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Abstract—With the increase in vision-associated applications
in e-commerce, image retrieval has become an emerging applica-
tion in computer vision. Matching the exact user clothes from
the database images is challenging due to noisy background,
wide variation in orientation and lighting conditions, shape
deformations, and the variation in the quality of the images
between query and refined shop images. Most existing solutions
tend to miss out on either incorporating low-level features or
doing it effectively within their networks. Addressing the issue,
we propose an attention-based multiscale deep Convolutional
Neural Network (CNN) architecture called Parallel Attention
ResNet (PAResNet50). It includes other supplementary branches
with attention layers to extract low-level discriminative features
and uses both high-level and low-level features for the notion
of visual similarity. The attention layer focuses on the local
discriminative regions and ignores the noisy background. Image
retrieval output shows that our approach is robust to different
lighting conditions. Experimental results on two public datasets
show that our approach effectively locates the important region
and significantly improves retrieval accuracy over simple network
architectures without attention.

Keywords—Convolutional neural network (CNN); image re-
trieval; attention mechanism; convolutional block attention module
(CBAM)

I. INTRODUCTION

In the last decade, due to our increased computational
ability, there have been tremendous improvements in Deep
learning [1], [2] and Computer Vision, leading to an expo-
nential proliferation of applicational possibilities. Among the
various engineering applications of computer vision ranging
from Drug Design [3] to Monocular depth estimation [4],
image retrieval has become an emerging one. This particular
application has both academic and business ramifications.
Academically, it can bring about new innovative approaches
to solving image comparison problems, whereas commercially,
it can create a disruptive shopping experience for the users.
Among all the product categories, due to its dynamic product
nature, variations, and immense use case, Clothing/Fashion has
received the highest amount of attention.

When similar kinds of images (i.e., consumer to consumer
or shop to shop) are compared, there is a certain homogeneity
in the images. Thus, they can be treated as from the same
domain, not neglecting multiple variations such as lighting,
view, backgrounds, product orientation, etc. Nonetheless, com-
paring different kinds of images (professional with amateur)
will contain images from other domains.

Despite the difference in image types, these comparisons
can be achieved by analyzing the human-detectable details
in the clothes, such as cloth category, color, pattern, prints
on the clothes, and so on. Most current retrieval solutions
[[5], [6], [7], [8], [9], [10]] incorporate deep learning models
that convert actual images into vector representation so that
the query image’s embedding can be compared against all
the images’ embeddings from the list, and the closest one
can be returned. For that, triplet loss is the most widely
used comparative loss technique. As suggested by [[11], [10],
[12], [13]], despite being superior to other approaches, the
triplet loss approach has its demerits, such as the inability
to achieve top performance, being computationally expensive,
and being prone to noisy labels and outliers. To mitigate that
improvement has been proposed by using the Centroid Triplet
Loss function in [14].

Nevertheless, as described in [9], high intra-class variability
in clothes and the possibility of different kinds of deformations
for the same type of clothes were the significant hurdles for
achieving the most acceptable retrieval results. The problem
with most of these existing approaches is that it ignores low-
level features and those which use low-level features take all
the information without selecting discriminative features which
introduce noise. Deep networks, which are being used as a
solution, tend to go deep and lose vital information from low-
level features. Shallow networks can provide those low-level
features, but the output is prone to noise. Thus, some form of
noise elimination is required. Attention mechanisms emphasize
the essential features and suppress the non-essential features.
CBAM [15] sequentially applies channel and spatial attention
along the respective principle dimensional axes to achieve the
same. A shallow network - combined with the attention layer -
outputs noiseless low-level features. Thus we have proposed a
new architecture that utilizes both deep and attention-shallow
networks to extract high-level and discriminative low-level
features.

Along with the new architecture proposal, other factors
were also considered for improving the overall retrieval ac-
curacy. Here are our contributions:

1) Experimentation with multiple architectures for Im-
age retrieval.

2) Propose a new attention-based architecture for better
retrieval performance.

3) Experimentation with the impact of image size on the
model’s performance.
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4) Experimentation with different classification models
as our backbone network.

5) Performance comparison across multiple fashion data
datasets (DeepFashion [6] and DeepFashion2 [16]).

II. PROBLEM STATEMENT

From a consumer’s point of view, there might be different
scenarios where a user could benefit from various forms
of fashion image comparison and automated searches. All
such applications usually include these three kinds of image
comparisons:

• Image comparison between a shop image with another
shop image.

