
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

ModER: Graph-based Unsupervised Entity Resolution
using Composite Modularity Optimization and

Locality Sensitive Hashing

Islam Akef Ebeid, John R. Talburt, Nicholas Kofi Akortia Hagan, Md Abdus Salam Siddique
Department of Information Science

University of Arkansas at Little Rock
Little Rock, Arkansas

Abstract—Entity resolution describes techniques used to
identify documents or records that might not be duplicated;
nevertheless, they might refer to the same entity. Here we study the
problem of unsupervised entity resolution. Current methods rely
on human input by setting multiple thresholds prior to execution.
Some methods also rely on computationally expensive similarity
metrics and might not be practical for big data. Hence, we focus
on providing a solution, namely ModER, capable of quickly
identifying entity profiles in ambiguous datasets using a graph-
based approach that does not require setting a matching threshold.
Our framework exploits the transitivity property of approximate
string matching across multiple documents or records. We build on
our previous work in graph-based unsupervised entity resolution,
namely the Data Washing Machine (DWM) and the Graph-
based Data Washing Machine (GDWM). We provide an extensive
evaluation of a synthetic data set. We also benchmark our proposed
framework using state-of-the-art methods in unsupervised entity
resolution. Furthermore, we discuss the implications of the results
and how it contributes to the literature.

Keywords—Entity resolution; data curation; database; graph
theory; natural language processing

I. INTRODUCTION

Entity resolution is critical in data cleaning, curation, and
integration [1]. It also refers to finding duplicate records within
the same table, across various tables, or multiple databases
that might refer to the same entity. Traditional and rule-based
entity resolution relies heavily on human input to guide the
entity matching process using predefined rules. Defining those
rules depends on handcrafting simple lexical, semantic, and
syntactic conditions for matching records based on attribute
similarity, such as in [2] and in [3]. However, moving toward
automating entity resolution for data cleaning, curation, and
integration has become a sought-after goal in many domains.
Thus, unsupervised entity resolution methods have increased.

Nevertheless, unsupervised approaches suffer from higher
inaccuracies than other methods due to relying solely on
approximate string matching. Approximate string matching
algorithms can quantify the similarity between strings based
on character or token frequency and location [4]. String
similarity metrics can vary in granularity from character-based
to context-based. For example, character-based approaches such
as Levenshtein’s Edit Distance [5], Affine Gap Distance [6],
Smith-Waterman Distance [7], Jaro Distance [8], or n-gram
based algorithms [9] are better suited for data where the order

of the tokens matter in identifying unique entities [4]. On the
other hand, token-based approaches such as Overlap, Cosine,
Dice, Monge-Elkan [10], and Jaccard [11] rely on tokenizing
the text into a finite set and then comparing the intersection
and union between the sets, which makes them better suited
for data characterized by typographical errors. The TF-IDF
algorithm [12] is another type of string similarity metric, which
is more context-based and depends on token frequencies in a
corpus.

Unsupervised entity resolution methods typically follow an
automated processing pipeline that consists of preprocessing,
blocking, matching, clustering, profiling, and canonicalization.
Preprocessing refers to multiple steps that involve merging
and parsing data files, tokenizing, and normalizing the un-
standardized documents. Blocking is the strategy used to
mitigate the quadratic complexity of pairwise comparisons in
unsupervised entity resolution. That strategy relies on quick and
dirty techniques that divide the preprocessed unstandardized
references into chunks or blocks, avoiding string matching
across the whole dataset. As a result, each block can be
processed separately, where pairwise string similarity can be
applied with less computational cost.

Generally, unsupervised entity resolution systems resort to
matching threshold setting and end the entity matching process
at that stage, such as in [13]. Other systems further expand
the pipeline to identify entity profiles generalizing the entity
matching output to more than two entity clusters. The clustering
process aims to resolve conflicts in pairwise matching and find
records that indirectly match. Those conflicts typically occur
due to the reliance on frequency-based blocking [1]. Thus,
to increase automation, reduce the amount of human input,
and increase efficiency in the unsupervised entity resolution
process, we aim to reduce the number of input parameters
needed and to step away from direct approaches in approximate
string matching. We introduce a graph-based approach to entity
profiling in unsupervised entity resolution systems that leverage
graph clustering algorithms’ maturity and autonomy.

