
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

A Prototype Implementation of a CUDA-based
Customized Rasterizer

Nakhoon Baek
School of Computer Science and Engineering

Kyungpook National University
Daehak-ro 80, Daegu 41566, Korea

Abstract—In these days, we have high-performance massively
parallel computing devices, as well as high-performance 3D
graphics rendering devices. In this paper, we show a prototype
implementation of a full-software 3D rasterizer system, based on
the CUDA parallel architecture. While most of previous CUDA-
based software rasterizer implementations focused on the triangle
primitives, our system includes more 3D primitives, and extra
2D primitives, to fully support 3D graphics library features.
Currently, our system is at its prototype implementation stage,
and it shows successful results with 3D primitive handling and
also character output features. Our design and implementation
details are presented. More optimizations and fine tunes will be
followed in near future.

Keywords—3D rasterization; CUDA implementation; OpenGL
emulation

I. INTRODUCTION

Web3D applications are designed to fully display and
navigate web sites using 3D graphics features. Fundamentally,
the Web3D applications need 3D rasterization process, either
on the web-browser side, and/or on the web-server side. In
this paper, we present a prototype implementation of 3D
rasterizer, based on massively parallel processing features, as
a framework for 3D web and associated application domains.

Massively parallel computing features are now widely
available in many areas of computer science and engineer-
ing. From the 3D graphics rendering point of view, the 3D
rendering pipelines are naturally developed to use massively
parallel processing features. Additionally, we can also use the
massively parallel computing features, especially with CUDA
(compute unified device architecture) [1] and OpenCL (open
computing language) [2].

Since these massively parallel pipelines, the 3D graphics
pipeline and the high-performance computing pipeline, have
many common characteristics, there have been several works to
integrate these two different pipelines into a single one. More
precisely, they tried to implement the 3D graphics rendering
pipeline, on the existing parallel computing pipeline [3].

In previous works, they focused on the feasibility test, and
most of them provides mainly the triangle rasterization process,
with massively parallel computing libraries. In contrast, we aim
at the full-scale 3D graphics rendering library implementation.
For example, to provide the full features of the OpenGL
(open graphics library) system, we need much more rather
than the triangle rasterizer. At this time, we have a prototype
implementation, which shows the possibility of the CUDA-
based rasterizer, with several 3D graphics primitives and also

extra 2D graphics primitives. It is the distinguished point of
our work, in comparison to the previous works.

We start from presenting the previous works in Section II.
Our motivation and overall design of the 3D rendering system
based on CUDA will be presented in Section III. Implementa-
tion details and results from the prototype implementation will
be followed in Section IV.

II. PREVIOUS WORKS

In 1990’s, the programmable graphics pipeline has been
introduced [4]. Rapidly, the GPU (graphics processing unit)
became a computing device, with the concepts of GPGPU
(general purpose GPU). In 2000’s, the massively parallel
computing devices including CUDA [1] and OpenCL [2] are
available.

Since the programmable graphics pipeline and the mas-
sively parallel computing pipeline have common features, there
have been several trials to implement the graphics processing
features on the massively parallel processing devices. Some of
them are summarized in the followings.

Mesa 3D graphics library [5] was originally implemented
with CPU computing powers. Mesa is actually started as a re-
implementation of widely-used 3D graphics libraries, including
OpenGL [6] and Vulkan [7]. In its components, Mesa provides
a full-software implementation of rasterizers, called “swrast”.
This implementation enables the 3D graphics rendering and
3D graphics shader features on CPUs. However, this CPU-
based implementation is very slow, as we can expect, and thus,
used only for limited purposes. Since this implementation was
already available in 1990’s, it actually affected its following
implementations of software 3D graphics rasterizers.

Intel Larrabee project [8] was actually a hardware archi-
tecture, while it also aimed to provide an efficient software
implementation of the 3D graphics rendering features. From
the parallel processing point of view, the Larrabee project im-
plements a binned renderer to increase the parallel processing
features, and to reduce the memory bandwidth. Unfortunately,
the Larrabee project was cancelled, and later rearranged to
make high-performance computing processors.