• Image comparison between a shop image with a
consumer image.

• Image comparison between a consumer image with
another consumer image.

Due to different image-type comparisons, we prioritize se-
lecting distinctive features in fashion pattern matching, which
- moreover - deals with these three main problems in pattern
matching:

1) Common images contain different backgrounds,
which are usually noisy features for the model. Even
after cropping only the target section, the remaining
background will still dominate the distinctive features
and reduce the model’s overall performance.

2) Clothes might contain only a small portion of areas
that might cause differentiation from other clothes.
Nevertheless, when we use all the features from the
clothes to compare the similarity, there might be a
low influence of the distinctive features, reducing
the performance. Since the distinguishing area varies
according to the type of clothes, we need a dynamic
module that will focus more on those discriminating
features.

3) The existing deep convolution networks - rightfully
so - suppress the non-crucial features. While doing
so, the low-level features are also being ignored in
such a way that it is impacting the retrieval accuracy.

III. METHODOLOGY

In this section, we describe our proposed architecture
(PAResNet50) with a two branched variation (DBAN) along
with loss function, and augmentation policy used during train-
ing and testing the network.

A. Architecture

We use a deep Convolutional Neural Network (CNN) to
generate feature embeddings. The feature vector is the abstract
representation of patterns, color, and shape of the input images,
which helps to distinguish between the two different clothes.
We use a triplet-based network architecture with the ranking
loss function to learn the feature vectors. As shown in the
Fig. 1a, the three triplets q, p, and n are independently fed
into three different deep CNN, which share similar architecture
and parameters. The deep CNN computes respective feature
embeddings (−→q ,−→p , and−→n ) for triples p, q and n.

Inspired by [17], we use multiscale deep CNN. Our im-
plementation is quite different than [17], we use ResNet-50
[18] instead of Alexnet [19] and a series of convolutional
and CBAM [15] layers. As shown in Fig. 1b, it has two
different parallel branches coupled at conv1 of ResNet-50 [18].
The two parallel branches are downsampled with 4:1 and 8:1
ratios respectively. The downsampled branches are followed by
3x3 convolutional and CBAM [15] layers, flattened to extract
low-level features. The output from conv5 block3 of ResNet-
50 [18] is followed by a 1x1 convolutional layer and global
average layer to extract high-level features. The high-level and
low-level features are concatenated and followed by a dense
layer to output the final embedding. Introducing an attention
mechanism in the shallow branches helps the model to focus on
the low-level details like color, texture, and materials regarding
its shape. Since the low-level features have lots of noise,
reducing the retrieval performance, we used CBAM [15] as
the attention module to enhance the essential features while
fading out the non-relevant information.

During image retrieval, the embeddings of each image are
extracted, and cosine similarity between the embeddings is cal-
culated to find the best matching clothes. Distance between the
embeddings estimates the similarity or dissimilarity between
the images. Similar images are closer in the embedding space
while the dissimilar images are distant.

B. Attention Mechanism

Attention mechanism is a technique by which comput-
ers try to simulate how human vision focuses in terms of
computer-based algorithms. It is a method that tries to en-
hance the significant parts while fading out the non-relevant
information. It can dynamically adjust the weights based on
features of the input image.

We use Convolutional Block Attention Module (CBAM
[15])as our attention module. As in Fig. 2, CBAM [15] is
composed of two sequential sub-modules, the Channel Atten-
tion Module (CAM) and the Spatial Attention Module (SAM).

a) Channel Attention Module: Channels are feature
maps stacked in a tensor, where each cross-sectional slice is,
basically, a feature map of dimension (h x w). The input feature
map of the channel is regarded as a feature detector. Channel
attention is calculated by compressing the feature map in the
spatial dimension using max pooling and average pooling to
obtain two different spatial context descriptors. The descriptors
are fed into a shared network to produce a feature vector. The
shared network comprises an MLP (Multi-Layer Perceptron)
and one hidden layer. The output feature vectors from MLP
are merged using element-wise summation, and the sigmoid
function is applied to compute the channel attention map.

b) Spatial Attention Module: Spatial attention repre-
sents the attention mechanism masks on a single cross-
sectional slice of the tensor or each feature map representing
the Spatial Attention Map. As in Fig. 2, Spatial attention is
calculated with the two different feature descriptions obtained
from maximum pooling and average pooling in the channel
dimension. The two feature descriptions are merged, and a
convolutional operation is applied to generate a spatial atten-
tion map.

www.ijacsa.thesai.org 822 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Image