More specifically, we address the following challenges in
graph-based unsupervised entity resolution systems represented
by [13] and iterative self-assessing systems represented by [1]:

• The processing pipeline in iterative self-assessing
systems might need to be applied multiple times due
to the low accuracy of relying on approximate string

www.ijacsa.thesai.org 1 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

matching alone without rules as in traditional methods.
That is clear in approaches such as the Data Washing
Machine (DWM) [1].

• Using approximate string-matching similarity measures
that rely on heuristics, though providing robust results,
sometimes undermines processing speed. Moreover,
those algorithms are exhaustive with quadratic time
complexity running time, such as in [14]. In addition,
though [13] introduced a learned similarity function,
the algorithm is relatively expensive and does not
provide an entity profiling capability.

• Setting matching thresholds as in [13], and cluster
quality thresholds as in [1] might be problematic for
the user’s perspective. Interpreting those thresholds
depends on the fed data, and the user might not have
a baseline reference to compare.

A. Contribution

Here we developed a solution that relies on exploiting the
transitivity property characterized by the output of the matching
process, allowing us to recast the matched documents as a graph
of weighted edges. We expand on the work that our group has
done, mainly the Graph-based Data Washing Machine (GDWM)
[15] and the original Data Washing Machine (DWM) [1]. We
address the previously mentioned problems as follows:

• ModER avoids the extra computational cost of iter-
ating multiple times over the processing pipeline to
maximize a similarity threshold and optimize a cluster
quality threshold [1]. First, the recast graph is divided
into smaller subgraphs using a connected component
detection algorithm exploiting the transitivity property
of pairwise matching. Second, a document-word bi-
partite graph is formed where an initial modularity
optimization runs to initialize cluster memberships of
document nodes on the block level subgraph. Finally, a
conditional greedy modularity maximization algorithm
further breaks down the detected clusters.

• Instead of costly computing token-based similarity
measures, the weighted edges representing the ap-
proximated similarity between every two documents
on the block level are estimated using a Locality
Sensitive Hashing scheme [16]. The similarity weight
is approximated using a MinHash Jaccard estimator
[17]. In addition, we exploit the fact that documents
or records almost always include highly discriminative
terms representing a fingerprint for each document.

• Instead of relying on the user to set similarity matching
and cluster quality thresholds, we overcome the need
to set algorithm-related thresholds by using Modularity
as an optimized cluster quality metric guiding the
matching and linking processes. The only parameters
that the user needs to input are data-related: the
percentile of blocking words, the percentile of stop
words, and the percentile of discriminative words. That
allows the user to study the data before running our
framework statistically. The user can then provide those
parameters as a function of the statistical analysis of
the dataset.

• To our knowledge, Modularity based graph clustering
has not been adapted before to the problem of unsuper-
vised entity resolution. Therefore, we make our code
publicly available as a git repository through the link
under the directory ModER1.

II. RELATED WORK

There is a large number of entity resolution systems in the
literature in general targeting many problems such as ZeroER
[18], DITTO [19] and Swoosh [20]. In this literature review we
focus specifically on papers that are within the scope of graph-
based unsupervised entity resolution. Despite their sparsity in
the literature, graph-based methods and algorithms have been
adapted before to entity resolution.

A. Token-based Graph Entity Resolution

In token-based graph entity resolution, the goal is to
construct a bipartite undirected graph of token nodes and record
nodes and cluster the record nodes into unique entities using
methods such as SimRank [21]. In [22], the authors introduced a
graph-based entity resolution model. The model transformed the
input data set into a graph of unique tokens where connectivity
reflects the co-appearance of tokens in references. The graph
was clustered using a weight-based algorithm that considered
three types of vertices: exemplar, core, and support vertices. The
algorithm then constructed r radius maximal subgraphs from
the original token graph to discover clusters related to unique
entities. Token-based methods, however, are computationally
expensive and memory intensive due to the lack of an integrated
blocking strategy.

