
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

A New Learning to Rank Approach for Software
Defect Prediction

Sara Al-omari
Department of Computer Science

Applied Science Private University
Amman, Jordan

Yousef Elsheikh
Department of Computer Science

Applied Science Private University
Amman, Jordan

Mohammed Azzeh
Department of Data Science

Princess Sumaya University for Technology
Amman, Jordan

Abstract—Software defect prediction is one of the most active
research fields in software development. The outcome of defect
prediction models provides a list of the most likely defect-prone
modules that need a huge effort from quality assurance teams.
It can also help project managers to effectively allocate limited
resources to validating software products and invest more effort
in defect-prone modules. As the size of software projects grows,
error prediction models can play an important role in assisting
developers and shortening the time it takes to create more reliable
software products by ranking software modules based on their
defects. Therefore, there is need a learning-to-rank approach that
can prioritize and rank defective modules to reduce testing effort,
cost, and time. In this paper, a new learning to rank approach
was developed to help the QA team rank the most defect-
prone modules using different regression models. The proposed
approach was evaluated on a set of standardized datasets using
well-known evaluation measures such as Fault-Percentile Average
(FPA), Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and the Cumulative Lift Chart (CLC). Also, our
proposed approach was compared with some other regression
models that are used for software defect prediction, such as
Random Forest (RF), Logistic Regression (LR), Support Vector
Regression (SVR), Zero Inflated Regression (ZIR), Zero Inflated
Poisson (ZIP), and Negative Polynomial Regression (NPR). Based
on the results, the measurement criteria were different than each
other as there was a gap in the accuracy obtained for defects
prediction due to the nature of the random data, and thus was
higher for RF and SVR, as well as FPA achieved better results
than MAE and RMSE in this research paper.

Keywords—Software engineering; software testing; software
defect prediction; learning to rank approach

I. INTRODUCTION

Predicting the exact and precise defect number is the best
and most accurate option for software engineers, but because
of the difficulty of achieving this task in real scenarios, it is not
enough to rely on classifying modules into defects or not, so
there is a need for another solution that can improve the defect
prediction performance and increase the quality assurance
of confidence in defect prediction [1]. This solution can be
achieved by using a learning to rank approach that supports
defect prediction models to rank and prioritize modules based
on certain factors [1].

The importance of SDP models for predicting software
defects has been discussed by using the LTR approach to
rank a program according to the number of defects. The
new model is supposed to improve the performance of the
existing defect prediction models. Predicting the number of

defects in software modules using machine learning regression
models. However, this paper proposes a new learning to rank
approach that supports defect prediction models for ranking
and prioritization.

Most of the research in the past decade has focused on
proposing new indicators for constructing predictive models
[1]. The most studied indicators are the source code and
process metrics [2]. Source code metrics measure the com-
plexity of the source code [2]. Process metrics are derived
from software documents, such as version control systems
and issue trackers, which regulate the entire development
process. Process metrics quantify many aspects of the software
development process, such as source code changes, ownership
of source code files, and developer interaction. The process
metrics used to predict errors have been validated in many
studies [2].

Defect prediction research is generally based on machine
learning [3]. Predictive models built using machine learning
approaches can predict the probability of errors in the source
code (classification) or the number of errors in the source code
(regression). Some studies have proposed the latest machine
learning techniques, such as: improving active learning and
prediction. The researchers also focused on determining the
accuracy of predictions. Failure prediction models attempt
to identify failures at the system, component, package, or
file/class level. According to recent research, errors in modules
or methods can also be identified and changed to different
levels. Better accuracy can help developers by limiting the
scope of source code reviews ensure quality. Suggesting a pre-
processing method for predictive model is also an important re-
search put forward in error prediction research. Before building
the model, the following methods can be used for prediction:
function selection, normalization, and noise protection [3].
Through the proposed pre-processing method, the predictive
characteristics of actions in related research can be improved
[3]. The researchers also proposed methods to predict defects
in software projects [3]. The majority of the above represen-
tative studies were performed and verified within an internal
prognostic framework, and the predictive model was developed
and tested within the same project [4]. However, this is difficult
for new projects that lack development history information.
Create a predictive model. Typical methods for predicting
crossover errors are metric compensation [4], nearest neighbor
(NN) filters, naive transfer Bayes (TNB), and TCA+ (state-
of-the-art transfer learning approach). Adjust the predictive
model by selecting similar instances, transforming data values,

www.ijacsa.thesai.org 805 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

or developing new models [4].

Another important topic for defect prediction between
items is to study the possibility of cross-prediction. Several
studies have confirmed that cross-prediction is difficult to
achieve; only a few cross-prediction combinations are effective
[5]. Determining cross-prediction capabilities will play a major
role in predicting errors between projects. There are many
studies on the possibility of cross-prediction based on decision
trees [5]. However, their decision tree has only been tested on
certain software datasets and has not been studied.

The purpose of the SDP for the classification task is to
predict which modules are likely to contain the most defects
in order to allocate efforts to improve software quality, which
means relative prediction and extraction of the exact number
of defects, but this requires many conditions and accurate data
to give the exact number of defects, which becomes difficult
when the data is too large. However, the Learning to Rank
(LTR) method provides a linear model by directly improving
classification performance. It has been verified that it is useful
to make forward adjustments to the classification performance
metrics of the SDP model for constructing classification prob-
lems [6].

