photos into patches.We
will repeat this process in testing to produce segmented patches
using the trained model. The segmented vessel tree is then
produced by merging the segmented patches during the post-
processing stage as shown in Fig 9.

IV. PROPOSED WORK

A. Cycle-GAN: General Pipeline

Any model should be able to identify the underlying
relationship between the two domains and extract distinctive
features from each field for image transformation between
them. Cycle-GAN is nominated to offer these guidelines[39].
The finding in (1) briefs a mapping between domain X and
domain Y, and vice versa, the system essentially merges two
GANs. A generator G: X Y trained by discriminator DY and a
generator F: Y X trained by discriminator DX create a structure
shown in Fig 10.

minmax(D,G) = Ex−Pdata(x)[logD(x)]+Ex−Py[1−D(G(y)))]
(1)

B. Loss Function

No paired data is available for CycleGAN training, so the
input X and the target Y pair are not guaranteed to be mean-
ingful. Thus, we propose the Cycle Consistency loss to ensure
the network learns the correct mapping. Both discriminator
loss and generator loss are similar to those used in pix2pix.

A cycle consistency refers to a close match between the
input and the output. For Example, when we talk about NLP
translations, the resulting sentence should be the same as the
original sentence when translating from English to Telugu and
then back to English. As a result of cycle consistency loss as
specified in (2) and (3) :

• X image information is passed to generator G, which
produces image Y1.

• A cycled image Y1 is generated by passing generated
image F through generator X1.

• Between X and X1, we calculate the mean absolute
error. In the Figure 11, generator G is responsible for
converting image X into image Y. If you feed image
Y to generator G, and the output would be the image
Y itself or something close.

Forwardcycleloss : X → G(X) → F (G(X))˜X1 (2)

Backwardcycleloss : Y → F (Y ) → G(F (Y ))˜Y 1 (3)

C. Image Generation

The validation dataset examined images created from reti-
nal vessel maps manually after training the GAN for 100
epochs on 120 pairs of images.Using all vessel maps, produced
a synthetic retinal fundus image from the test dataset, see Fig
12 how the synthetic image looks by using proposed network.
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Fig. 9. Preprocess Functioning.

Fig. 10. Image Transformation using Cycle-GAN.

Fig. 11. Cycle Consistency Loss.

D. PostProcessing

A segmented blood vessel image is created by merging
all segmented patches.As a result, the offered patches are
gathered and reduced in size for cropping. These patches
are then replicated in the appropriate order, depending on
the image size for cropping[40]. To remove the white pixels
surrounding the retina, the mask of the used picture is placed
on the combined image. Then, noise is removed using the
morphological transformation ”erosion” utilising an ellipse
structural element of size 2*2.

V. EXPERIMENTS AND ANALYSIS

In this section, it is explained about the Parameter Settings
in Section A. Later on, the evaluation principle is described in
Section B, where the method is configured and put into prac-
tice. Then, using a retinal image dataset, Image classification
is provided in Section C. Finally, we will see execution time
measures in Section D.

Fig. 12. A Trained U-Net is used to Segment Authentic Retinal Fundus
Images (Left) into Associated Vessel Maps (Middle). In Order to Create the
Artificial Retinal Fundus Images, We used pix2pixHD, a Newly Developed

Implementation of a Generative Adversarial Network (GAN).

A. Parameter Setting

Segmentation performance is achieved by training the
suggested network with parameters selected experimentally or
by consulting recent works. Experimentally, we determine the
learning rate, the optimizer algorithm, the weight initialization
method, and the epoch number [41]. First, we train one model
without changing the parameters. Next, we pick the value with
the highest segmentation rate.

B. Evaluation Principle and Metrics

We advise comparing the segmentation findings with man-
ual segmentation by a skilled medical professional. Each pixel
is defined as True Positives (TP ), True Negatives (TN ), False
Positives (FP ), or False Negatives for the evaluation (FN ). Pix-
els correctly identified as background or vessels are expressed
as TP and TN , respectively. As opposed, FP and FN represent
pixels incorrectly identified as background or boats. A segmen-
tation performance measure consists of Accuracy, Sensitivity,
Specificity, and F1-Score. These metrics are the ones that are
used most often to evaluate segmentation results. To classify
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pixels as vessels Accuracy performance is calculated, while
Sensitivity and Specificity represent the ability to categorize
pixels as vessels and backgrounds. The Precision parameter
specifies the percentage of correctly classified background and
vessel pixels among all correctly classified background and
vessel pixels. As shown in Table II the suggested method
employs the following performance metrics.

Table III provides the performance metrics on DRIVE
dataset where our method achives 98.19% accuracy in de-
tecting segmented images.The obtained ROC curves and plots
representation for the performance metrics is shown in below
Figure 13, Figure14.

Fig. 13. Two Plots Measures for Test and Tain on DRIVE Dataset.

Fig. 14. Two Obtained ROC Curves on DRIVE Dataset.