FreePipe [9] is a fully-programmable 3D graphics pipeline,
implemented in CUDA programming library. It developed
some special features for the efficient rendering, even in
a single pass rendering, with CUDA atomic operations. It
shows good performance for small-size objects, while the

www.ijacsa.thesai.org 776 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

performance drops rapidly for large-scale and/or large-size
objects, mainly due to the CUDA atomic operation behaviors.

CUDARaster [10] and its followers [11], [12], [13] are also
software 3D graphics rendering pipeline implementations, with
CUDA. CUDARaster was implemented for a specific CUDA
model of Fermi, and it also uses some assembly-level codes,
for optimization purpose. Unfortunately, it cannot be executed
on the new CUDA architectures, since it was highly tuned and
dependent on the old CUDA architecture.

The cuRE [14] is another rasterizer implementation to
resolve the drawbacks of the previous implementations. This
new rasterizer architecture can be executed on various mod-
ern CUDA architectures. It also shows several modifications,
including direct wireframe rendering, programmable blending,
and others.

Although we have some rasterizer implementations, espe-
cially based on the CUDA parallel processing architecture, our
work aims to finally implement the full-scale 3D graphics sys-
tem. Thus, we will include more 3D graphics primitives, and
also 2D graphics primitives. The design and implementation
of our system will be presented in the following sections.

III. OVERALL DESIGN

In the case of OpenGL, they need at least the following
3D primitives:

• Points: A set of 3D points can be displayed. Ad-
ditionally, they can set the radius of the point, or
equivalently, the point size. The initial point size of 1
means a single pixel point, while we can also specify
more big size points, which will be displayed as circles
or rectangles on the screen.

• Line segments: A pair of 3D points can specify a 3D
line segment. A sequence of line segments can also be
displayed. In most cases, they use the line width of
1, to show one pixel wide line segments. With larger
line widths, we can display thick line segments.

• Triangles: A set of three 3D points can define a
triangle. A sequence of triangles are also possible,
with triangle strips and triangle fans. Those triangles
are usually filled with specified colors, or texture
images.

In the previous works, they concentrated on the triangle
primitives. In fact, the CUDA-based implementation of the
triangle primitive is sufficiently difficult work, to be optimized
and finely tuned. Also, we need to consider that most of 3D
graphics scenes are constructed with triangles, since modern
computer graphics object models are mostly based on the 3D
triangle mesh models.

For a full-scale 3D graphics library implementation, we
naturally need all of these 3D output primitives: points, line
segments, and triangles. Additionally, for practical reasons,
some 2D primitives are also needed to full-scale implemen-
tations. As an example, the resetting or updating of 2D
rectangular areas in the framebuffer areas and/or in the texture
image areas are needed frequently, even for the 3D graphics
libraries.

Mostly required 2D operations are actually bit-blt (bit block
transfer) operations, and can be summarized as follows:

• rectangular fill: The given rectangular 2D framebuffer
(or image) area will be updated with the given colors
(or numerical values). This operation can be used for
the clearing of the whole or any partial framebuffer
area.

• pixmap bit-blt: A pixmap means a 2D array layout
of pixel values. A colorful image can be the typical
cases. The image will be transferred (or more pre-
cisely, copied) to the specified rectangular area in the
framebuffer or in the texture image area.

• grayscale bit-blt: A grayscale image can also be trans-
ferred to the framebuffer area.

• bitmap bit-blt: A bitmap represents a black/white
image, through representing a black/white pixel with
a single bit. This format is frequently used for bitmap
fonts. Through transferring the bitmaps on the screen,
we can display characters on the screen for extra
information display.

For the overall design of the system, the 3D output pipeline
will be maintained as the main stream pipeline. Fig. 1 shows
the full 3D graphics pipeline of OpenGL 2.0 and OpenGL ES
2.0, which supports the vertex shaders and fragment shaders.
It is used as the start point of our implementation. Our current
prototype implementation focuses on the primitive assembly
and rasterizer module.