B. Record-Record Simiarlity-Based Graph Entity Resolution

Record-record similarity graphs link structured unstandard-
ized references in a weighted undirected graph where the nodes
represent unique records. The connectivity represents the degree
of similarity between individual references. That approach of
constructing a record graph allows to directly utilize a whole set
of graph clustering algorithms that graph theory and network
science researchers have already developed. While [23] applied
a graph clustering algorithm to optimize minimal cliques in
the graph. The algorithms approximated the NP-hard graph
clique problem through pruning. Moreover, [24] developed
the FAMER framework to combine multi-source data using
blocking, matching, and clustering schemes. The framework
modeled the merged data as a similarity-record graph and then
leveraged graph clustering techniques to resolve the entities.

Other work has leveraged the graph’s structure instead of
just the weights between records. In [25], the authors proposed
three algorithms to cluster the similarity graph based on
structure rather than edge weights. They argue that graph-based
transitive closure, such as in [26], produces high recall but low
precision because the graph’s structure is not considered during
clustering. They justified using maximal clique algorithms to
leverage the graph’s structure, which increases precision. There
are also centrality and node importance-based methods where
the edge weights are not considered, and node scores are
propagated, such as in [27]. In addition, the authors introduced

1https://bitbucket.org/oysterer/dwm-graph/src/master/ModER/

www.ijacsa.thesai.org 2 | P a g e

https://bitbucket.org/oysterer/dwm-graph/src/master/ModER/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

the notion of a node resistance score in a co-authorship graph
to model entity similarity. Node resistance can be considered
a PageRank score [28], where a random walker computes
the probability of getting from the source node to the target
node iteratively until convergence. Also, in [29], the authors
introduced a graph-based model that linked two graph datasets
by aggregating similarity scores from neighboring record nodes.
However, record-record similarity methods are complicated and
require extensive graph theory knowledge to tune the adapted
methods.

C. Hybrid Graph-based Entity Resolution

Hybrid methods that combine token-based bipartite graphs
and similarity-based record-record graphs have been investi-
gated in [13] and [30]. The authors proposed an algorithm that
combines text similarity with a graph-based algorithm. They
first partition the data into a bipartite graph of record pair nodes
and frequent term nodes to learn a similarity score of the record
pair nodes. Then, the result was used to construct a record-
record graph and used to power the CliqueRank algorithm,
which runs on the blocks of records identified by the first part,
known as the ITER algorithm. The probability of a matching
pair of records is then updated iteratively. The authors combined
two distinct methods: the random walk-based approach and the
graph clustering-based approach. However, the authors used the
graph approach to match pairs of records without introducing
any clustering approach that would resolve the entity profiles.

The following section describes the framework, method,
and algorithm used in ModER.

III. PRELIMINARIES

A. Problem Definition

Let us assume that we have a collection of merged
documents in one file where every single document has a
unique identifier and a reference body. More formally, the set of
merged documents are D consisting of tuples di = (ui, ri)
where ui ∈ U is a unique identifier that is either provided
in the input file or is automatically generated by ModER
and ri ∈ R is the reference body. Let us also assume that
there exists a latent variable τ representing the underlying
hidden unique entity profiles in the data file pointing to the
probability P (τ) =

∑N
i=0 P (di ∈ τ) where N is the number

of documents In the file. Hence |τ | <= N . That reformulates
the problem as an estimation of P (di ∈ τ) for each document
di.

B. Graph Formulation and Modularity

Consider a set of document unique identifiers ui and their
tokenized unique reference bodies ri. Consider two ways of
remodeling the input corpus as a graph. First a document-
document graph G = (V,E) where each vertex/node v ∈ V
represents a unique document ui ∈ U where u ≡ v. While
an edge e ∈ E where E ⊆ V × V represents whether two
records ei = (ri, rj) are matched, and an edge weight we ∈
W (E) : E → R represents the normalized similarity between
the two nodes. A graph G could be represented as an adjacency
matrix A of size |V | × |V |, where each cell in the matrix
contains either a 1 if an edge exists between two nodes or 0
if an edge does not exist. Each cell value containing 1 could

be multiplied by the edge weight to represent a weighted
adjacency matrix. We also define a set of clusters Q ⊆ P (V)
where Q elements are a subset of V and P is a partition of V .
The clustered graph conventionally can be seen as a graph of
subgraphs where each meta-vertex represents each subgraph of
vertices or records as follows:

V ′ = Q (1)