Image Triplet

q p n

Hinge Loss

PA
R

es
N

et
50

PA
R

es
N

et
50

PA
R

es
N

et
50

PA
R

es
N

et
50

  

(a) Deep Ranking Architecture

Image

ResNet

SubSampling

Convolution

CBAM

Convolution

CBAM

Convolution

CBAM

Global Average 
Pooling

conv1_relu

Dense

4:1

320x320x3

160x160x64

40x40x64

20x20x128

20x20x128

10x10x128

10x10x128

5x5x64

Flatten

5x5x64

1600

SubSampling

Convolution

CBAM

Convolution

CBAM

8:1

20x20x64

10x10x128

10x10x128

5x5x64

5x5x64

Flatten

1600

4096 3200

10x10x2048

7296

4096

3x3;2x2

3x3;2x2

3x3;2x2

3x3;2x2

3x3;2x2

Convolution

10x10x4096

1x1;1x1

conv5_block3_out

(b) Dual Branched Attention Network of PAResNet50

Fig. 1. Overall Architecture of PAResNet50 with Deep Ranking

C. Loss Function

We have used a triplet loss function with batch-all online-
mining strategies. A batch of B embedding is extracted from a
batch of B inputs. B is composed of C different styled clothes
with N images each. A valid triplet −→q ,−→p ,−→n is generated
from B embeddings. These three indices (−→q ,−→p ,−→n ) ∈ [1, B]
are query, positive and negative pairs, respectively. Batch all
online mining produces a total of T (1) valid triplets

T = C ∗N ∗ (N − 1) ∗ (C ∗N −N) (1)

where C ∗N is the number of query images, N − 1 is the
possible positive pair per query images and C ∗N −N is the
possible negative pair. Hinge loss is calculated from each valid

triplets (q, p, n) ∈ [1, B].

l(−→q ,−→p −→n ) = max(d(−→q ,−→p )− d(−→q ,−→n ) + ε, 0) (2)

where, ε is the margin and d(−→x ,−→y ) is the Euclidean
Distance between −→x and−→y . The hinge loss function tries to
push d(−→q ,−→p ) to 0 (i.e. pulling −→q and−→p closer) and d(q, n)
to be greater than d(−→q ,−→p )+ε (i.e. pushing −→q and−→n farther).
Our final training loss L is as follows:

L =

T∑
(−→q ,−→p−→n )∈B

l(−→q ,−→p −→n ) (3)

www.ijacsa.thesai.org 823 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 8, 2022

Fig. 2. Structure of Spatial and Channel Attention in CBAM. Source: [15].

D. Training Data Generation

For both DeepFashion [6] and DeepFashion2 [16] datasets
we used the provided benchmark training sets and placed
clothes with same style in a common style folder. These
style folders were kept in their respective category folder.
Each image was cropped with provided bounding boxes. For
DeepFashion2 [16], back-faced and heavily occluded data were
removed. We created a list of all the images available in
the folder. Two images from each style/group were randomly
selected during training to create a batch. The selected pairs
were excluded from the list until the next epoch. Epoch is
completed when there is no image pair left in the list.
We have only used geometric augmentation for both the query
and shop images. The input images are horizontally flipped
with 50% chance and rotated randomly in a range of [−1, 1]
degrees. This helps to increase the generalization performance
and avoid over-fitting. Colour augmentation might change the
original color of both query and shop images which might
cause the corresponding pairs to be dissimilar, so we didn’t
use colour augmentation.

IV. EXPERIMENTS

A. Datasets

a) DeepFashion [6]: The dataset contains over
800, 000 images with the information of categories, land-
marks, bounding boxes, clothes attributes, and image pairs for
Consumer-to-Shop/In-shop clothes retrieval. For this paper, we
have only used the Consumer-to-Shop Clothes Retrieval subset
which contains 33, 881 unique clothing products, 239, 557
consumer and shop images and 195, 540 consumer and shop
matching pairs.

b) DeepFashion2 [16]: The dataset contains 491k di-
verse images from both consumers and shopping where each
item is labeled with scale, occlusion, zoom-in, viewpoint, cate-
gory, style bounding box, dense landmark, and per-pixel mask.
For this paper, we only use Commercial-Consumer clothes
pairs which continents 319k training sets, 34k validation sets,
and 67k test sets. From the available dataset, we removed back-
face and heavily occluded clothes during training.