The essential role of the “primitive assembly and rasterizer”
module is converting the given 3D coordinate specifications to
a set of 2D pixels, which are targets to be updated. The vertex
shader and the fragment shader can be regarded as the pre-
processing and post-processing to this module.

At this time, our CUDA-based implementation is based
on the commercial CUDA-capable graphics cards. Thus, our
prototype implementation is realized as a set of CUDA kernel
programs, as shown in Fig. 2.

User inputs and rendering operations are provided through
the C/C++ API function calls, to prepare the 3D graphics
data in the CPU memory area. The 3D graphics data will be
copied to the CUDA memory area, similar to the typical CUDA
programs.

A big-size CUDA memory area is dedicated to the “logical
framebuffer”, which act as the real framebuffer, but cannot
be displayed directly on the screen. Instead, the “logical
framebuffer” is shared as an OpenGL texture image, and an
independent OpenGL program is executed to simply display
the logical framebuffer texture image on the screen.

For embedded systems, we can customize the current
implementation, with new hardware display circuit supports,
as shown in Fig. 3. With customized display logic implemen-
tations, the “logical framebuffer” can act as the real physical
framebuffer. In this case, the display speed will be much more
enhanced. This customized display circuit support will be the
future works. In the next section, we will explain our current
CUDA kernel implementations.

www.ijacsa.thesai.org 777 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Primitive
Processing

Vertex
Buffer
Objects

Vertex
Shader

Primitive
Assembly Rasterizer

Fragment
Shader

Depth
Stencil

Color
Buffer
Blend

Dither Frame 
Buffer

API
vertices

triangles/lines/points

Fig. 1. A Typical 3D Graphics Rendering Pipeline.

on-screen 
display

Hardware 
Display 
Circuit

input data
(in CPU 
memory)

input data
(in CUDA 
memory)

logical 
framebuffer
(in CUDA 
memory)

OpenGL 
texture

(in CUDA 
memory)

on-screen 
display

CUDA
Kernel 

Programs

C/C++ API 
Function 

Calls

OpenGL 
Display 

Program

Graphics Card

Fig. 2. Our Current CUDA-based Implementation Layout.

Hardware 
Display 
Circuit

input data
(in CPU 
memory)

input data
(in CUDA 
memory)

logical 
framebuffer
(in CUDA 
memory)

on-screen 
display

CUDA
Kernel 

Programs

C/C++ API 
Function 

Calls CUDA Device

Fig. 3. Another Possible CUDA-based Implementation Layout.

IV. IMPLEMENTATION

The core of our implementation is a set of CUDA kernel
programs, whose layouts are based on the rectangular division
of the screen. It is actually typical approaches used in most
previous works. As shown in Fig. 4, the whole screen (as
an example, 1,280 by 1,024 pixels) is divided into a set of
rectangular tiles. Each tile consists of 32 by 32 pixels, or
equivalent, 1,024 pixels.

From the CUDA programmer’s point of view, it is con-
venient to allocate a single thread for a pixel on the screen.
Thus, as shown in Fig. 5, we use a 2D thread block of 32-by-
32 thread layout. This 1,024 threads are actually the current
CUDA limits to the maximum number of threads in a single

1280 pixels

32
 p

ix
el

s

32 pixels

a tile

screen

…

…

…

10
24

 p
ix

el
s

Fig. 4. The Screen Layout with Tiles.

thread block. Then, to make the whole 1,280-by-1,024 threads,

www.ijacsa.thesai.org 778 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

we use 40-by-32 blocks for the CUDA grid. Thus, the whole
grid corresponds to the whole screen. The grid is divided into
40-by-32 thread blocks, while the screen divided into that
numbers of tiles. And, the 32-by-32 thread block corresponds
to the thread block.

40 thread blocks

32

32

a thread 
block

(32×32 = 
1024 threads)

a CUDA grid

…

…

…

32
 th

re
ad

 b
lo

ck
s

Fig. 5. The CUDA Grid Layout with Thread Blocks.

