
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

A Comparative Analysis of Generative Neural
Attention-based Service Chatbot

Sinarwati Mohamad Suhaili1, Naomie Salim2, Mohamad Nazim Jambli3
Pre-University, Kota Samarahan, Sarawak, Malaysia1

Faculty of Computing, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia1,2

UTM Big Data Centre, Ibnu Sina Institute for Scientific and Industrial Research,
Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia2

Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak,
Kota Samarahan, Sarawak, Malaysia3

Abstract—Companies constantly rely on customer support to
deliver pre-and post-sale services to their clients through websites,
mobile devices or social media platforms such as Twitter. In
assisting customers, companies employ virtual service agents
(chatbots) to provide support via communication devices. The
primary focus is to automate the generation of conversational
chat between a computer and a human by constructing vir-
tual service agents that can predict appropriate and automatic
responses to customers’ queries. This paper aims to present
and implement a seq2seq-based learning task model based on
encoder-decoder architectural solutions by training generative
chatbots on customer support Twitter datasets. The model is
based on deep Recurrent Neural Networks (RNNs) structures
which are uni-directional and bi-directional encoder types of
Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU). The RNNs are augmented with an attention layer to focus
on important information between input and output sequences.
Word level embedding such as Word2Vec, GloVe, and FastText
are employed as input to the model. Incorporating the base
architecture, a comparative analysis is applied where baseline
models are compared with and without the use of attention
as well as different types of input embedding for each experi-
ment. Bilingual Evaluation Understudy (BLEU) was employed to
evaluate the model’s performance. Results revealed that while
biLSTM performs better with Glove, biGRU operates better
with FastText. Thus, the finding significantly indicated that the
attention-based, bi-directional RNNs (LSTM or GRU) model
significantly outperformed baseline approaches in their BLEU
score as a promising use in future works.

Keywords—Sequence-to-sequence; encoder-decoder; service
chatbot; attention-based encoder-decoder; Recurrent Neural Net-
work (RNN); Long Short-Term Memory (LSTM); Gated Recurrent
Unit (GRU); word embedding

I. INTRODUCTION

Providing excellent customer service while engaging with
their clients has become more pivotal than ever in today’s
digitally connected era. Companies engage with customers to
assist them with pre-post sale items regularly upgraded due to
technological advancements or the communication revolution.
Over the years, face-to-face physical meetings and phone calls
have been the two most dominant communication methods.
Since the rise of the internet, various ways have evolved,
from email to social media, installing the mobile application
to fill out a form on a website, and eventually waiting for a
follow-up. Recently, the increasing use of real-time messaging
such as Twitter, Facebook Messenger, WhatsApp, Telegram,

Slack, etc., has led to a fundamental transition in how people
would prefer to connect with businesses. While most of
these communication channels have common characteristics,
including online chat, which initially relies only on humans
to conduct mutual communication, the baton now is passed to
virtual agents or assistants called chatbots. Chatbots, the trendy
platform led by virtual assistants, function as customer service
representatives who negotiate conversations with clients to
improve the user experience and services.

Chatbots are the subsequent major advancement in con-
versational services, which allow some business companies
to communicate through messaging systems, like Twitter and
Facebook Messenger, based on artificial intelligence and ma-
chine learning. Chatbots can be defined as computer programs
living in messenger applications and providing specific ser-
vices via emulating an interaction with a human through text
messaging or a virtual voice [1] [2]. Owing to the overwhelm-
ing prevalence of chatbots as messaging is the most commonly
used customer assistance medium; therefore, there is a need
for the company to invest in a chatbot to support serving
their customers’ needs as applying in the context of service
chatbots. Consequently, companies can strengthen employees’
productivity to serve more customers with other services.

Chatbots’ primary purpose is to facilitate the conversation
between machines and humans in natural language conversa-
tion; as in the human viewpoint, these interactions should re-
semble humans as closely as feasible. Consequently, achieving
this has become a fundamental task, with numerous researchers
seeking the optimal way for having a chatbot to behave like a
human. An effective chatbot should be able to comprehend the
user’s message, retrieve appropriate information according to
the given statement and respond accordingly so that the user
perceives the conversation as human-like.

The existing chatbots work just on pattern matching inputs
and then finding a scripted answer corresponding to the in-
formation presented. The downside to this technique is that
it cannot lead to a completely satisfying conversation due
to the limitation of discourse within a specific domain with
a clear goal. To handle the user’s input utterances, Eliza,
PARRY, and ALICE, to name a few were among the first
chatbots to employ rudimentary parsing, pattern matching, or
keyword retrieval approaches. These techniques require hand-
written rules to generate responses. Due to the domain-specific

www.ijacsa.thesai.org 742 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

nature of these practices, they were effective at preserving
context. However, as the knowledge space expands and users’
expectations upsurge, for instance, when engaging in chitchat
as in [3], it then becomes difficult to predict users’ intentions
and considered as not cost-effective, as all the possible patterns
must be built manually with a great deal of effort to have a
large number of patterns for generating responses.

As artificial intelligence (AI), machine learning, and natural
language processing (NLP) techniques advance, researchers
and practitioners seek to use data-driven methods incorporating
capabilities of deep learning techniques such as RNN, LSTM,
and Sequence-to-Sequence (Seq2Seq) model in constructing
chatbots automatically and minimizing hand-written rules chat-
bots techniques. Minimizing the hand-written rules requires the
chatbots to be designed based on modular form. This modular
form consists of several components: a natural language un-
derstanding (NLU) component that turns user text or speech
input into semantic representation, an internal state update
component that updates the conversation memory (dialogue
state tracker), and dialogue policy are used to decide what
the following system action will be (dialogue policy), and a
natural language generation (NLG) component for producing
a response to the user. Training each modular system compo-
nent typically necessitates a considerable quantity of tagged
dialogue data. In contrast to its end-to-end counterparts, the
system is more interpretable and stable due to its modular
design.

On the other hand, researchers and practitioners recently
tried to implement the end-to-end approach utilizing the
seq2seq learning task model based on the neural machine
translation problem. This attempt is due to the fact that the end-
to-end process needs less annotation, giving it an additional
viable choice for commercial use cases [4]. In addition, the
performance of each component in a modular system is not
representative of the entire system because each element is
optimized separately [5]. Nevertheless, its end-to-end design
makes it uncontrollable [5].