In this paper, a new learning to rank approach was devel-
oped to help the QA team with the ranking of the most defect-
prone modules. The proposed approach was evaluated on a set
of benchmark datasets using known measures such as fault
percentile average (FPA), cumulative lift chart (CLC), mean
absolute error (MAE), and root mean square error (RMSE).
Our proposed approach will be compared with the current
learning to rank approaches used in defect prediction.

The paper is organized as follows: Section II presents
work related to software defect prediction as well as learning
to ranking methods. Section III presents the proposed model
including the data sets as well as the evaluation metrics used.
Section IV presents the implementations made in the paper and
finally Section V presents the findings and discussions about
them before ending with the paper’s conclusion.

II. RELATED WORK

A. Software Defect Prediction

There are many studies that address the issue of predicting
software defects. Among them, for example, X. Huo and M.
Li, in [4] who proposed a new perspective for software defect
prediction. This clearly articulates the “pair-wise” relationship
between the bad module and the clean module to better
prioritize the modules that are prone to failure, thus using
benchmark dataset to ensure software reliability. X. Jing et al.
in [8] attempt to systematically summarize all the typical work
on predicting software failures in recent years. Based on the
results of this work, this paper will help software researchers
and professionals to better understand previous failure predic-
tion studies based on datasets, software indicators, scores, and
technical modeling perspectives in a simple and effective way.
A. Okutan and O. Yıldız in [9] used Bayesian networks to
study the relationship between software performance and error
propensity. They used 9 records in the Promise data repository
and showed that RFC, LOC, and LOCQ are the most error
prone. On the other hand, the effect of NOC and DIT on

defects is limited and unreliable. Y. Ma et al. [10] looked at a
cross-company defect prediction scenario in which the source
and target data came from different companies. They presented
a novel technique called Transfer Naive Bayes (TNB), which
uses the information of all the proper features in training
data to select training data that is similar to the test data. J.
Zheng in [11] studied three cost-sensitive impulse approaches
for driving neural networks to predict software failures using
four datasets related to a single action from the NASA project.
Experimental results show that threshold shift is the best choice
for cost-effective prediction of software failures using neural
network models from the three approaches studied, especially
for project datasets developed in object-oriented languages.
X. Jing et al. in [12] used vocabulary learning methods to
predict software errors. They used the characteristics of open-
source software measurement to study various vocabularies
(including error-free modules and damaged modules and sub-
words of general vocabulary) and sparse representation co-
efficients. The dataset from the NASA project is used as a
benchmark for evaluating the performance of all comparison
methods. Experimental results show that CDDL is superior to
several typical current error prediction methods. G. Czibula
et al. in [13] proposed a classification model based on the
mining of relational association rules. It is a discovery of
relational association rules that can be used to predict whether
a software module is flawed or not. On the open-source NASA
datasets, an experimental evaluation of the proposed model.
The results reveal that the classifier outperforms existing
machine learning-based defect prediction approaches for the
majority of the assessment measures studied. I. Laradji et al.
in [14] introduced a two-variant (with and without feature
selection) ensemble learning technique that is robust to both
data imbalance and feature redundancy. Poor characteristics
do not affect ensemble learners like random forests and the
proposed technique, average probability ensemble (APE), as
much as they do weighted support vector machines (W-SVMs).
Furthermore, for the NASA datasets PC2, PC4, and MC1, the
APE model paired with greedy forward selection (improved
APE) attained AUC values of roughly 1.0. S. Liu et al. [15]
employed the FECAR feature selection framework with Fea-
ture Clustering and Feature Ranking to forecast software de-
fects. Using the FF-Correlation metric, this framework divides
original features into k clusters. Then, using the FC-Relevance
measure, it selects relevant features from each cluster. The data
is based on real-world projects such as Eclipse and NASA. P.
Krause and N. Fenton in [16] Focuses on a model developed
for the Philips Software Center (PSC) using the expertise of the
Philips Research Laboratory, which is specifically designed to
predict the number of errors in various testing and operational
phases. Seven of the 28 projects can obtain comprehensive data
(completed questionnaires, more project data, and more error
data). The study was not as successful as expected, and the
authors confirmed that more investigations will be conducted
in the future. The research is still in progress.

Li, M. Shepperd, and Y. Guo in [17] investigated the
use and performance of unsupervised learning techniques in
predicting software defect by conducting a systematic liter-
ature review that identified 49 studies with 2456 individual
experimental results that met our inclusion criteria and were
published between January 2000 and March 2018. Everything
is in order. In this study, unsupervised classifiers did not appear

www.ijacsa.thesai.org 806 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

to perform worse than supervised classifiers.

T. M. Khoshgoftaar and colleagues in [18] proposed a
methodology that incorporates a feature selection approach
for picking relevant qualities and a data sample approach for
resolving class imbalance. They used nine software measure-
ment datasets from the PROMISE software project repository.
Experimental results show that feature selection based on
sample data performs significantly better than feature selection
based on raw data, and the fault prediction model can achieve
the same effect whether the training data is sample data or raw
data.