E′ = (Qi, Qj) : ∃ (vi, vj) : vi ∈ Qi, vj ∈ Qj , (vi, vj) ∈ E
(2)

Second, the corpus of input data could be modeled as a
bipartite graph G = (V, Y,E) with two types of nodes V and
Y where an edge e ∈ E E ⊆ V × Y can only exist between
two nodes of different types. In our case, the first type of node
v ∈ V represents a unique document ui ∈ U where u ≡ v
and the second type of nodes y ∈ Y represents a unique token
ti ∈ T where t ≡ y. Edges can exist between a document node
and a token node if the token exists in the document reference
body. We also define the notion of node membership qi where
a node ni can only be a member of one cluster qi. Finding
the best suitable cluster membership for a node ni could be
achieved through optimizing cluster quality heuristics such as
Modularity [31] or Conductance [32]. Modularity quantifies
the cluster quality in a graph by comparing the edge density
in each cluster to a randomly rewired hypothetical network.
Recall the notions defined in equation 1 and 2. Modularity can
then be conceived as:

M =
1

2m

∑
i, j

[
Ai, j −

kikj
2m

]
∂ (Qi, Qj) (3)

Where m is the number of edges in the graph and k is
the degree of a node. In addition A is a weighted adjacency
matrix constructed from E′. And, i and j are indices for each
unique record in the file, represented as a vertex in the graph
as v′ ∈ V ′. And e′ ∈ E′ E′ ⊆ V ′ × V ′ and e′ ≡ Ai, j .

C. Similarity and Transitivity

Consider that if record a matches record b and record b
matches record c, then by transitivity, record a matches record c.
The former definition of transitivity is the notion that binds our
assumptions that lead us to create a graph from a set of matched
documents. This assumption can only hold if the probability
of record a matching record b and the probability of record b
matching record c care is high enough [33]. A high enough
probability in approximate string matching is considered above
50% [34]. we interpret normalized approximate string similarity
measures such as the Jaccard index and Levenstein ratio as
matching probabilities. Hence, a Jaccard similarity between
two documents below 50% is not accepted as a link between
two records, which is crucial for the transitivity assumption
to remain valid. Note also that the transitivity assumption is
what allows us to form a document-document graph; otherwise,
it does not make logical sense to apply a transitive closure
algorithm on a formed graph if transitivity does not hold or,
in other terms, if the edge weight between nodes representing
the matching probability is less than 50%. That assumption
could also be corroborated by interpreting similarity at 50%
as extreme uncertainty of whether the two documents are
similar instead of the intuition that a 10% similarity indicates

www.ijacsa.thesai.org 3 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

uncertainty. On the contrary, a 10% similarity holds more
certainty that the two documents are dissimilar. Hence a 50%
similarity is an appropriate baseline for interpreting approximate
string similarity measures as matching probabilities.

IV. METHOD

In this section we extensively describe the proposed
framework as shown in Fig. 1.

A. Merged Input Corpus

The input corpus is defined in one file. The file is merged
from multiple data sources. The user manages this step where
the only requirement is a single merged file. In the future,
we intend to address having to merge multiple data sources
as part of the framework developed here. The assumption is
that each line in the file represents a document containing a
reference body where the number of latent entity profiles is
less than or equal to the number of documents. In addition,
as mentioned in the preliminaries section, it is assumed that
documents share at least one token so that the assumption of
transitivity is not broken III-C. Note that the unique identifier
ui ∈ U is either provided in the input file or is automatically
generated by ModER.

B. Preprocessing

The parsing process includes normalization, cleaning, to-
kenization, and filtering and is central to the framework.
Tokenization is preceded by the normalization and cleaning step,
where the text from the reference bodies of the documents is
cleaned from particular characters and converted to lowercase. If
a unique character appears in the token’s middle, it is removed,
and the entire string is compressed. We use the standard
approach to tokenizing text in English, splitting the text based
on spaces between tokens. The parsed data are then loaded into
memory, and unique token frequencies and length dictionaries
are computed. Stop words are also removed if their frequencies
exceed a parameter sigma σ. More formally, as referred to
before in the preliminaries Section III-B, the corpus D consists
of tuples di = (ui, ri) where ui ∈ U and ri = wi ∈ W
contains a unique distinct set of tokens T with different counts
C given that ti is a distinct unique token where ti ∈ T ⊆ wi

and ci is the corresponding count of each unique token ti
where ci ∈ C and C = |ti ∈ T |. In addition, a token length
dictionary is computed where li ∈ L and L = len(ti ∈ T).
First each document di ∈ D is processed using σ to filter
out tokens ti ∈ ri with frequency ci ∈ C and C = |ti ∈ T |
above σ to filter out stop words.