Furthermore, the evolution of machine learning, AI and
NLP techniques has encouraged the academics and develop-
ers to create chatbots that employ various design strategies.
However, despite these advancements in design, chatbots still
face several hurdles in comprehending incoming requests, in-
terpreting them, providing acceptable replies, and sustaining a
user dialogue. Therefore, academics and developers continue to
improve chatbot development techniques to meet the demands
of both consumers and service providers. Consequently, it is
essential to find a new method to enhance the accuracy of the
user utterance’s understanding and chatbot’s response in ser-
vice chatbot application. Thus, the fundamental objective and
contribution of the current paper aim to present and implement
a seq2seq-based learning task model based on encoder-decoder
architectural solutions by training generative chatbots on cus-
tomer support Twitter datasets. These generative chatbots are
important to predict automatically an appropriate and auto-
matic response to customers’ queries and extensively evaluate
their effectiveness in a variety of circumstances under various
baseline models, training hyperparameters, and architectures.

The remaining sections of the paper are organized as
follows. In Sections II and III, reviews of related works and
descriptions of the models are provided, respectively. The

methodological approach is presented in Section IV. Section V
contains the experimental study of the research, while Section
VI includes the conclusion and recommendation for future
work.

II. RELATED WORK

Seq2seq learning task models have been implemented in
numerous natural language processing tasks, such as chatbot,
machine translation, question answering, text summarization,
image captioning, sentiment analysis, etc. Initially, seq2seq
learning comprising encoder and decoder(E2D) structure was
introduced in [6] for Neural Machine Translation (NMT). With
the support of gate mechanisms such as LSTM [7] and GRU
[8], the problem of vanishing or explosion can be controlled,
enabling the model to obtain far longer sentences.

To better capture the dependencies in utterance, bidirec-
tional and reverse order practices are commonly used to design
the seq2seq models [9] [10]. Yet, at the same time, this
approach also has a fixed-length vector (context vector) issue.
This issue arises in the decoding process because the source
sentences will compress the input regardless of the length
vector this neural network needs as a context vector, especially
when the source sentence is long [8]. Indirectly, this process
leads to incorrect responses, as each word in the answer may
have a close relationship with various sections of the words in
the request.

A study was done in [11] and [12] combated the problem
by adding an attention mechanism layer and integrating it
into the decoder by repeatedly reading the representation of
a source sentence, which remains fixed after being generated
by the encoder. Hence, the model is able to search for
relevant parts to predict a targeted word and attain cutting-
edge machine translation performance. Inspired by the great
commission in machine translation, the researchers and devel-
opers attempt to apply this technique to other tasks, including
chatbots. For instance, in [13], the author also used seq2seq
learning by comparing the performance of chatbot-generated
responses between LSTM, GRU, and Convolution Neural Net-
work (CNN). Unlike the above approaches, our work integrates
an additive attention model to align the relevancy of input
and output for improving question-answer. In addition, a study
in [14] also employed attention mechanisms to the encoder-
decoder architecture in enhancing question-answer relevance.

In [15], the authors implemented an attention-based with
encoder-decoder neural architecture with the knowledge graph,
and the corpus joins embedding as input in a task-oriented
based chatbot. In contrast to [16], the authors added informa-
tion regarding the conversation history and external knowledge
collected from the search engine to enhance the seq2seq chat-
bot. In [17], the authors allocated labeled data to hierarchical
categories using the attention-based Seq2Seq model. In the
research, when answer predictions were inconsistent, a slot-
filling method was used to determine which questions needed
to be asked in order to make correct predictions.

All the above-related works focus less on examining the
effects of complementary mechanisms in deep learning, such
as batch size, lstm size or types of embedding in different
seq2seq chatbot architecture. Therefore, this work attempts to

www.ijacsa.thesai.org 743 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

focus more on investigating such effects through experimental
study as presented in Section V.

III. MODEL DESCRIPTION

This section describes and explores our model architec-
ture based on the word representation model, seq2seq RNNs
(LSTM, GRU, biLSTM, biGRU), and an attention mechanism.

A. Word Representation Model

For a computer to comprehend the meaning of the words
and sentences, the text data must be converted to a numerical
format. Embedding (encoding or vectorizing) is the term used
for this concept. Character embedding, word embedding, and
phrase embedding are only a few examples of many other
types of embedding. Among various types of embedding, the
word embedding is most commonly employed [18]. Word
embedding is a way to model language that maps words to
vectors of real numbers. It encodes words or sentences with
several dimensions in vector space. The embedding layer can
be initialized using pre-trained word vectors such as Word2vec,
Glove, or FastText as implemented in this research word.
A detailed description of the word embedding models is
presented in the following subsection:

1) Word2Vec: Word2vec is a predictive embedding tech-
nique that uses the low dimensionality of word vectors to learn
fine word vectors from massive data sets containing billions
of words. There are two main architectures of Word2Vec for
producing a distributed word representation, namely:

• Continuous bag-of-words (CBOW) model
◦ This architecture is based on the language

model of a feed-forward neural network [19].
It seeks to anticipate the current word based
on the surrounding context by minimizing the
loss function

• Skip-Gram model
◦ Unlike the CBOW model, this model is aimed

to predict surrounding words given the current
word.

2) Glove: The Global Vectors for Word Representation
(GloVe) enhances the Word2vec approach proposed in [20]
at Stanford in 2014 for effectively learning word vectors.
Conceptually, the Word2vec approach only considered local
contexts but did not utilize a global context. Previously, the
conventional vector space model representation of words was
built using matrix factorization techniques such as Latent
Semantic Analysis (LSA), which gave a better result than
global text statistics. This model is also called a count-based
model. Count-based models learn their vectors by reducing
the co-occurrence counts matrix’s dimensionality. However,
this technique does not give a promising result as a learned
method or predictive model such as Word2Vec captures the
meaning and performs an arithmetic operation that can pose
semantic or syntactic relationship of words, for example,
king−man+woman→ queen. Thus, by merging the global
matrix factorization and local context window approaches with
the help of a bilinear regression model, GloVe indirectly
benefits from both techniques.