L. Son et al. in [19] proposed a methodological mapping
where they dealt with nine studies questions similar to distinc-
tive stages of improvement of a DeP model. They explored
every issue related to the method from collecting records;
Preprocess records, strategies used to build a DeP fashions
for the metrics used to evaluate the overall performance of the
model and statistical evaluation plans used to mathematically
validate the results of the DeP model. Out of the full 156
research, they decided on ninety-eight research for addressing
9 studies questions fashioned for this systematic mapping.

M. Sohan et al. in [20] used a lot of project data to
prepare a balance and unbalanced dataset to build a pre-
diction of software defects. Experimental results show that
no significant changes are observed between balanced and
unbalanced learning models. For a balanced learning model
with an unbalanced test dataset, only the AUC value (area
under the curve) increases exponentially. X. Cai et al. in [21]
proposed a hybrid multi-purpose dynamic local search Cuckoo
Search (HMOCS) to simultaneously identify health solutions.
The problem of class mismatch in the dataset and the selection
of SVM (support vector machine) parameters is critical to
the prediction software defect. Eight datasets were selected
from the Promise database to verify the proposed model for
predicting software failures. Compared with the results of 8
prediction models, this method effectively solves the problem
of predicting software failure. W. Li et al. in [22] proposed
a two-step classification method and a two-step classification
method based on three-way decision-making to predict cost-
sensitive software failures by using NASA data. On the same
direction Abu-Alhija et al. [23] studied the impact of kernels
and SVM on the performance of defect predictions. they found
that RBF is more Superior than other kernels.

B. Learning to Rank Approaches in Software Defect Predic-
tion

X. Yang et al. in [1] used the LTR methodology for a wide
range of real-world datasets and provided a full evaluation
and comparison SDP for the ranking job, which included
10 construction approaches compared to other approaches on
eleven real-world datasets. The relationship between CLC and
FPA was also explored, as well as the need for metric selection
over two sets of data for SDP for the ranking assignment.
For the ranking job, the LTR technique to building SDP
models yielded good accuracy and clarity of understanding.
Also Xiaoxing Yang et al. in [2] used the learning-to-rank
approaches to anticipate software defects. They presented the
experimental results, which include a comparison of their
approach to three other approaches from the literature, as

well as five publicly available datasets. They employed the
evolutionary optimization method to directly optimize the
model performance measure, fault-percentile-average, which
is not the same as the loss functions. For most datasets,
the proposed learning-to-rank approach outperformed linear
regression and logistic regression in terms of fault percentile-
average models. Z. Cao et al. in [3] employed a learning to rank
based approach to address the lack of legacy specifications
that quantify the possibility of a candidate rule becoming a
specification using 38 interesting measures. The benchmark
dataset contains 28 classes from the Java 6 SDK that have
been manually identified as having specification rules. These
guidelines were derived from the completion of 14 projects.
Experimental results using classes from the Java 6 SDK show
that our learning to rank-based technique can enhance the
best ranking performance using a single measure by up to 66
percent. X. Yu et al. [5] investigated the effect of 23 learning to
rank approaches for EADP using 41 releases of 11 open source
software projects taken from the PROMISE data repository
to examine the impact of 23 learning to rank techniques for
EADP. When the 23 approaches are trained on the original
feature subset, the experimental findings demonstrate that BRR
performs best in terms of FPA, while BRR and LTR perform
best in terms of Norm (Popt) subset.

M. Buchari Yu et al. in [6] used two public benchmark
datasets to create and assess the implementation of Chaotic
Gaussian Particle Swarm Optimization on the Learning-to-
Rank software defect prediction methodology for train model
parameter. They conclude that using Chaotic Gaussian Par-
ticle Swarm Optimization in a Learning-to-Rank strategy can
increase defect module ranking accuracy in datasets with high-
dimensional characteristics. Y. Ma et al. in [7] used a top-k
learning to rank (LTR) approach in the scenario of CPDP. The
PROMISE dataset shows that SMOTE-PENN outperforms the
other six competitive resampling approaches and Rank Net
performs the best for the proposed.

III. THE PROPOSED MODEL

A. Dataset

In this paper, a benchmark dataset was used from several
types of versions, and the dataset was collected from the
GitHub libraries and from previous research. The dataset
applied to the developed regression models was 28 in total with
different features, as shown in Table I below. The methodology
on which the dataset was applied is to read the required
data, then it was ensured that the data did not contain null
values, and then the data was divided into x (features) and y
(total defect). Finally, feature scaling technique was applied
to make the output the same standard as it mentioned in the
implementation section.

B. Developing Regression Model

In this paper, a model was proposed to predict the defects
of the software modules and then rank the most defect-prone
modules using six regression models such as (Random Forest,
Logistic Regression, Support Vector Regression, Negative Bi-
nomial Regression, Zero Inflated Regression, and Zero Inflated
Poisson). However, after we prepared the dataset, we applied
the data to our modules. They are divided into two categories:
variations of the Poisson regression model and regression trees:

www.ijacsa.thesai.org 807 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

TABLE I. BENCHMARK DATASETS

Datasets Feature Number Total Defect
ant-1.7 20 746
camel-1.0 20 339
camel-1.6 20 965
data arc 20 225
data ivy-2.0 20 352
data prop-6 20 644
data redaktor 20 175
JDT R2 0 48 2397
JDT R2 1 48 2743
JDT R3 0 48 3420
JDT R3 1 48 3883
JDT R3 2 48 2234
jedit-3.2 20 272
jedit-4.2 20 367
log4j-1.1 20 109
lucene-2.0 20 195
PDE R2 0 48 576
PDE R2 1 48 761
PDE R3 0 48 881
PDE R3 1 48 1108
PDE R3 2 48 1351
poi-2.0 20 314
synapse-1.0 20 157
synapse-1.2 20 256
velocity-1.6 20 229
xalan-2.4 20 723
xerces-1.2 20 440
xerces-1.3 20 454