C. Blocking

The blocking process aims at reducing the potential number
of pairwise matching across a data file as much as possible.
We use a frequency-based blocking algorithm that assumes
that two records that refer to the same entity share at least
one token. We adapted the frequency-based blocking technique
presented in the DWM [1]. The blocking method relies on
the parameter beta β. For each reference token ti ∈ ri with
frequency ci ∈ C and C = |ti ∈ T | below β and above 2
is considered a blocking token tBi ∈ T . Blocking tokens are
identified for each reference in a list L where the filtered

records are repeated. The list is then grouped by blocking
tokens regardless of reference. Each block includes all the
references where the same blocking token appeared, and the
number of blocks was equivalent to the number of unique
blocking tokens in the dataset. This process is formalized in
Algorithm 1.

Algorithm 1: Blocking
Input :C(T), R, β, σ: unique token frequencies,

record set
Result :B: list of blocks
B ← list
for r ∈ R do

if ci ∈ C for each tij ∈ r where ti ∈ T ≥ σ
then

r ← remove tij from r
end
if ci ∈ C for each tij ∈ r where ti ∈ T ≤ β

then
L← (tij , r)

end
end
Ls ← sort(L, ti ∈ T)
Tu ← unique(tij ∈ Ls)
for ti ∈ Tu do

for ls ∈ Ls do
if ti = ti ∈ ls then

bi ← r ∈ ls
B ← B + bi

end
end

end
return B

D. Fast Matching using Locality-Sensitive Hashing

The goal here is to provide a quick, fast, and multilevel
way of grouping documents that might belong to the same
latent unique entity. However, matching every document in the
corpus would result in an algorithm that runs as O(N2) in
time. So, our efforts are concentrated on reducing the number
of possible matching operations through 3 steps. First, after the
preprocessing phase, we apply a Locality Sensitive Hashing
(LSH) [16] algorithm to allow for a quick approximation of a
similarity function such as Levenshtein ratio, Cosine distance,
or Jaccard index. Even at the block level, computing the
former similarity metrics can be expensive for larger files. LSH
aims at using a hashing algorithm to approximate a similarity
function such as Jaccard index [11]. Jaccard similarity involves
computing the set intersection and union across tokenized
words between the two documents being compared. Computing
both a union and an intersection could be computationally
expensive, misaligning with our overarching goal of reducing
string-wise comparisons as much as possible. An LSH algorithm
operates on a metric, a threshold, an approximation factor, and
a set of probabilities. The goal is to design a hash function
that approximates a metric by optimizing a threshold. The
approximation is achieved by making sure that the set of
probabilities holds.

www.ijacsa.thesai.org 4 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 1. An Overview of the ModER Framework.

Here we adapt the MinHash algorithm [17] to estimate the
similarity between records in the same block. The MinHash
algorithm is designed to approximate the Jaccard index between
two sets. Sets are columns in a matrix where each row represents
an element from the union of the two sets. A cell value of
1 represents the existence of that element in one of the two
sets. The critical observation is that the Jaccard similarity
could be approximated by counting the number of collisions
between the two sets after hashing each element in each
set. So counting the number of collisions of hashes between
the two sets and normalizing them by the total number of
hashes approximates the Jaccard similarity [35] [16]. That
technique reduces the number of operations needed to compare
two documents from O(N2) to O(N) in time in best cases
and O(N log(N)) in worst cases. we adapt MinHash by
precomputing the approximating hash functions over the entire
corpus. We provide a simple implementation of the MinHash
algorithm in our code; however, while running experiments,
we used the highly optimized implementation introduced by
[36]. Each word is hashed for each document in the corpus
using a 32-bit SHA algorithm [37]. The hashed unique tokens
represented in each document are permutated and then drawn
randomly from each document. A signature is then computed
for each unique word in the documents, and the minimum
signature is chosen to represent that word in the documents.
The Jaccard index is then estimated linearly by counting the
number of similar signatures in the same position over the
total number of signatures appearing in the two documents
according to the proof presented initially in [17]. We did not
formalize MinHash here as formalizations of the algorithm are
widely available.