This thread block layout has some benefits. In the case
of triangles, the pixels, or equivalently, the CUDA threads
can decide whether they are located in the interior of a given
triangle or not, in a massively parallel way. Each thread will
calculate the signed areas of some configurations, from the
given window coordinates of the vertices. Only the interior
threads will turn on their corresponding pixels, to display the
given triangle on the screen, as shown in Fig. 6.

32 pixels

32
 p

ix
el

s

a triangle

(a) A Triangle Overlaid on the Tile
32 pixels

32
 p

ix
el

s

a triangle

(b) The Triangle Rasterization Result

Fig. 6. A Tile-Based Rasterization Example for a Triangle.

In the case of points and line segments, the tile based
approach can be inefficient, especially for the single pixel
points and the single pixel wide line segments. For a single
pixel point, the thread block should launch totally 1,024
threads, due to the CUDA kernel launch mechanism and our
thread block configurations. Then, only one thread will turn on
the pixel, while others all should discard their processing, as
shown in Fig. 7(a). Similarly, a single pixel wide line segments,

at most 32 pixels will be turned on, even though initiating
totally 1,024 threads, as shown in Fig. 7(b).

32 pixels

32
 p

ix
el

s

a point

(a) A Single-Pixel Point Case
32 pixels

32
 p

ix
el

s

a line segment

(b) A Line Segment with One Pixel Width

Fig. 7. A Tile-Based Rasterization Example for a Point and a Line Segment.

In contrast, the tile based approach can efficiently works
with big-size points, and think line segments. As shown in Fig.
8(a), the big-size points are typically implemented as circles,
and the threads in the tile can check whether they belongs
to the interior of the circle or not, similar to the triangle
cases. Thick line segments can also be handled efficiently,
as shown in Fig. 8(b). The effective threads can check their
corresponding conditions in a massively parallel manner.

32 pixels

32
 p

ix
el

s

a big-size point

(a) A Big-Size Point Case
32 pixels

32
 p

ix
el

s

a thick line segment

(b) A Thick Line Segment Case

Fig. 8. Another Tile-Based Rasterization Example.

www.ijacsa.thesai.org 779 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

The tile-based approach can work for most of bit-blt
operations. For a given rectangular region, the threads will
get the corresponding pixel information, and then update their
own pixels, to get the final result. As a direct application of
these bit-blt operations, we added character display features
to our implementation. In this case, the true type fonts are
pre-processed to get the character font information and the
grayscale image of each character [15], as shown in Fig. 9(b).
Our thread blocks will process the character font information,
and finally show the character on the screen, as shown in Fig.
9(a).

32 pixels

32
 p

ix
el

s

(a) A Character Display Example

(b) A Grayscale Image from True Type Fonts

Fig. 9. A Tile-Based Rasterization for Character Display.

At this time, our prototype implementation shows the basic
rasterization CUDA kernels are working well. As an example,
Fig. 10 shows the screen shot of the triangle rasterization
result, from our CUDA-based rasterizer implementation. It
shows the correct display of the triangle coordinates, as
specified in the input vertex specifications.

Additionally, the barycentric interpolation of interior points
are also demonstrated. We specified different vertex colors
at each vertex of the triangles. The interior pixels have the
interpolated colors, according to the barycentric interpolation,
specified in the OpenGL specification [6].

Unlike the previous works, our CUDA-based rasterizer
implementation supports more output primitives, in addition
to the triangle primitives. Fig. 11 shows a demonstration of
3D points, from our prototype implementation. It shows the
circular points, as expected.

As another distinct example, we implemented the text
output routines, with underlying bit-blt primitive support. Our
CUDA kernels support bit-blt operations, and we use some
grayscale or bitmap images of the true type fonts, with the
free true type font library [15]. The images are blended into
the screen, to make smooth font display results. Fig. 12 shows
an example screen shot of our font rendering result, with
more than 100 text output results, each of which specify
random text colors and a complete sentence to be displayed.
It shows that our CUDA-based implementation has some

Fig. 10. A Screen Shot of Triangle Rasterization, from our CUDA-Based
Rasterizer Implementation.