1) Variations of Poisson Regression Model: NBR (Neg-
ative Binomial Regression) has been commonly used
for SDP. ZIP, ZIR, and NPR are all variations of
Poisson regression. When the response variable of
the dataset contains a large number of zeros, the
Poisson regression model will reduce the probability
of zeros. Zero-inflated models can explicitly model
the excessive occurrence of zero faults. Zero-inflated
models assume that zero-defect modules come from
two distinct sources.

2) Regression Trees: SVR, LR, and RF are different
types of regression trees. RF is an ensemble classifier
consisting of many trees, and outputs the average
of individual trees .LR Random Forests is a set of
decision trees that have been combined to form an
ensemble. It is an approach for Supervised Learning.
Several decision trees are used to process the input
data. It is powered by constructing a variable number
of decision trees at training time and displaying
the class that is the mode of the classes or mean
prediction (for regression) of the individual trees.
SVR attempts to predict actual values. To separate
the data, this technique employs hyperplanes. If this
separation is not achievable, the kernel trick is used,
in which the dimension is increased, and the data
points become separable by a hyperplane. Logistic
regression is a data analysis technique that is used
to define and explain the connection between one
dependent binary variable and one or more nominal,
ordinal, interval, or ratio-level independent variables.

C. Evaluation Measures

In this paper, different measures were used to evaluate the
accuracy of our modules, the goal of accuracy evaluation is
to make it easier to determine which modules we evaluate is

good. The evaluation method is to obtain the percentage. The
percentage of defects in the preceding modules of the ranking
is commonly applied. To evaluate SDP models for the ranking
task. The following are the evaluation measures we used:

• Fault-Percentile-Average: FPA is one of the evaluation
measures which could reflect the effectiveness of
different prediction models across all cuts off values
as shown in equation 1. FPA is the average of the
proportions of actual defects in the top m (m=1,2,..,k)
modules to the whole defects, which is a more com-
prehensive performance measure than the percentage
of defects in the top 20% modules. A higher FPA
means a better ranking, where the modules with most
defects come first [1].

1

k

k∑
m=1

1

n

k∑
i=k−m+1

1

n
ni (1)

where:
◦ k is the number of software modules.
◦ n is the total number of defects in all modules.
◦ m is the modules to the whole defects.

• Root Mean Square Error:
RMSE stands for Root Mean Squared Error. The stan-
dard deviation of the errors that occur when making a
prediction on a dataset is known as the RMSE. This
is the same as MSE (Mean Squared Error), but the
root of the number is considered when calculating
the model’s accuracy. The errors are squared before
being averaged in RMSE as shown in equation 2.
This means that RMSE gives larger mistakes a higher
weight. This suggests that RMSE is far more beneficial
when substantial errors exist and have a significant
impact on the model’s performance. This characteristic
is important in many mathematical calculations since
it avoids taking the absolute value of the error. In
this metric as well, the lower the value, the better the
model’s performance.

RMSE =

√[∑
(Pi −Oi) /n

]
(2)

where Pi is the predicted value for the ith observation
in the dataset. Oi is the observed value for the ith
observation in the dataset. n is the sample size.

• Mean Absolute Error:
The Mean Absolute Error (MAE) is a statistic that
assesses the average magnitude of errors in a set of
predictions without taking their direction into account
as shown in equation 3. The Mean Absolute Error
is the average of the absolute differences between
prediction and actual observation over the test sample,
assuming that all individual deviations are equally
weighted. It is less susceptible to outliers than MSE
because it does not penalize large errors. When per-
formance is measured using continuous variable data,
it is commonly employed. It produces a linear value
that equalizes the weighted individual disparities. The
model’s performance improves as the value decreases.

www.ijacsa.thesai.org 808 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

MAE =
1

n
×

n∑
i=1

|oi − Pi| (3)

• Cumulative Lift Chart:
A lift chart graphically Represents the improvement
provided by the mining model to random estimation
and measures the change in the form of elevation
estimation as shown in equation 4. Through comparing
the elevation estimates of different models, you can
determine which model is better.

CLC = FBA−
(

1

2k

)
(4)

where k is the number of software modules.

D. Research Methodology

In this paper, a new learning to rank (LTR) approach was
developed to help the QA team rank the most defect-prone
modules in the software and thus reduce testing efforts using
various regression models. The datasets used were taken from
the standard dataset, and the datasets are divided into training
and test data. In the Software Defect Prediction Program
(SDP), training data and test data were selected in two separate
ways. First, in the same dataset, the training and test data were
randomly selected (or may be sequential). In the second stage,
the training will be taken from the dataset as the previous
version, and the test data from another dataset will be taken
as the next version. The first approach was adopted and used.
We then evaluated the data using known evaluation measures
such as Fault-Percentile-Average (FPA), Mean Absolute Error
(MAE), Root-Mean-Square Error (RMSE) and Cumulative Lift
Chart (CLC). Our proposed LTR approach was compared
with the current LTR approaches used in software defects
prediction. Fig. 1 illustrates the research methodology used
in this paper.