3) FastText: FastText, made available by Facebook, Inc, is
one of the contributions to prediction-based word embedding
models. The usually cited work for this model is from [21] and
[22]. The motivation behind the FastText model is because of
the shortcoming of word embedding models that disregard the
word’s morphology and learn a distinct vector for each word.

The improvement is made based on the Skip-Gram model
introduced in [23], wherein each word is represented as a bag
of character n-grams. Each word is mapped to a set of n-
grams, and the skip-gram model is modified to regard each
word vector as the sum of its n-grams, which is based on
the assumption that similar groups of letters express identical
meanings.

Since word vectors are composed of known n-grams, hence
can also be computed on unknown words. Consequently, even
a word not in the vocabulary is assigned a vector based on
its subword units. This unknown term is even more essential
for inflected languages, as some inflected forms of words are
uncommon and may not even be present in the training set.
Training the FastText embedding is faster than the majority of
other options due to their simplicity and efficient implementa-
tion.

B. Sequence-to-Sequence (seq2seq) Learning Task Model

Seq2seq learning task was initially proposed in machine
translation for training models to map the sequence of in-
put between one domain (e.g., German sentences) to output
sequences in a different domain (e.g., the same sentence
translated to English). Due to its promising result, many
researchers investigated and worked by adopting this technique
in various tasks such as image captioning, text summarization,
and chatbot (question and answering task). The bot generates
a natural language response as an output sequence given a
natural language question as an input sequence.

The most typical architecture for constructing a seq2seq
learning problem is using the encoder-decoder architecture.
This architecture in the seq2seq learning task manifested
in three parts: encoder, context vector (final hidden/internal
state vector), and decoder, as the name implies. The encoder
attempts to convey the meaning of the input sentence by
encoding it into a fixed-size hidden representation. This hid-
den representation is converted to output by a decoder. The
fundamental structure of this model is based on two RNNs
(or can be used as another type of RNNs such as LSTM/GRU
for better performance) [6]. Encoding the input into a vector
representation employs one RNN as the encoder that captures
the context and essential information of the input sequence. On
the other hand, the other RNN (as a decoder) will then take
this vector as input and use it to generate the output sequence.
The basic architecture of the seq2seq model in training mode
is illustrated in Fig. 1.

Based on this figure, let x = {x1, x2, x3, ..., .xn} represent
the words contained in each input statement or utterance
(where n being the statement’s length) is mapped in the form
of embedded representation (ϕxn

) and passed to a variant
type of RNN models such as LSTM or GRU. The embedded
representation can be either pre-trained embedding such as
Word2Vec, Glove, and FastText or jointly trained during model
training to convert words into dense vectors, as mentioned

www.ijacsa.thesai.org 744 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Fig. 1. Basic Encoder-Decoder Architecture While Training.

in the previous section. RNNs also take the first encoder
hidden state as the input. RNNs take all these embeddings
and sequentially give hidden representation and output vectors
at each time step. Hence, it takes a word and a hidden state
of the previous state as an input and provides one output and
updated hidden state until it reaches the end of the input mark
with a unique token known as <EOS>, the outputs at each
time step of the encoder part are all discarded since outputs
will be summarized by the context vector (C). This context
vector contains information about all of the input items that
enable the decoder to predict accurately. Equations (1) and (2)
illustrate the computation of hidden states and context vectors,
respectively;

hm = f1(ϕ
xn

, hm−1) (1)

c = f2({h0, h1, ...hM}) (2)

where h denotes as the hidden state, c denotes the context
vector constructed from the encoder hidden states and f1, f2
are nonlinear functions such as LSTM / GRU in this case.

The context vector also acts as the decoder’s initial hidden
state to pass information from the encoder to the decoder.
Before passing to the decoder, this work considers uni-
directional or bi-directional encoders, wherein bidirectional
encoder; there will be one forward RNN and one reverse
RNN. The processing of an input sequence occurs in both
directions (forward and backward). The forward and backward
hidden states are then combined before being transmitted to the
decoder.

In the decoding phase, at the first timestep, the <SOS>
token is given as input to RNNs along with the context vector.
<SOS> marks the beginning of decoding, and it generates
the first word of the chatbot response by looking at the context
vector. This decoding first generated output of RNNs probably
“Not”. For the next timestep, the “Not” will be given as the
input along with the previous timestep hidden state. This step
will provide an output as “so”. This output generation will
continue until it reaches a unique token known as <EOS>
is encountered. Considering the context vector as c, and all

previously predicted output as {y1, y2, y3, ...yt−1}, the decoder
has been trained to anticipate the following token yt. This
prediction is the maximum likelihood estimation of yt. The
prediction is given y, the output vector, and c, the context
vector. Thus, the p(y) is computed as in Equation (3):

p(y) =

T∏
t=1

p(yt|y1, y2, y3, ...yt−1, xt) (3)

and produces a token with a conditional probability for
each timestep t through the following Equation (4):

p(yt|y1, y2, y3, ...yt−1, xt) = g(yt−1, st, ct) (4)

where g(.) is a softmax function and st is the decoder’s
hidden state at the timestep t which can be computed as in the
Equation (5) as follows:

st = f(st−1, yt−1, ct) (5)

1) Long Short Term Memory (LSTM): LSTM was devel-
oped as a short-term memory solution and initially proposed in
[7]. LSTMs are a type of RNN that uses specific hidden states
to manage long-term dependencies better while memorizing
inputs over time [7]. The difference from standard RNN
is how the hidden state is calculated within LSTM cells.
LSTMs architecture has an internal cell state that acts as a
transport highway that can carry and filter the information in
a sequence by adding or removing it. The adding and removing
information state is controlled by a structure known as gates.

Gates have sigmoid activations identical to the tanh acti-
vation, whereas rather than squishing values from -1 to 1, it
squishes values from 0 to 1. This value is significant when
updating or removing the data as every value multiplied by
0 is 0, allowing the values to be vanished or be ‘forgotten’.
On the other hand, every value multiplied by one will result
in the same value, remaining unchanged or ‘preserved’. Sub-
sequently, the network learns which information is irrelevant
and may be removed and which information should be retained
with this activation function. Three more gates are generally
added in contrast to standard RNNs cells, namely, forget, input,
and output gates, as shown in Fig. 2.

Fig. 2. The Long Short-Term Memory Introduced in [7].