The second part of our matching scheme, also done on
the block level, is that we do not take the estimated Jaccard
similarity at face value. We first filter the documents and extract
what we call discriminate tokens. Those are tokens longer in
length than a parameter delta δ. Discriminate tokens represent
tokens that, by looking at them, you can quickly determine
whether two documents are similar. Those tokens might be
social security numbers, credit card numbers, long street names,
long last names, scientific names, product numbers, or models.
Those tokens are usually highly discriminative in determining
whether two documents are similar. Hence before estimating
the Jaccard index on the block level, we check whether the
two documents have tokens in common that are longer than

delta and their Levenshtein distance is less than 2. We consider
2 to be the threshold that defines a typo. The strength of our
framework lies in the fact that we do not use a similarity
threshold to match documents on the block level. Instead, we
allow the data to automatically match the documents based
on the characteristics represented in the parameters derived
from the token frequencies and length. Hence, on the block
level, we link documents with a similarity above 0 without any
threshold setting. That process is described semi-formally in
the pseudo-code presented in Algorithm 2.

Algorithm 2: Pairwise Matching using MinHash
Input :B, F : list of computed blocks, unique token

lengths
Result :E: linked weighted pairs
E ← list
for b ∈ B do

for r1 ∈ b do
for r2 ∈ b do

if r1 < r2 then
d1← f1 ∈ F
d2← f2 ∈ F
if d1 = d2 or levenshtien(d1, d2) ≤ 2
then

s← 1.0
end
else

s← minHash(r1, r2)
end
if s > 0.0 then

E.append((r1, r2, s))
end

end
end

end
end
return B

E. Graph Modeling

The unordered list of matched records can be considered
an edge list or an adjacency matrix representing a graph of

www.ijacsa.thesai.org 5 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 2. Graph Modeling. First, the Matched Records are Modeled as One Large Weighted Graph with Expected Disconnected Components Due to the Transitivity
Property. Second, Connected Component Detection Algorithms Output the Nodes in each Connected Component. Third, each set of Nodes is then Modeled as a

Subgraph.

Fig. 3. The Typical Unsupervised Entity Resolution Approach Starts with Frequency-Based Blocking, Pairwise Matching, and Entity Clustering.

records. The blocking algorithm considers two similar records having a high probability of representing the same entity if

www.ijacsa.thesai.org 6 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

they have a minimum of one token in common. That increases
the number of records representing one entity, as shown in Fig.
3. As a result, a record may appear in more than one entity,
making clustering more expensive and the underlying graph
of matched records more complex. In addition, the matching
process also implies that one record might be similar in an
indirect way to another record by transitivity, provided that the
matching probability is above 50%. The output of algorithm
two is modeled as a graph, as mentioned in the preliminaries
in Section III-B and as seen in Fig. 2. A subgraph is then
extracted on the block level.

F. Graph-based Entity Profiling

1) Transitive Closure: In transitive closure, the aim is to
find the set C of sets V ′ where each set represents a strongly
connected component in the graph. A strongly connected
component is a set of nodes where each node has at least
one link to another node. Strongly connected components
are separated by unlinked nodes. We also refer to strongly
connected components as soft clusters. Here in ModER, one
of two approaches could be used. First, an algorithm named
CCMR was introduced by [26] and used and reimplemented in
the original DWM [1] as a single-step clustering method. The
algorithm starts by creating star subgraphs from the matched
pair list. That is done by simply grouping the pair list by the
smallest node. Then, the algorithm iteratively checks whether
its vertices are assigned to subgraph components where the
center of the subgraph component is the smallest vertex in its
first-order neighborhood, relying on the MapReduce framework
for scalability. The DWM provides an efficient implementation
of the algorithm without relying on MapReduce. The algorithm
is formalized and described thoroughly in [26] and [1]. The
second approach that could be used is a simple breadth-first
search algorithm [38] to extract the connected components or
soft clusters. We provide implementation and describe both
algorithms semi-formally in Algorithms 3 and 4.