E. Implementation

To prove the success of our proposed LTR approach, it
is necessary to apply our work and show and compare the
results. Various regression models were used in a separate way
from previous studies, by applying the LTR approaches and
the programming language that we will discuss. Python 3.6
and Spyder 3.2.6 were used to evaluate the accuracy of the
ML regression models (SVM, RF, LR, ZIP, ZIR and NPR). In
addition to the usage of Google Colab to run the existing LTR
approaches to do comparison with the proposed LTR approach
in this paper. Each model was developed separately from the
others, but in this section, we collected the models to present
the methodology in an obvious way. Each model was used
from twenty-eight datasets. The databases were configured
prior to use so that they were all applied in a uniform manner.
We will go through the methodology in a clear manner by
explaining the steps of the code.

IV. RESULT

In this paper, four evaluation measures were used to calcu-
late the accuracy of our regression models, and we will present
the findings in tables depending on the evaluation measures.

Fig. 1. Research Methodology.

Twenty-eight datasets were used over six regression models in
this paper. The goal of this paper is to present the accuracy
of our software modules by applying 5-fold cross-validation
technique. The reason to use 5-fold cross-validation is to get
the best result based on 28 datasets with different features.

A. Fault Percentile Average

By calculating the average accuracy of Fault-Percentile-
Average using 5-fold cross validation, we show the values in
Table II.

The goal of building these regression models was achieved
by finding the model that contains the largest number of errors
and comparing the machine-trained model with the outputs in
the data. The accuracy was measured to discover the model that
predicts the number of errors, and the accuracy expresses the
result of the prediction of the machine in how close it is to the
original result. Here, the closer the result is to zero, the better
the result. From our experience, it is difficult to determine
which model is better because of the amount of disparate data,
but we can determine the best model by comparing the models
on one dataset only.

Fault-Percentile-Average (FPA) evaluation measure was
used based on previous studies, which were studied based on
classification models, thus showed satisfactory results, but in

www.ijacsa.thesai.org 809 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

TABLE II. COMPARISON OF THE LTR APPROACH WITH SIX EXISTING
REGRESSION MODELS OVER 28 DATASETS WITH ALL METRICS USING

FPA MEASURE

Datasets LR RF SVR ZIP ZFR NBR
ant-1.7 0.72154 0.77648 0.77122 0.76151 0.76784 0.81054
camel-1.0 0.60842 0.640408 0.66202 0.61714 0.57756 0.45306
camel-1.6 0.57958 0.71205 0.69675 0.71383 0.63459 0.72812
data arc 0.53375 0.65012 0.62578 0.54251 0.5341 0.50761
data ivy-2.0 0.52781 0.67103 0.65993 0.61565 0.54292 0.70769
data prop-6 0.56486 0.64195 0.66541 0.66563 0.55886 0.71364
data redaktor 0.647809 0.75695 0.74704 0.68828 0.64923 0.76476
JDT R2 0 0.65196 0.72185 0.70785 0.69471 0.71048 0.67293
JDT R2 1 0.63748 0.77034 0.74373 0.76109 0.67657 0.75939
JDT R3 0 0.64215 0.784 0.77129 0.76294 0.73085 0.76901
JDT R3 1 0.62876 0.77124 0.77164 0.74924 0.70828 0.75553
JDT R3 2 0.70679 0.6923 0.768605 0.72612 0.76279 0.76752
jedit-3.2 0.7021 0.82434 0.79438 0.80392 0.79859 0.79549
jedit-4.2 0.68124 0.8172 0.78171 0.73489 0.71828 0.84774
log4j-1.1 0.77168 0.7857 0.77079 0.72377 0.76497 0.78366
lucene-2.0 0.73887 0.7384 0.75203 0.74142 0.74499 0.75741
PDE R2 0 0.64553 0.79867 0.80697 0.66434 0.7267 0.783902
PDE R2 1 0.7051 0.7989 0.78326 0.64177 0.69192 0.75939
PDE R3 0 0.70525 0.7603 0.73343 0.72478 0.74422 0.72364
PDE R3 1 0.72154 0.7458 0.755806 0.72328 0.73999 0.694006
PDE R3 2 0.63911 0.6912 0.67414 0.618407 0.65225 0.60929
poi-2.0 0.53461 0.6831 0.66588 0.64228 0.5689 0.56535
synapse-1.0 0.72382 0.6905 0.54816 0.51767 0.64681 0.61529
synapse-1.2 0.68296 0.7114 0.70046 0.67401 0.68626 0.69261
velocity-1.6 0.63761 0.7448 0.73101 0.70212 0.614424 0.70044
xalan-2.4 0.53136 0.7831 0.73722 0.66721 0.56662 0.75826
xerces-1.2 0.5083 0.7058 0.67377 0.64692 0.54765 0.57162
xerces-1.3 0.65305 0.7982 0.78974 0.79185 0.63956 0.824109

this paper, we applied it to six regression models on a larger
scale, so that we used all available databases in the field of
rank learning, and we have obtained satisfactory results. In this
paper, we demonstrated the success of the error-percentage-
mean scale. All results were not shown over-fitting on the
result.