B. Implementation Details

For the implementation, Keras [20] and TensorFlow [21]
have been used as our deep learning framework. Likewise,

Adam optimizer has been used to train the model with param-
eters β1 = 0.9, β2 = 0.999, ε = 10−6 and an exponential
decaying learning rate of 0.96 for every 150000 steps with
starting learning rate of 10−6. For online triplet loss, margin
of 1.5 has been set. We have used a batch size of 4 composed
of 2 different styles of clothes with 2 images each. Each model
has been trained for different iterations; the training is stopped
according to the model’s performance on validation loss. All
the experiments have been performed in Kaggle with NVidia
K80 GPU.

C. Evaluation Metrics

For the evaluation of retrieval performance, we use top-k
accuracy, as in [[22], [6]]. The top-k accuracy is defined as
follows:

P (K) =

∑
q∈N hit(q,K)

|N |
(4)

where, N is the total number of queries performed.

hit(q,K) = 1 is a hit, if at least one shop image appears
within the top-K ranking for the query image q.

hit(q,K) = 0 is a miss, if no any shop image appears with
in the top-K ranking for the query image q.

D. Experiments with Different Embedding Layers

In this experiment, we have used different embedding
layers keeping other parameters unchanged. We used Flatten
layer, Spatial Pyramid Pooling(SPP) layer, and Global Average
layer after conv5 block3 of ResNet-50 [18]. Table I shows
that the flatten layer has the highest number of feature vectors
with the lowest accuracy. But the global average layer has
less number of feature vectors with the highest accuracy. In
the flatten layer, redundant features and noise reduced the
influence of discriminative features. But in the global average
layer, there are mostly discriminative features. Therefore the
retrieval performance depends upon the size of the feature
vector. We didn’t find SPP efficient compared to Global
Average, so we used GlobalAverage as our embedding layer
to extract high-level features.

TABLE I. COMPARISON OF TOP-K (K= 1, 5, 10, 20, 50) RETRIEVAL
ACCURACY ON DEEPFASHION2 [16] DATASET FOR DIFFERENT
EMBEDDING LAYERS PERFORMED ON 256X256 IMAGE SIZE.

Last layer # size mAP top-1 top-5 top-10 top-20 top-50
Flatten 65536 0.687 0.445 0.629 0.712 0.784 0.865

SPP 21504 0.720 0.485 0.663 0.743 0.815 0.893

GlobalAvg 4096 0.785 0.576 0.747 0.812 0.863 0.927

E. Experiments with Different Backbone Networks

In this section, we have experimented with different clas-
sification models to find the best retrieval performance. From
Table II, it can be clearly observed that ResNet-50 [18] archi-
tecture has significantly higher performance in comparision to
VGG-16 [23], and MobileNetV1 [24], so we used ResNet-50
[18] as our backbone network in PAResNet50 [1].
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TABLE II. COMPARISON OF TOP-K (K= 1, 5, 10, 20, 50) RETRIEVAL
ACCURACY ON DEEPFASHION2 DATASET FOR DIFFERENT
ARCHITECTURES PERFORMED ON 256X256 IMAGE SIZE.

Models mAP top-1 top-5 top-10 top-20 top-50
VGG-16 [23] 0.699 0.453 0.633 0.715 0.804 0.894

MobilenetV1 [24] 0.566 0.315 0.486 0.572 0.665 0.793

ResNet-50 [18] 0.798 0.588 0.761 0.822 0.882 0.937

F. Experiments with Different Image Size

To find the influence of image size in PAResNet50, we have
experimented with different image sizes while keeping other
parameters constant. From Table III, we found the input images
of size 320x320 to be the best for our settings. Therefore, a
larger image size helps to increase the retrieval performance so
we used 320x320 image size in PAResNet50 for both training
and testing.

TABLE III. COMPARISON OF TOP-K(K=1,5,10,20,50) RETRIEVAL
ACCURACY ON DEEPFASHION2 DATASET FOR DIFFERENT IMAGE SIZES.

Image size mAP top-1 top-5 top-10 top-20 top-50
256x128 0.7896 0.567 0.746 0.817 0.879 0.939

256x256 0.798 0.588 0.761 0.822 0.882 0.937

320x320 0.813 0.617 0.774 0.834 0.895 0.943

G. Experiments with Different Architectures

We experimented with different kinds of architectures.
They are as follows:

a) Simple Network(SN): It is a simple ResNet-50 [18]
classification model pre-trained on Imagenet [25]. The output
from conv5 block3 of ResNet-50 [18] is followed by 1x1
convolutional layer, global average layer and a dense layer
to extract a feature embeddings.