2) Gated Recurrent Units (GRU): GRUs is a more recent
generation of RNN cells compared to an LSTM introduced in
[8]. The author has introduced two gates: the update gate and
the reset gate, as depicted in Fig. 3. The update gate combines
the forget and input gates in GRUs and operates similarly
to LSTMs, controlling what information to discard and add.
On the other hand, the reset gate is a different gate used to

www.ijacsa.thesai.org 745 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

specify the amount of prior information that can be discarded.
In GRUs, it also merges the hidden state and cell state, and
thus, the output gate is no longer needed. Therefore, this model
is simpler while gaining more popularity than regular LSTM,
with fewer parameters and faster training than LSTM [8].

Fig. 3. Types of Gates in GRU Cell Introduced in [8].

3) Bi-Directional RNNs Cell: The previous section dis-
cusses the implementation of uni-directional RNNs, which
means it runs in a single direction. This research attempts
to employ bidirectional RNNs (both for LSTM and GRU) to
improve model performance by incorporating past and future
context information. This bidirectional means each layer has
two RNNs: one running in the forward direction of the se-
quence (from left to right) and another running in the backward
direction (from right to left) to capture dependencies in two
contexts [24]. The resulting forward and backward outputs are
concatenated before being passed on to the next layer, as shown
in Fig. 4. The encoded representation of each word now has
the information of the reverse and the future words of the
particular word to predict output better.

Fig. 4. The Bi-Long Short-Term Memory (biLSTM) Process Captures
Sequential Features. The Last Hidden Layer of the LSTM is Extracted as

Features Representing the Text.

4) Neural Attention Mechanism: The previous section de-
scribes the seq2seq model based on RNNs. These RNN
structures utilize the temporal dynamics of the input data to
generate sequential output data. However, the output created at
a particular timestep and the input sequence used to obtain that
result may or may not be relevant remains uncertain. Moreover,
in the seq2seq model using RNNs, all the intermediate states of
the encoder output will be discarded, and only its final states
(context vector) will be used to initialize the decoder. This
technique incorporates well with short or medium sequences;
however, as the lengths of the sequence grow, a single vector
becomes congested and more challenging to analyze long
sequences into a single vector.

Meanwhile, RNNs sequentially process tokens while pre-
serving a state vector representing the data observed after

each token. The information from the inputs can be arbitrarily
propagated in the sequence through the continuous encoding of
the data. Due to the vanishing gradient problem, the model’s
state towards the end of a long sentence typically does not
have information about earlier tokens. As a result, the process
does not perform as expected. Long sequences benefit from
LSTM, reducing disappearing and exploding gradient effects,
albeit not entirely eliminated. Furthermore, RNN architectures
may be unable to handle increasingly complex feature repre-
sentations in order to produce reliable outputs.

The aforementioned issue was resolved with the introduc-
tion of attention mechanisms introduced in [11] and [12].
Attention processes enable a model to directly examine the
condition of an earlier point in the sentence and derive con-
clusions from it. The attention layer has access to all previous
states. It can weigh them according to some learned measure
of relevance to the present token, allowing it to provide more
precise information on distant relevant tokens, as illustrated in
Fig. 5. It decides which source elements are the most important
at each decoder step. The encoder does not need to condense
the whole source into a single vector in this case; instead, it
provides token representations for all of the source data (for
example, all RNN states instead of the last one). In addition,
the key concept behind attention is not to throw away these
intermediate encoder states but to make use of all the states to
create the context vectors that the decoder uses to produce the
output sequence through attention weight. The attention weight
is computed to decide which part of the input was relevant and
subsequently determine the output.

Fig. 5. Attention-Based E2D.

In the attention process, the relevance of each word in the
input sequence will be determined for each output cell. For
each yt in the output y, it is influenced by the context vector ct
(source context for decoder step t) are used in an information
filter for all hidden states h = {h1, h2, h3, ..., hmx} of the
encoder, which can be computed as in the following Equations
(6), (7) and (8):

ct =

mx∑
i=1

αtihi (6)

Where αti is calculated by

αti =
exp(eti)∑mx

j=i exp(etj)
(7)

www.ijacsa.thesai.org 746 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Where eti = align(st−1, hi) refers to the additive score
function that considers

eti = V T
a tanh(Wast−1 + Uahi) (8)

Where αti indicates the attention weights that the model
has learned, Wa ,Ua and Va, implies another weight parameter
for the model to learn. The align is an alignment model for
evaluating the relationship between the input of position i and
the output of the position t.

IV. METHODOLOGICAL APPROACH

This section gives an overview of the current research
methodological approach to previously discussed implemented
models. Fig. 6 depicts the methodology steps involved in this
work as follows:

• Dataset Preparation – The dataset is collected using
publicly available datasets from free online websites
which we examine the data and explore the dataset
using some fundamental Exploratory Data Analysis
(EDA).

• Data Prepossessing – Load the text, perform pre-
processing or data cleaning, and do a train-test split.
In this phase, we build questions-answer pair. Append
<START> and <END> to all the answers. Create
a Tokenizer and load the whole vocabulary into it
with the help of embedding techniques for feature
extraction.

• Modeling – Define the model. We implement an
encoder-decoder architecture-based seq2seq learning
task model with and without attention to a different
variant of RNN cells

• Training and tuning – The model will be trained and
tuned with the help of various hyperparameter opti-
mization and regularization techniques to overcome
overfitting during training. We aim to minimize the
objective function during training by reducing the loss.

• Results – The trained model will be evaluated using a
valid/test set through BLUE score and validation loss
during training based on predicting answers.

Fig. 6. Illustrates the Methodology Steps.