As seen in Table II, the columns represent all the datasets
we used and the rows represent the regression models that we
created, for example row ant-1.7 represents the first dataset
to which Fault-Percentile-Average has been applied to show
the accuracy results for the regression model that was built
To determine the model that contains the largest number of
program errors, and this accuracy represents the proximity of
the learned data to the test data and here we find that the
best reading for it is 0.81054, which represents the negative
binomial regression model, and this result does not mean that
it is the best model because it may depend on the nature of
the data and the evaluation measure.

B. Mean Absolute Error

By calculating the average accuracy of Mean-Absolute-
Error using 5-fold cross validation, the values shown in Table
III.

Because we are using regression models in this paper,
it is necessary to mention the measurement criteria for the
regression, such as Mean Absolute Error. We have used the
same methodology in building defect models that contain the
largest number of errors and measuring the average accuracy
of the models by using 5-fold cross-valuation on a twenty-eight
dataset with all features. As shown in Table III, the accuracy
results from using the evaluation of the Mean Absolute Error
of the regression. It is clear that some results have exceeded the
relevance because most of the datasets are intended for clas-
sification. However, satisfactory results were shown in some
datasets. This does not mean that other models failed to show

TABLE III. COMPARISON OF THE LTR APPROACH WITH SIX EXISTING
REGRESSION MODELS OVER 28 DATASETS WITH ALL METRICS USING

MAE MEASURE

Datasets LR RF SVR ZIP ZFR NBR
ant-1.7 0.41879 0.6446 0.49934 1823.4 0.47655 1.17607
camel-1.0 0.05307 0.0962 0.11 96198 0.044205 1.0006
camel-1.6 0.53989 0.821 0.5827 0.9038 0.569209 1.8976
data arc 0.14222 0.2289 0.2044 0.281 0.15111 8.3864
data ivy-2.0 0.13062 0.2011 0.1915 0.2532 0.11931 0.93563
data prop-6 0.10558 0.1989 0.1755 0.2164 0.103101 0.92528
data redaktor 0.12 0.7564 0.1836 0.3213 0.12 0.94013
JDT R2 0 1.60409 1.85684 1.5485 11.67 1.9147 12.9109
JDT R2 1 0.8217 0.96404 0.8325 1.006 0.9085 4.59836
JDT R3 0 1.3888 1.643 1.268 1.42 1.632 9.2229
JDT R3 1 1.16981 1.65063 1.141 1.568 1.463 28.6809
JDT R3 2 1.0069 1.037 1.003 1.194 1.111 5.76459
jedit-3.2 1.26168 1.5983 1.309 21.56 1.374 13.4099
jedit-4.2 0.30729 0.44233 0.357 66.56 0.3646 1.05466
log4j-1.1 0.67878 0.8246 0.7729 97.44 0.6958 1.2819
lucene-2.0 1.1846 1.4018 1.228 1.5778 1.344 1.7224
PDE R2 0 0.41136 0.5771 0.4617 0.704 0.455 1.2279
PDE R2 1 0.32592 0.45809 0.378 1.4671 0.3647 1.1646
PDE R3 0 0.68745 0.9269 0.6769 1.103 0.7752 12.8876
PDE R3 1 0.73639 1.025 0.7483 0.9479 0.9085 8.2126
PDE R3 2 0.8815 1.016 0.8026 2.779 1.155 10.796
poi-2.0 0.15596 0.2296 0.2037 2.028 0.1356 1.412
synapse-1.0 0.15342 0.2271 0.2283 8.472 0.1489 1.117
synapse-1.2 0.49894 0.6402 0.536 0.7406 0.5739 1.01748
velocity-1.6 0.82647 1.468 0.8462 34.75 1.071 13.4941
xalan-2.4 0.23104 0.3194 0.2719 0.3883 0.2319 0.94382
xerces-1.2 0.28181 0.4473 0.3314 5.049 0.3331 1.0469
xerces-1.3 0.37284 0.5871 0.4693 0.6761 0.333 1.23983

accuracy in every way, but rather they showed satisfactory
results according to the nature of the data.

C. Root Mean Square Error

Table IV shows the RMSE results based on different
numbers of matrices. We applied 10 times 5-fold cross-
validation over 28 datasets with all metrics. By calculating
the average accuracy of Root-Mean-Square-Error using 5-fold
cross validation, we show the values in Table IV.

This is another way to calculate mean precision with 5-
fold validation using RMSE. As shown in Table IV, more
than appropriate occurred in some of the data, and this is
because the nature of the data is for classification and not for
regression. However, we have achieved satisfactory results, and
these results were mostly concentrated on two models (Linear
Regression and support vector regression).

D. Cumulative Lift Chart

This is a way to evaluate the measure of our modules to
show the relationship between two evaluation measures (FPA,
MAE) in easy and effortless way by presenting the chart of
all six modules we have used before as shown in Fig. 2. The
charts show the performance of our regression models against
other well known LTR methods algorithms [1-2] [3-10].

V. CONCLUSION

SDP models for ranking task manage testing resources
more effectively by predicting which modules are likely to
have more errors in the software program. SDP data is gathered
by a variety of IT organizations and individuals, and it is
noisy. As a result, estimating the number of errors per software

www.ijacsa.thesai.org 810 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Fig. 2. Cumulative Lift Chart for Various Models.