TABLE II. PERFORMANCE METRICS

Metric Elucidation
Accuracy TN+TP /TP +FP +TN+FN

Sensitivity TP /(TP +FN )
Specificity TN /(TN+FP )
F1-Score TP /(TP + FP )

C. Image Classification

Using the high dimensional space, we can calculate the
conditional probability, P(ai—aj), representing the similarity
between two samples is shown in (4).

P (ai|aj) =
exp

(
−−|ai−aj|2

2σ2

)
Σk#1exp

(
−−|ak−al|2

2σ2

) (4)

50 actual and 50 synthetic photos with the same stage and
illness distribution as the original dataset were uploaded, and
runned ML programs to judge whether the photographs were
natural or artificial. According to Figure 15 findings, most
machine programs significantly distinguish between actual and
artificial photographs.

Fig. 15. Classfying Real and Fake Fundus Images.

D. Execution Time Measures

The proposed method is examined in this section for its
processing performance. As shown in Table(IV),we propose
calculating each image’s execution period from the DRIVE
dataset, respectively.Our analysis shows that despite the size
of the image used, the computation values are too low for
preprocessing, segmentation, and postprocessing.Then, we pro-
posed evaluating the accuracy of the execution time compared
to existing methods. Timing data is used in the evaluation for
tarining the data. Because DRIVE is the most frequently used
database, where values are provided in Table(V) , both metrics
correspond to that database.

VI. DISCUSSION

In medical imaging, variations in illumination, noise, pat-
terns, etc., result in a nonconvincing image produced by a
GAN. A poorly defined vessel tree structure and dark spots
show that the GAN can’t distinguish complex systems. As
a result, it can only identify colour, shape, and lighting fea-
tures.There are many intricacies in medical images that must
be accurately portrayed for the data to be useful for medical
imaging. This lack of detail is unacceptable for medical
image generation, as medical images contain many intricacies.
By breaking down the complex task of generating medical
ideas into hierarchical processes, our Cycle-GAN architecture
improves the quality of synthetic images by using the below
rules:

• In the first step of generating Images, GAN focuses
on developing segmentation metrics by ignoring the
realism of photos.

• Using this technique, in the second step, GAN con-
centrates only on generating the colour of an image,
brightness of image, and texture of image based on
the dimensions provided.

In addition, our proposed network generates more diverse
photos than original dataset.With Fig 12, GAN is able to
produce synthetic images by keeping general statistical classi-
fication of the real dataset.

The method of retinal image synthesis currently used for
rebuilding the optic disc and fovea is quite adequate, but
duplicate lesions with high fidelity is a challenge that requires
further research. In addition, for quality validation, experts and
ophthalmologists must assess the level of realism of generated
images. As a result of this study, we were able to demonstrate
the below points:

• That vessel maps of original retinal images obtained
by ROP screening can yield realistic-appearing syn-
thetic fundus images and
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TABLE III. PERFORMANCE MEASURE VALIDATIONS ON DRIVE DATASET.

Database No.of Epochs Accuracy Sensitivity Specificity F1-Score

DRIVE

25 82.83% 47.43% 89.45% 46.52%
50 89.77% 66.84% 93.11% 62.45%
75 98.19% 85.88% 99% 60.1%
100 97.5% 73.18% 99.46% 89.17%

TABLE IV. DURATION PERIOD ON DRIVE DATASET IMAGES.

Metric DRIVE Dataset
Preprocessing 0.026(s)
Segmentation 0.67(Time taken per patch)
Postprocessing 0.00347(s)
Time duration for each Image 0.7341(s)

TABLE V. COMPARISION TABLE OF TIME DURATION AND ACCURACY
ON DRIVE DATASET.

References Publication Year Time Duration in(s) Accuracy
34 2008 0.193 0.198
35 2012 6.8 0.9516
36 2018 0.421 0.943
37 2019 0.037 0.938

Our Method 2022 0. 69 0.9819

• That most of machine programs can distinguish nat-
ural from synthetic retinal images.Annotated data can
be used to create innovative methods for analyzing
retinal images or to enrich information in existing
databases to create synthetic images that look as
authentic as possible. Additionally, due to GAN’s
adaptability, they can be used to synthesize medical
images using approaches used for retinal synthesis.

VII. CONCLUSION

The synthesis of retinal pictures using GANs has recently
attracted more interest, and GANs have significantly developed
in recent years. These tools can overcome restrictions like
the scarcity of sizable annotated datasets and overcome the
expensive expense of collecting high-quality medical data.
However, the findings of GAN applications in the realm of
medical imaging are still far from being practically applicable.
The unique anatomy of a colour retinal fundus image must also
be taken into consideration when generating synthetic retinal
images in order to learn about a patient’s health.

In this study, we present the Cycle-GAN framework, a
new generative adversarial network for medical imaging that
focuses on the generation and segmentation of retinal artery
images. As a result, these artificial visuals appear realistic.
DRIVE retinal fundus image dataset is used to evaluate the
proposed model’s performance and achieved an accuracy of
98.19%. We must focus on investigating datasets of various
biomedical images for interaction, domain adaptation tasks,
and segmentation of medical images in the future.
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