(a) (b)

Fig. 3. a) and b) are the Top-1 and Top-5 Categories Retrieval Accuracy on DeepFashion [6] Validation Set. Each Model is Trained on Image Size of 320x320.

(a) (b)

Fig. 4. a) and b) are the Top-1 and Top-5 Categories Retrieval Accuracy on DeepFashion2 [16] Validation Set. Each of the Model is Trained on Image Size of
256x256.
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b) Single Branched Network(SBN): It is an extention
to already existing Simple Network. A ResNet-50 [18] classi-
fication model coupled with a parallel branch. In the parallel
branch, the output from conv1 relu is downsampled with a
ratio of 4:1 and a series of convolutional layers is used. The
output from the global average layer and the parallel branch
is concatenated which is followed by a dense layer to extract
the final feature embeddings.

c) Single Branched Attention Network (SBAN): This
follows the architecture of Single branched network (SBN )
here the convolutional layer in the parallel branch is followed
by the CBAM [15] layer.

d) Dual Branched Attention Network
(DBAN/PAResnet50): It is our final model, which has
shown the best performance. It has two parallel branches
with downsampling of 4:1 and 8:1, respectively. After
downsampling on each branch, a series of convolutional and
CBAM [15] layer is used which is followed by a flatten layer
to extract low-level features. The outputs from the global
average layer and the two parallel branches are concatenated
and followed by a dense layer to extract the final feature
embeddings. The architecture of PAResNet50 is shown in the
Fig. 1.
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Fig. 5. a) and b) are the Comparison of Top-k(k=1,5,10,20) Retrieval
Accuracy for Different Architecture on DeepFashion [6] and DeepFashion2
[16] Dataset Respectively. Each of the Model is Trained on Image Size of

256x256.

e) Architecture Comparison: From the Fig. 5, we ob-
served that using low-level features directly from the branched
network (SBN ) slightly increases the model’s performance
compared to Simple Network (SN ). The increase in per-
formance is due to addition of low-level features. Adding a
CBAM [15] layer in the branch (SBAN ) further improves
the performance since the attention mechanism suppresses the
noises from low-level features. When two branches with an
CBAM [15] layer (PAResNet50) are used to extract the low-
level features, the model gets on additional fashion details
(i.e., color, styles, and patterns) to learn, which significantly
increases the retrieval performance. Therefore Dual Branched
Attention Network(DBAN/PAResnet50) has higher retrieval
accuracy in comparison to other architectures. We also applied
attention mechanism on high level features by adding CBAM
[15] layer on different blocks of ResNet-50 [18], but it didn’t
improve the performance. The attention mechanism didn’t
work well on high-level features.
To better analyze each architecture’s performance, we evalu-
ated the top-1 and top-5 retrieval accuracy for each category

on both Deepfashion [6] and Deepfashion2 [16] datasets. Fig.
3 shows that PAResnet50 has improved the top-1 and top-5
retrieval accuracy on DeepFashion [6] for clothing, dresses,
and tops while slightly improving in trousers. From the Fig.
4, we can see that on DeepFashion2 [16], PAResnet50 has
the highest top-1 retrieval accuracy in all categories except
sling and vest dress. In the top-5 retrieval accuracy, it has also
performed well in the sling category.

H. Results on Deepfashion [6] and Deepfashion2 [16] Dataset

TABLE IV. COMPARISON OF PARESNET50’S [1] TOP-K
(K=1,5,10,20,50) RETRIEVAL ACCURACY ON DEEPFASHION [6] AND

DEEPFASHION2 [16] DATASETS WITH 320X320 IMAGE SIZE

Datasets mAP top-1 top-5 top-10 top-20 top-50
DeepFashion [6] 0.771 0.503 0.733 0.810 0.873 0.936

DeepFashion2 [16] 0.813 0.617 0.774 0.834 0.895 0.943

We trained PAResNet50 on both DeepFashion [6] and
DeepFashion2 [16] datasets with image size of 320x320.
Table IV shows that DeepFashion2 [16] dataset has higher
performance in comparison to DeepFashion [6] since we have
removed the back-faced and highly occluded images in Deep-
Fashion2 [16], which reduced the conflict invalid image pairs.
The back-faced and occluded clothes might have different
colors, patterns, and texture, so when paired together, it forms
invalid pair and decreases the training performance.

Results from Table IV confirm that our proposed model
PAResNet50 is suitable for fashion image retrieval on different
e-commerce websites.