TABLE IV. COMPARISON OF THE LTR APPROACH WITH SIX EXISTING
REGRESSION MODELS OVER 28 DATASETS WITH ALL METRICS USING

RMSE MEASURE

datasets LR RF SVR ZIP ZFR NBR
ant-1.7 0.6435 0.8016 0.70547 27.81 0.6898 1.0757
camel-1.0 0.2265 0.3097 0.3313 14872 0.2022 0
camel-1.6 0.728 0.9049 0.7573 0.936 0.7498 1.3337
data arc 0.3754 0.478 0.4517 0.5301 0.3831 2.4535
data ivy-2.0 0.3604 0.448 0.4373 0.5031 0.3447 0.9671
data prop-6 0.3233 0.4459 0.4183 0.465 0.3201 0.9618
data redaktor 0.339 0.1953 0.4281 0.5668 0.3431 0.9695
JDT R2 0 1.2608 1.3495 1.243 2.465 1.38 3.244
JDT R2 1 0.894 0.9771 0.905 0.9989 0.9497 1.7868
JDT R3 0 1.151 1.2797 0.905 1.183 1.272 2.7136
JDT R3 1 1.06 1.273 1.044 1.23 1.205 3.5289
JDT R3 2 0.9956 1.09 0.9929 1.088 1.053 2.024
jedit-3.2 1.101 1.258 1.126 3.988 1.165 2.98
jedit-4.2 0.5475 0.66471 0.591 5.421 0.6002 1.026
log4j-1.1 0.8222 0.9069 0.8762 5.2293 0.8325 1.1205
lucene-2.0 1.085 1.1798 1.104 1.2416 1.1497 1.2979
PDE R2 0 0.636 0.7588 0.675 0.8356 0.6715 1.1061
PDE R2 1 0.5614 0.6731 0.6063 1.7129 0.5924 1.0776
PDE R3 0 0.8213 0.9577 0.8175 1.035 0.876 2.4717
PDE R3 1 0.8567 1.0085 0.8625 0.9721 0.9505 2.5657
PDE R3 2 0.9381 1.004 0.8932 1.454 1.068 2.6754
poi-2.0 0.394 0.4767 0.4502 1.242 0.3654 1.1445
synapse-1.0 0.3737 0.4758 0.4744 2.232 0.3666 1.0521
synapse-1.2 0.6936 0.7973 0.7256 0.8583 0.7557 1.0084
velocity-1.6 0.9029 1.2028 0.9148 4.828 1.032 3.3796
xalan-2.4 0.4798 0.565 0.521 0.6228 0.48 0.9714
xerces-1.2 0.53 0.6662 0.5751 1.917 0.5754 1.022
xerces-1.3 0.6088 0.565 0.679 0.8178 0 1.1126

module is difficult, if not impossible, due to a lack of precise
historical data. Some academics propose utilizing a ranking-
based performance metric to assess SDP models such as CLC
and FPA. However, contemporary SDP models have been
enhanced to properly predict a specific number of errors.
However, a decent model based on individual loss functions
may fail to provide a satisfactory ranking. As a result, in
this paper, we proposed a unique approach, distinct from
earlier studies, for developing models by direct improvement
of the ranking performance measurement. We applied the LTR
approach to a wide range of real-world datasets in this paper
and present a complete assessment and comparison of RF,
SVR and LR with other approaches. We also estimated the
error using FPA and MAE and then used CLC to explain the

disparity between its results.

The following are the key findings from our research paper:

1) Employing the regression approach rather than the
classification approach, as opposed to prior studies
in the literature where the classification technique is
employed. This is to highlight the contrast between
the classification and regression models. Whether or
not this model has mistaken, the data is divided into
0 and 1, with 0 containing no errors and 1 containing
errors. This is known as classification. However, the
regression models that we are working on estimate
the number of mistakes in each website, which means
that the first website based on the characteristics (x
values) has a number of errors, and so the regression
models train the model when the data enters it. The
characteristics will predict mistakes that are either
equal to or near to the amount of genuine errors. This
is the point of using regression models.

2) Proposing a new LTR approach with scipy.stats and
apply it to multiple models to compare and calculate
accuracy. We discovered that the model produced
using regression models accomplished what was ex-
pected of it in terms of identifying models with
the highest number of errors, and the percentage
of accuracy varied according to the type of data.
And according to the comparison with the standard
measures, we found that the model RF and SVR is
better.

Based on the results and their comparison, we found that
the measurement criteria differ from each other, so that we
found a gap in calculating the accuracy in some measurements
due to the nature of the random data, and FPA achieved better
results than MAE, RMSE in this research paper.

ACKNOWLEDGMENT

Yousef Elsheikh and Sara Al-omari are grateful to the
Applied Science Private University in Amman, Jordan, for the
financial support granted to cover the publication fee of this
research article.

www.ijacsa.thesai.org 811 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Mohammad Azzeh thanks the Princess Sumaya University
for Technology for supporting this research.

REFERENCES

[1] H. Kopka and P. W. Daly, A Guide to LATEX, 3rd ed. Harlow, England:
Addison-Wesley, 1999.