V. EXPERIMENTAL STUDY

This section presents different experiments conducted to
study the functionality of various models employed (as men-
tioned in the previous section) and thoroughly examine their
performance. The experimental results are compared based
on the effect of several variables such as the encoder types,
adding an attention layer, variant of embedding, the number of
hidden sizes, and batch sizes. The dataset used in the experi-
ment, experiment settings, evaluation methods, and qualitative
analysis of experimental results are described in the following
subsections. before

A. Datasets

The experiment trains and evaluates the models using
the “Customer Support on a Twitter (CST)” dataset from
Kaggle1. The CST dataset was collected in 2017 with a huge,
innovative corpus of tweets and replies for the advancement
of NLU and conversational models, along with research into
modern customer service techniques and impact. It consists
of 2,811,774 tweets and replies, with 1,537,843 (54.69%)
tweets generated from consumers and 1,273,931 (45.31%)
generated from customer supports agent. Among these 1.5
million customer tweets, about 1.27 million received replies
from customer support agents, and 0.23 million otherwise.
One of the main reasons to use this dataset is that it con-
tains real-life conversations between customers and customer
support agents with natural responses from support agents
for accurately explaining problems and solutions. Moreover,
it is practical since it permits a relatively small message size
restriction for recurrent networks.

While conducting an exploratory analysis of the dataset, it
can be observed that there are 108 customer support brands
represented in the dataset, and 597075 consumers’ requests are
answered. The top 20 customer support replies related to the
company brand are depicted in Fig. 7.

Fig. 7. The Top 20 Customer Service Replies by Brand.

In addition to this observation, it was identified that
Amazon’s customer service responded to a large number of
inquiries, followed by Apple and Uber. There are a lot of
companies in the dataset that have minimal responses or had
no responses at all.

As shown in Table I, the information in the dataset must
be restructured to create a conversational dataset between
consumer and customer support agents suited for the current

1https://www.kaggle.com/datasets/thoughtvector/customer-support-on-
twitter

www.ijacsa.thesai.org 747 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

TABLE I. DATASET FEATURES DESCRIPTION

Features Description Datatypes
tweet id The unique ID for this tweet Int64
author id The unique ID for this tweet author

(anonymized for non-company users).
Object

Inbound Whether or not the tweet was sent (in-
bound) to a company on Twitter. This
feature is useful when re-organizing
data for training conversational mod-
els.

Bool

created at Date and time when the tweet was
sent.

Object

Text The text content of the tweet. Object
response tweet id IDs of tweets that are responses to this

tweet.
Object

in response to tweet id IDs of the tweet is in response to, if
any.

Float64

study. In the restructuring process, the dataset features must
be filtered by selecting only inbound tweets that are not
retweeted. Then, apply the “in response to tweet id” and
“tweet id” features to associate each tweet with the rele-
vant reply based on the inbound feature, excluding instances
where response tweets are not from a company. As the data
is still in unstructured text data, additional preprocessing
is required to eliminate unnecessary features such as emoji
and emoticons, lower casting, non-English tweets, etc. The
new dataset has 794,299 rows and six columns consisting
of ‘author id x’, ‘created at x’, ‘text x, author id y’, ‘cre-
ated at y’, and ‘text y’, where x and y are represented as a
question from consumers and answered by customer service
agent respectively.

Training and validation are conducted independently on
75% and 35% of the entire dataset. The model is termed
accurate if the predicted response matches the ground-truth
answer. This current research incorporates the Bilingual Eval-
uation Understudy (BLEU) score function to evaluate the
performance models.

B. Experimental Settings

The study compares the attention-based approach to related
baseline models that do not employ attention mechanisms
to evaluate how well the models work. These models are
implemented in a python-dependent package on a deep neural
network framework called TensorFlow [25] and Keras2. We
trained models on a GPU with 3082 CUDA cores and a VRAM
of 12GB. The model is trained for 500 epochs (a high value is
set since the study employs the early stopping technique) and
tested on a batch size of 64, 128, 256, and 304 (the number can
be divisible by 8). While the hidden size of LSTM and GRU
is tested on 100, 200, and 300 units. For the optimization, the
study uses the Adam optimizer with a learning rate of 0.003
[26]. A gradient clipping of 50.0 is implemented to combat the
‘exploding gradient’ problem, preventing the gradients from
expanding exponentially and causing the cost function to either
overflow (with undefined values) or overshoot cliffs. All the
weights and biases are initialized using Xavier and glorot
uniform distribution [27].

This study uses 300-dimensional pre-trained word embed-

2www.keras.io.

dings for Fasttext3, GloVe4, and Word2Vec5. An early stopping
technique with patience four is adopted to combat overfitting.
Table II shows the hyperparameters and their corresponding
ranges for training the models. It also presented the best-
performing hyperparameter for each of the models.

TABLE II. HYPERPARAMETER SETTING

Parameter Range Final Setting
Max input Length 39 39
Word embedding FastText/Glove/Word2vec FastText/Glove
Embedding size 300 300
Encoder types Unidirectional/Bidirectional Bidirectional
Learning Rate 0.003 0.003

C. Performance Evaluation Metrics

Following [13] and [15], this current study adopts BLEU
as suggested in [28] best to evaluate the performance of
our model. According to the definition provided in [28],
BLEU evaluates the co-occurrences of n-grams in the reference
human translation and recommended answers. It computes
the n-gram precision for the entire dataset, compounded by
a brevity penalty to penalize brief translations. The more
closely a machine translation resembles a professional human
translation, the better.

The BLEU score compares the chatbot-generated output
text (hypothesis) to a human-generated response text (refer-
ence). It specifies how many n-grams from the output text are
included in the reference. The BLUE score can take on any
value within the interval [0, 1] and is technically defined as
Equation (9).

BLEU = BP ×

[
N∏

n=1

precisionn

]1/N

(9)

Where N is the maximum n-gram number n = [1, N ] (N=4
in our evaluations). BP (brevity penalty) and precisionn are
defined with Equation (10) and (11), respectively.

BP = min(1, exp(1− reflenght
outlenght

)) (10)

Where reflenght is reference length, and outlenght is the
chatbot output length

precisionn =

∑
nmin(m

n
out,m

n
ref )∑

n′ mn′

out

(11)

Where mn
out is the number of n-grams matching the

reference in the chatbot output, mn
ref denote as the number

of n-grams in the reference, and
∑

n′ mn
′

out implies the total
number of n-grams in the output of the chatbot.

The BLEU scores were computed using the blue score
module from the translated package on the nltk5 platform,
which was built in Python.