Fig. 11. A Screen Shot of Point Rasterization, from our CUDA-Based
Rasterizer Implementation.

distinguished points, in comparison to the previous rasterizer
implementations.

V. CONCLUSION

Our motivation was implementing the 3D graphics render-
ing pipeline on the massively parallel computing pipeline. In
this case, we can make a full-software implementation of the
graphics rendering features. To realize this goal, we started
to implement common 3D rendering features on the CUDA
architecture.

Since we aimed to get a full-scale implementation of
typical 3D graphics library, we selected several 3D graphics
primitives including points, line segments and triangles. Ad-
ditional image handling operations are also needed, and we
added some 2D pixel level primitives. Currently, our prototype
implementation shows those primitives are working well. More
fine tunings and optimizations should be followed, and they
will be our near future works.

www.ijacsa.thesai.org 780 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Fig. 12. A Screen Shot of True-Type Font Rasterization, from our
CUDA-Based Rasterizer Implementation.

ACKNOWLEDGMENT

This work has supported by Basic Science Research Pro-
gram through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (Grand No.NRF-
2019R1I1A3A01061310).

This study was supported by the BK21 FOUR project (AI-
driven Convergence Software Education Research Program)
funded by the Ministry of Education, School of Computer
Science and Engineering, Kyungpook National University,
Korea (4199990214394).

REFERENCES

[1] NVIDIA, CUDA Toolkit Documentation, version 11.7.0. NVIDIA,

2022.
[2] Khronos OpenCL Working Group, The OpenCL Specification, version

3.0. Khronos Group, 2022.
[3] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming

standard for heterogene-ous computing systems,” Computing in science
& engineering, vol. 12, no. 66, 2010.

[4] D. Kirk, “NVIDIA CUDA software and GPU parallel computing
architecture,” in Proc. of the 6th Int’l Symp on Memory Management
(ISMM ’07). ACM, 2007, pp. 103–104.

[5] Mesa Team, The Mesa 3D Graphics Library, retrieved in July 2022.
[Online]. Available: http://www.mesa3d.org/

[6] M. Segal and K. Akeley, The OpenGL Graphics System: A Specification,
version 4.6. Khronos Group, 2019.

[7] The Khronos Vulkan working group, Vulkan - A Specification, version
1.3.223. Khronos Group, 2022.

[8] L. Seiler et al., “Larrabee: A many-core x86 architecture for visual
computing,” IEEE Micro, vol. 29, pp. 10–21, 2009.

[9] F. Liu, M. C. Huang, X. H. Liu, and E. H. Wu, “Freepipe: A pro-
grammable parallel rendering architecture for efficient multi-fragment
effects,” in Proc. of the 2010 ACM SIGGRAPH Symposium on Interac-
tive 3D Graphics and Games (I3D ’10). ACM, 2020, pp. 75–82.

[10] S. Laine and T. Karras, “High-performance software rasterization on
gpus,” in Proc. of the ACM SIGGRAPH Symp on High Performance
Graphics (HPG ’11). ACM, 2011, pp. 79–88.

[11] Y. C. Kwon and N. Baek, “A cuda-based implementation of opengl-
compatible rasterization library prototype,” in Proc. of the 29th Annual
ACM Symp on Applied Computing (SAC ’14). ACM, 2014, pp. 1747–
1748.

[12] N. Baek and K. Kim, “Design and implementation of opengl sc 2.0
rendering pipeline,” Cluster Computing, vol. 22, pp. 931–936, 2019.

[13] M. Kim and N. Baek, “A 3d graphics rendering pipeline implementa-
tion based on the OpenCL massively parallel processing,” Journal of
Supercomputing, vol. 77, pp. 7351–7367, 2021.

[14] M. Kenzel, B. Kerbl, D. Schmalstieg, and M. Steinberger, “A high-
performance software graphics pipeline architecture for the GPU,” ACM
Trans. Graph., vol. 37, pp. 140:1–140:15, 2018.

[15] FreeType, The FreeType project, retrieved in July 2022. [Online].
Available: http://www.freetype.org/

www.ijacsa.thesai.org 781 | P a g e