[2] X. Yang, K. Tang and X. Yao, ”A Learning-to-Rank
Approach to Software Defect Prediction”, IEEE Transactions
on Reliability, vol. 64, no. 1, pp. 234-246, 2015. Available:
https://www.ieee.org/publications/rights/index.html.

[3] Xiaoxing Yang, Ke Tang, and Xin Yao ,”A Learning-to-Rank Approach
for Constructing Defect Prediction Models”, IEEE, vol. 1, no. 64, p. 9,
2021. Available: http://file:///C:/Users/pc/Desktop/Learning

[4] Z. Cao, Y. Tian, T. Le and D. Lo, ”Rule-based specification
mining leveraging learning to rank”, Automated Software
Engineering, vol. 25, no. 3, pp. 501-530, 2018. Available:
https://ink.library.smu.edu.sg/sis research/3988/.

[5] X. Huo and M. Li, ”On cost-effective software defect prediction: Clas-
sification or ranking?”, Neurocomputing, vol. 363, pp. 339-350, 2019.
Available: https://www.journals.elsevier.com/neurocomputin.

[6] X. Yu, K. Ebo Bennin, J. Liu, J. Wai Keung, X. Yin and Z. Xu, ”An
Empirical Study of Learning to Rank Techniques for Effort-Aware Defect
Prediction”, IEEE, p. 12, 2021. Available: 2019.

[7] M. Buchari, S. Mardiyanto and B. Hendradjaya, ”Implementation of
Chaotic Gaussian Particle Swarm Optimization for Optimize Learning-
to-Rank Software Defect Prediction Model Construction”, Journal of
Physics: Conference Series, vol. 978, p. 012079, 2018. Available:
10.1088/1742-6596/978/1/012079.

[8] Y. Ma, ”A Top-k Learning to Rank Approach to Cross-Project Software
Defect Prediction”, IEEE, p. 11, 2021. Available: 2018.

[9] Z. Li, X. Jing and X. Zhu, ”Progress on approaches to software defect
prediction”, IET Software, vol. 12, no. 3, pp. 161-175, 2018. Available:
10.1049/iet-sen.2017.0148.

[10] A. Okutan and O. Yıldız, ”Software defect prediction using Bayesian
networks”, Empirical Software Engineering, vol. 19, no. 1, pp. 154-181,
2012. Available: 10.1007/s10664-012-9218-8.

[11] Y. Ma, G. Luo, X. Zeng and A. Chen, ”Transfer learning for
cross-company software defect prediction”, Information and Soft-

ware Technology, vol. 54, no. 3, pp. 248-256, 2012. Available:
10.1016/j.infsof.2011.09.007.

[12] J. Zheng, ”Cost-sensitive boosting neural networks for software defect
prediction”, Expert Systems with Applications, vol. 37, no. 6, pp. 4537-
4543, 2010. Available: 10.1016/j.eswa.2009.12.056.

[13] X. Jing, S. Ying, Z. Zhang, S. Wu and J. Liu, ”Dictionary Learning
Based Software Defect Prediction”, p. 10, 2014.

[14] G. Czibula, Z. Marian and I. Czibula, ”Software defect prediction using
relational association rule mining”, Information Sciences, vol. 264, pp.
260-278, 2014. Available: 10.1016/j.ins.2013.12.031.

[15] I. Laradji, M. Alshayeb and L. Ghouti, ”Software defect pre-
diction using ensemble learning on selected features”, Information
and Software Technology, vol. 58, pp. 388-402, 2015. Available:
10.1016/j.infsof.2014.07.005.

[16] S. Liu, X. Chen, W. Liu, J. Chen, Q. Gu and D. Chen, ”FECAR: A
Feature Selection Framework for Software Defect Prediction”, IEEE, p.
10, 2014.

[17] P. Krause and N. Fenton, ”A probabilistic model for software Defect
Prediction”, IEEE, p. 36, 2001.

[18] N. Li, M. Shepperd and Y. Guo, ”A systematic review of unsu-
pervised learning techniques for software defect prediction”, Informa-
tion and Software Technology, vol. 122, p. 106287, 2020. Available:
10.1016/j.infsof.2020.106287.

[19] T. M. Khoshgoftaar, K. Gao† and N. Seliya, ”Attribute Selection and
Imbalanced Data: Problems in Software Defect Prediction”, IEEE, vol.
1, p. 8, 2010.

[20] L. Son, N. Pritam, M. Khari, R. Kumar, P. Phuong and P. Thong,
”Empirical Study of Software Defect Prediction: A Systematic Mapping”,
Symmetry, vol. 11, no. 2, p. 212, 2019. Available: 10.3390/sym11020212.

[21] M. Sohan, M. Jabiullah, S. Motiur Rahman and S. Mahmud, ”Assessing
the Effect of Imbalanced Learning on Cross-project Software Defect
Prediction”, IEEE, 2019.

[22] X. Cai et al., ”An under-sampled software defect prediction method
based on hybrid multi-objective cuckoo search”, Concurrency and Com-
putation: Practice and Experience, vol. 32, no. 5, 2019. Available:
10.1002/cpe.5478.

[23] Al-Haija, Haneen Abu, Mohammad Azzeh, and Fadi Almasalha. ”Soft-
ware Defect Prediction Using Support Vector Machine.” International
Journal of Systematic Innovation 7, no. 2 (2022): 37-47.

www.ijacsa.thesai.org 812 | P a g e