3http:fasttext
4http://nlp.stanford.edu/projects/glove/
5https://code.google.com/archive/p/word2vec/
5Natural Language Toolkit: Available online: https://www.nltk.org/

www.ijacsa.thesai.org 748 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

D. Results and Comparison

This section elaborates on the experimental results from our
model on the mentioned dataset. The experiment assessed the
performance of the different models based on encoder types
and various types of embedding with varying parameters by
comparing models to baseline RNNs such as LSTM and GRU.
After multiple experiments, the study concluded the result
of the promising hyperparameter and settings as presented in
Table II. One of the models uses a pre-trained 300-dimensional
word embedding as a hidden size tested on varying numbers of
100, 200 300, where the hidden size of 300 gives a promising
result of a pre-trained 300-dimensional word embedding.

The experimental results on all the models indicated that
the bidirectional encoder type attention-based models achieved
promising performance and outperformed the neural networks
that do not use an attention mechanism as a baseline. The
different hyperparameters are used to test each model, and
the promising performing hyperparameters for each model are
shown in Table II. The impact of some of these hyperpa-
rameters will be highlighted, and an example of generated
response based on several models is presented in the following
subsections.

1) Effect of Encoder Type in E2D Architecture: This sec-
tion evaluates the performance of the two distinct encoder
types used in these models. In comparison to a uni-directional
encoder, the model performance with bi-directional encoder
types yields promising results, as shown in Fig. 8. This situ-
ation might happen because the bi-directional encoder works
by preserving the information from both sentence directions,
allowing the network to predict the next word better as it can
understand the sentence context more. Thus, the bi-directional
encoder is promising to be used for further analysis in this
study.

Fig. 8. E2D Network of RNNs with Different Encoder Types and
Embeddings.

2) Effect of Attention Layer in E2D Architectures: This sec-
tion uses hyperparameters from Table II to evaluate the RNNs
E2D model with and without attention. As depicted in Fig. 9,
the model’s performance with attention vastly outperforms the
RNNs E2D model without attention on this dataset. Therefore,
the attention-based models improve the predictive performance
of the Seq2Seq chatbot models. Furthermore, in comparing the
performance of the RNNs types, the LSTM gives promising
results in almost all models, as shown in Fig. 8. However,
the GRU model can be an option if computational time is

considered since GRU trains faster than LSTM, and the result
for this dataset is not much different than LSTM.

Fig. 9. Encoder-Decoder Network Model with and without Attention.

Fig. 10. Different Embedding Types in Encoder-Decoder Architecture.

3) Effect of Different Embedding Types in Encoder-
Decoder Architectures: The performance of the RNNs mod-
els with varying types of embedding (FastText, Glove, and
Word2Vec) is analyzed by finding the BLEU score among
different variants of the models. As shown in Fig. 10, FastText
and Glove embedding types give better performance for this
type of chatbot dataset. Moreover, these embedding types
perform better when integrating with a bi-directional encoder
with LSTM (for Glove embedding) or GRU (for FastText).

4) Effect of Hidden Sizes in E2D Architectures: The per-
formance of RNNs encoder-decoder models with different
hidden sizes/units is evaluated in this section. The hidden
size parameter is tested on 100, 200, and 300 units with a
fixed embedding size of 300, as in Table II. Most models
produce better results for 200 or 300 units, where 42% of each
out of total models occur, as presented in Table III. Since a
fixed embedding size of 300 is used, the good hidden size
is preferable to be an equal size with the embedding size as
indicated in this experiment result for this dataset.

5) Effect of Batch Sizes in E2D Architectures: The dif-
ferent batch sizes evidenced in this experiment were B =
[64, 128, 256, 304] with hyperparameter setting as in Table II.
As illustrated in Fig. 10, the smaller batch size of 64 produces
better results amongst models. Furthermore, the batch size of
64 with 300 hidden sizes produced more promising results
in this experiment dataset, indicating best used for further
analysis in this research. The smaller batch sizes correlate to
stability during the training and are better for accuracy. On the
other hand, the larger batch size is better for computational
speed. Nevertheless, batch size should be adequate so that the
data would fit into memory. Due to the limitation of memory

www.ijacsa.thesai.org 749 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

space, the experiment can be done with a maximum batch size
of 304.

VI. QUALITATIVE ANALYSIS

To qualitatively comprehend the model’s performance
gained with a different experiment configuration, as shown
in Table II, the study prepares the outputs responses for a
specific customer inquiry. The customer’s query may be based
on an emotive or informative question. For the informative type
customer query instances, “When is delta is last scheduled
flight?”, predicted responses are given in Table III. On the
other hand, Table IV shows an example of an emotional types
question.

As observed, most RNNs models’ response prediction can
provide general and reasonable answers for customer queries.
However, both types of questions can predict better responses
by implementing bi-directional RNNs based on the actual
or target response. Based on the emotional type query, the
bidirectional with attention models can predict the specific
word, the “account”, rather than “details” (a general response
but acceptable) as referred to in the actual reaction. Moreover,
the models are more emotional in responding to customer
queries than humans for both types of questions. Conversely,
the informative queries and asking for particular information
requests are difficult to formulate, and the resulting responses
are less pertinent to the question. However, by looking at the
answers of various models, it was discovered that bidirectional
LSTM with attention generates better logical statements, and
the response appears to be indistinguishable from the actual
one.

TABLE III. EXAMPLE OF GENERATED RESPONSE FOR INFORMATIVE
TYPE QUESTION (64 300 FASTTEXT)

Customer Questions When is delta is last scheduled flight?
Seq2seq E2D LSTM hi there i am sorry to hear that you are having a

problem with the app please do your confirmation
number i will be happy to help tab

Seq2seq E2D GRU i am sorry to hear that you are having trouble with
your flight please do your confirmation number so
i can take a look at your flight tow

Seq2seq E2D LSTM Unidi-
rectional + Attention

hi there we are not showing any announcements on
this flight if you have any other questions please
let us know by

Seq2seq E2D GRU Unidi-
rectional + Attention

i am sorry for the delay in your flight i am showing
that you are not able to get a gate to clear your
flight tow

Seq2seq E2D LSTM bidirec-
tional + Attention

i am sorry to hear that you are not able to get
through to us please do me your confirmation
number and i will gladly look into it for you ¡end¿

Seq2seq E2D GRU bidirec-
tional + Attention

hi there we are not sure what you mean we
are here to help please do us your confirmation
number so we can follow up ¡end¿

Actual certainly as soon as we get a response from the
appropriate team that has the info we will be
sure to tweet you