I. Query Results

To better understand the output quality of PAResNet50,
we analyzed the query results on different category images as
shown in Fig. 6. The output is categorized into three groups
best, good, and bad. The top three rows are the best output,
retrieving the corresponding shop image in the top-1 list. The
fourth and fifth rows are the good outputs, retrieving the
corresponding shop image in the top-3 list. The bottom row
is the bad output where the pair shop doesn’t occur within
the top-3 list. We can observe that our model can retrieve
perfect matching images by learning fashion details such as
colors, styles, patterns, and textures. In the second row first
query, our model has retrieved the exact shop image even if
the cloth is not worn (shape deformed). With results from the
first-row second query and second-row second query, we can
see that even under different lighting conditions, our model has
delivered the exact shop image in the top-1 list. Therefore,
our model is robust to different lighting conditions. In the
second last row of Fig. 6, although the exact shop image is not
retrieved in the top-1 list, visually similar colors and pattern-
styled clothes are retrieved, which is a more challenging task
for a human being. In the bottom row, even though the exact
shop image doesn’t appear in the top-3 list, the retrieved
images are significantly similar to the query image.

J. Attention Visualization

To find the effect of the attention mechanism (CBAM [15]),
we have visualized the attention map from PAResNet50. We
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Fig. 6. Top-3 Retrieved Images for a Given Query on DeepFashion2 [16] Dataset. Green Box Indicates the Corresponding Shop Image.

Fig. 7. Visualization of Attention Map in the Query Images from PAResNet50 1. Red Indicates Higher Important Region while Blue Indicates Lower
Important Regions.
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used Grad-CAM [26] for visualization. From Fig. 7, we can
clearly observe that our model has mainly focused on the local
discriminative regions (e.g. logos, pictures, patterns, and text)
in an input image while ignoring non-discriminative regions
(e.g. background, plain region, and hand). Therefore only the
discriminative features are used to find the matching images,
which increases the retrieval performance of the model. Atten-
tion mechanism on the branch layer helps the network focus on
only the important features while ignoring the less significant
ones.

K. Experimental Summary

Overall, multiple experiments were conducted to find the
best settings for image retrieval tasks. Table II, which is the
comparison of different classification models (VGG-16, Mo-
bileNet, and ResNet-50), shows that ResNet-50 outperforms
other models with a minimum margin of 10 percent in mAP
metrics. Likewise, Table I clearly depicts that using ResNet-
50 architecture with Global Average as embedding layer has
performed the best with top-k (k=1, 5, 10, 20, 50) accuracy
as 0.576, 0.747, 0.812, 0.863, 0.927 respectively. Further, to
show the importance of low-level features and attention mech-
anisms in image retrieval tasks, we experimented with different
architectures. Experimental results from Fig. 5, clearly indicate
that Dual Branched Attention Network (DBAN) has achieved
the highest retrieval accuracy. Analyzing the Fig. 3 and Fig. 4
demonstrates that DBAN works best in almost all categories.
Also, the experiment concluded to observe the influence of
different image sizes displays that higher resolution increases
the model retrieval performance. As shown in Table III, an
image size of 320x320 works best for DBAN. The query
output from Fig. 6 helps to better understand the quality of
DBAN which shows that this model retrieves visually similar
colors and pattern-styled clothes and is robust to different
lighting conditions. To further show the attention region of
the DBAN, we have visualized the attention map in Fig.
7. We observed that the model has primarily focused on
discriminative features. Therefore, it confirms that the attention
mechanism ignores the noisy background.

V. CONCLUSION

In this paper, we have designed the PAResNet50 architec-
ture to present the importance of the low-level features with an
attention mechanism for image retrieval tasks. We found that
two coupled attention branches in Dual Branched Attention
Network(DBAN/PAResNet50) learn low-level fine details and
effectively locate the local discriminative regions while ignor-
ing non-significant areas. From various experiments, it can
be inferred that incorporating low-level discriminative features
along with high-level features improves retrieval performance.
The query results exhibit the usability of PAResNet50 in
a variety of categories for different e-commerce purposes.
Experiments with different architectures(SN, SBN, SBAN, and
DBAN) on two public datasets, DeepFashion, and DeeFash-
ion2, demonstrate that DBAN(PAResNet50) outperforms other
architectures with fewer or no attention branches. This result
leaves room for the possibility of future enhancement in the
retrieval accuracy by experimenting with a greater number of
such multiscale attention branches.
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