VII. CONCLUSION AND FUTURE WORK

As a conclusion, we attempt to construct a generative
service chatbot to automatically respond to customers’ queries
for assisting companies in having a 24-hour support system.
To construct this system, seq2seq learning task models based
on encoder-decoder architectures (with and without attention
as the baseline) are deployed. This study further investigates
these models through different RNNs structures (LSTM and

TABLE IV. EXAMPLE OF GENERATED RESPONSE FOR EMOTIONAL TYPE
QUESTION (64 300 FASTTEXT)

Customer Questions you have lied gave me the run around have the
worst customer service ever so disappointed i
cant work without internet

Seq2seq E2D LSTM i am sorry to hear that you are having trouble with
your internet service i would be happy to help
please do me the details of your issue

Seq2seq E2D GRU i am sorry to hear that you are having trouble with
your internet service i would be happy to help
please do me the details of your issue

Seq2seq E2D LSTM Unidi-
rectional + Attention

i apologize for the issues you are having with the
services have your concerns been addressed if not
i will be

Seq2seq E2D GRU Unidi-
rectional + Attention

i am sorry for the poor experience can you please
do pm the full service address and name on the
account as we

Seq2seq E2D LSTM bidirec-
tional + Attention

i am sorry to hear about the poor experience can
you please do the full service address and name
on the account as we assist

Seq2seq E2D GRU bidirec-
tional + Attention

i am sorry to hear that you are having issues
with your internet services please do your account
details to help

Actual it is unfortunate you are having trouble to
better assist please do me the account number
thank you ami

GRU), encoder types (uni-directional and bidirectional), and
different embedding types (FastText, Glove, and Word2Vec)
and tested with varying parameters of training.

Based on the experimental results, the bi-directional RNNs
(LSTM and GRU) attention mechanisms produced promising
results for further work in a chatbot. Moreover, there are not
many effects typed of embedding as well as batch size and
hidden sizes for this dataset since the result is not significantly
different. However, the stability of the result is obtained from
batch size 64, with 300 hidden sizes (as the same value with
embedding size) combining with FastText or Glove can be
opted for further work. Additionally, based on the findings for
this dataset, it is proven that while biLSTM performs better
with Glove, biGRU operates better with FastText. Overall,
adding an attention layer improved the BLEU score compared
to the baseline models.

The significant of findings from this research work is
that the proposed attention mechanism has demonstrated its
ability to meet the aforementioned requirements. Therefore,
this proposed work provides an extension of the existing
technique in developing chatbots. The attempt is made through
end-to-end approaches by using seq2seq learning task model
adoption from neural machine translation. A potential direction
for future research can be explored and examine the variant
of attention mechanism based on different scoring functions in
comparing to the current experimental results and findings. In
addition, the experiment also can be investigated in other deep
learning architectures such as generative adversarial neural
network and training parameters, including varying learning
rates, dropout rates, optimizer, and activation functions.

ACKNOWLEDGMENTS

This research is partly funded by Ministry of Higher Educa-
tion Malaysia under grant R.J130000.7851.4L942. The authors
would also like to thank the Universiti Malaysia Sarawak
(UNIMAS) and Universiti Teknologi Malaysia (UTM) for
providing the resources used in this research work.

www.ijacsa.thesai.org 750 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

REFERENCES

[1] E. Adamopoulou and L. Moussiades, “An overview of chatbot technol-
ogy,” Artificial Intelligence Applications and Innovations, vol. 584, pp.
373 – 383, 2020.

[2] M. F. McTear, “The rise of the conversational interface: A new
kid on the block?” in Future and Emerging Trends in Language
Technology. Machine Learning and Big Data - Second International
Workshop, FETLT 2016, Seville, Spain, November 30 - December
2, 2016, Revised Selected Papers, ser. Lecture Notes in Computer
Science, J. F. Quesada, F. Martı́n-Mateos, and T. López-Soto,
Eds., vol. 10341. Springer, 2016, pp. 38–49. [Online]. Available:
https://doi.org/10.1007/978-3-319-69365-1 3

[3] Z. Yan, N. Duan, J. Bao, P. Chen, M. Zhou, and Z. Li,
“Response selection from unstructured documents for human-computer
conversation systems,” Know.-Based Syst., vol. 142, no. C, p. 149–159,
feb 2018. [Online]. Available: https://doi.org/10.1016/j.knosys.2017.11.
033

[4] Z. Zhang, R. Takanobu, M. Huang, and X. Zhu, “Recent advances and
challenges in task-oriented dialog system,” CoRR, vol. abs/2003.07490,
2020. [Online]. Available: https://arxiv.org/abs/2003.07490

[5] J. Gao, M. Galley, and L. Li, “Neural approaches to conversational
ai,” 2018, cite arxiv:1809.08267Comment: Foundations and Trends
in Information Retrieval (95 pages). [Online]. Available: http:
//arxiv.org/abs/1809.08267

[6] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence
to sequence learning with neural networks,” in Ad-
vances in neural information processing systems, 2014,
pp. 3104–3112. [Online]. Available: https://papers.nips.cc/paper/
5346-sequence-to-sequence-learning-with-neural-networks.pdf

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations
using RNN encoder-decoder for statistical machine translation,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL,
A. Moschitti, B. Pang, and W. Daelemans, Eds. ACL, 2014, pp.
1724–1734. [Online]. Available: https://doi.org/10.3115/v1/d14-1179

[9] I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, “Build-
ing end-to-end dialogue systems using generative hierarchical neural
network models,” in Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, p. 3776–3783.

[10] A. Xu, Z. Liu, Y. Guo, V. Sinha, and R. Akkiraju, “A new
chatbot for customer service on social media,” in Proceedings
of the 2017 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 3506–3510. [Online]. Available:
https://doi.org/10.1145/3025453.3025496

[11] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[12] T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” in Proceedings of
the 2015 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015,
L. Màrquez, C. Callison-Burch, J. Su, D. Pighin, and Y. Marton, Eds.
The Association for Computational Linguistics, 2015, pp. 1412–1421.
[Online]. Available: https://doi.org/10.18653/v1/d15-1166

[13] M. Aleedy, H. Shaiba, and M. Bezbradica, “Generating and analyzing
chatbot responses using natural language processing,” International
Journal of Advanced Computer Science and Applications, 2019.

[14] C. Xing, W. Wu, Y. Wu, J. Liu, Y. Huang, M. Zhou, and
W.-Y. Ma, “Topic aware neural response generation.” in AAAI,
S. P. Singh and S. Markovitch, Eds. AAAI Press, 2017, pp.
3351–3357. [Online]. Available: http://dblp.uni-trier.de/db/conf/aaai/
aaai2017.html{#}XingWWLHZM17

[15] F. Kassawat, D. Chaudhuri, and J. Lehmann, “Incorporating joint
embeddings into goal-oriented dialogues with multi-task learning,”
in European Semantic Web Conference. Springer, 2019, pp. 225–
239. [Online]. Available: https://jens-lehmann.org/files/2019/eswc
jointembedding dialoguesystems.pdf

[16] Z. Wang, Z. Wang, Y. Long, J. Wang, Z. Xu, and B. Wang, “Enhancing
generative conversational service agents with dialog history and external
knowledge,” Comput. Speech Lang., vol. 54, pp. 71–85, 2019. [Online].
Available: https://doi.org/10.1016/j.csl.2018.09.003

[17] M. Patidar, P. Agarwal, L. Vig, and G. Shroff, “Automatic
conversational helpdesk solution using seq2seq and slot-filling
models,” in Proceedings of the 27th ACM International Conference
on Information and Knowledge Management, CIKM 2018, Torino,
Italy, October 22-26, 2018, A. Cuzzocrea, J. Allan, N. W. Paton,
D. Srivastava, R. Agrawal, A. Z. Broder, M. J. Zaki, K. S. Candan,
A. Labrinidis, A. Schuster, and H. Wang, Eds. ACM, 2018, pp. 1967–
1975. [Online]. Available: https://doi.org/10.1145/3269206.3272029

[18] S. Mohamad Suhaili, N. Salim, and M. N. Jambli, “Service chatbots:
A systematic review,” Expert Syst. Appl., vol. 184, no. C, dec 2021.
[Online]. Available: https://doi.org/10.1016/j.eswa.2021.115461

[19] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” J. Mach. Learn. Res., vol. 3, pp.
1137–1155, Mar. 2003. [Online]. Available: http://dl.acm.org/citation.
cfm?id=944919.944966

[20] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.” in EMNLP, vol. 14, 2014, pp. 1532–1543.

[21] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov,
“Enriching word vectors with subword information,” 2016, cite
arxiv:1607.04606Comment: Accepted to TACL. The two first authors
contributed equally. [Online]. Available: http://arxiv.org/abs/1607.04606

[22] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and
T. Mikolov, “Fasttext.zip: Compressing text classification models.”
CoRR, vol. abs/1612.03651, 2016. [Online]. Available: http://dblp.
uni-trier.de/db/journals/corr/corr1612.html{#}JoulinGBDJM16

[23] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[24] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu, “Text classification
improved by integrating bidirectional lstm with two-dimensional
max pooling.” in COLING, N. Calzolari, Y. Matsumoto, and
R. Prasad, Eds. ACL, 2016, pp. 3485–3495. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/coling/coling2016.html{#}ZhouQZXBX16

[25] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[26] L. Mou and Z. Jin, Tree-Based Convolutional Neural Networks: Prin-
ciples and Applications, 1st ed. Springer Publishing Company,
Incorporated, 2018.

[27] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks.” in AISTATS, ser. JMLR Proceedings,
Y. W. Teh and D. M. Titterington, Eds., vol. 9. JMLR.org, 2010, pp.
249–256. [Online]. Available: http://dblp.uni-trier.de/db/journals/jmlr/
jmlrp9.html{#}GlorotB10

[28] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

www.ijacsa.thesai.org 751 | P a g e

https://doi.org/10.1007/978-3-319-69365-1_3
https://doi.org/10.1016/j.knosys.2017.11.033
https://doi.org/10.1016/j.knosys.2017.11.033
https://arxiv.org/abs/2003.07490
http://arxiv.org/abs/1809.08267
http://arxiv.org/abs/1809.08267
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1145/3025453.3025496
https://doi.org/10.18653/v1/d15-1166
http://dblp.uni-trier.de/db/conf/aaai/aaai2017.html{#}XingWWLHZM17
http://dblp.uni-trier.de/db/conf/aaai/aaai2017.html{#}XingWWLHZM17
https://jens-lehmann.org/files/2019/eswc_jointembedding_dialoguesystems.pdf
https://jens-lehmann.org/files/2019/eswc_jointembedding_dialoguesystems.pdf
https://doi.org/10.1016/j.csl.2018.09.003
https://doi.org/10.1145/3269206.3272029
https://doi.org/10.1016/j.eswa.2021.115461
http://dl.acm.org/citation.cfm?id=944919.944966
http://dl.acm.org/citation.cfm?id=944919.944966
http://arxiv.org/abs/1607.04606
http://dblp.uni-trier.de/db/journals/corr/corr1612.html{#}JoulinGBDJM16
http://dblp.uni-trier.de/db/journals/corr/corr1612.html{#}JoulinGBDJM16
http://dblp.uni-trier.de/db/conf/coling/coling2016.html{#}ZhouQZXBX16
http://dblp.uni-trier.de/db/conf/coling/coling2016.html{#}ZhouQZXBX16
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9.html{#}GlorotB10
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9.html{#}GlorotB10

	Introduction
	Related Work
	Model Description
	Word Representation Model
	Word2Vec
	Glove
	FastText

	Sequence-to-Sequence (seq2seq) Learning Task Model
	Long Short Term Memory (LSTM)
	Gated Recurrent Units (GRU)
	Bi-Directional RNNs Cell
	Neural Attention Mechanism


	Methodological Approach
	Experimental Study
	Datasets
	Experimental Settings
	Performance Evaluation Metrics
	Results and Comparison
	Effect of Encoder Type in E2D Architecture
	Effect of Attention Layer in E2D Architectures
	Effect of Different Embedding Types in Encoder-Decoder Architectures
	Effect of Hidden Sizes in E2D Architectures
	Effect of Batch Sizes in E2D Architectures


	Qualitative Analysis
	Conclusion and Future Work
	References