2) Subgraph Extraction: The subgraph extraction process
aims to avoid recomputing edge weights that have been
computed before during the fast-matching process. A subgraph
is simply the set of soft clusters that have been computed using
the transitive closure process. Each soft cluster is represented
by a set of unique nodes or documents. Each document or
node can appear in only one soft cluster. To extract a subgraph
from the larger graph, we find the edges where all the nodes in
the current soft cluster are represented exclusively. Subgraph
extraction is formalized in Algorithm 5.

3) Composite Modularity Optimization: In the Composite
Modularity Optimization step, the goal is to initialize the cluster
membership of each node in the extracted subgraph based on
token memberships in each document. Next is to refine the
clusters discovered in the initial clustering to more precise
memberships. In the following two subsections, we outline
how we implement that process.

a) Bipartite Spectral Modularity Optimization: This step
exploits the relationship between documents and unique tokens
across all documents. First, we project the unique document
identifiers and unique tokens across all documents as a bipartite
graph similar to Fig. 4.

Algorithm 3: Transitive Closure using Adapted
CCMR

Input :S, µ: pairs of matched records and their
computed similarity scores, similarity threshold

Result :P : list of soft clusters as pairs
indexed by the least record in the cluster as
the first element of the pair

P ← list of soft clusters
RP ← initialize list of tuples
for s ∈ S do

if si ≥ µ then
RP ← append si

end
end
RP ← sort by first element in pair
while no convergence do

for (ri, rj) ∈ RP do
P ←
append pair belonging to connected component
when assuring that all record
nodes belong to the connected component
with the smallest record id
node at the center in their neighborhood;

end
end
return P

Algorithm 4: Connected Components Breadth First
Search

Input :G = (V,E): graph
Result : V ′: set of nodes as component
seen← set
components← list
for v ∈ V do

if v! ∈ seen then
visited← set
queue← list
visited.add(v)
queue.add(v)
while queue do

dequeued← queue.pop()
neighbors← G.getNeighbors(dequeued)

for n ∈ neighbors do
if n! ∈ visited then

visited.add(n)
queue.append(neighbors)

end
end

end
seen.add(visited)
components.append(visited)

end
end
return components

www.ijacsa.thesai.org 7 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 4. A Token-Record Bipartite Graph.

Algorithm 5: Subgraph Extraction
Input : V ′, A: component, adjacency
Result :G′ = (V ′, E′): graph
E′ ← list
for v ∈ V ′ do

neighbors← G.getNeighbors(v)
for nn ∈ neighbors do

if nn ∈ V ′ then
E′.append((n, nn,A[n][nn]))

end
end

end
return (V ′, E′)

Recall equation 3; we defined the Modularity heuristic M as
the sum of the difference between the edges of the current graph
versus a null model graph where edges are rewired randomly
within clusters. Here we approach Modularity optimization
on the bipartite network of documents and unique tokens or
words using a spectral approach or, in other words using matrix
form. The goal is to optimize Modularity across both types
of nodes in the bipartite graph and extract only the optimized
cluster memberships of document nodes. First, a clustered
index matrix S is defined where the rows are the nodes in the
graph, and the columns are the number of clusters in the graph.
Initializing this matrix at the beginning means that each node
has its cluster, so the number of rows equals the number of
columns. The values in S are either 0 or 1, indicating node
memberships. Recall from equation 3 defining Modularity, the
term kikj

2n defines the probability of an edge in the null model

and can be denoted by Pi,j . Hence the term
[
Ai, j − kikj

2n

]
can be rewritten as [Ai, j − Pi,j] and can be referred to as
Bi,j = [Ai, j − Pi,j]. According to [39], the previous matrix
form can be combined with equation 3 to redefine Modularity
in matrix form as:

M =
1

2n
Tr(STBS) (4)

Where n is the number of edges in the graph since a
bipartite graph is naturally partitioned into a minimum of two
initial clusters [39]. That naturally help us derive a definition
of Spectral Bipartite Modularity that penalizes any random
choices of edges if the nodes belong to the same cluster, thus
the bipartite Modularity in a non-matrix form could be defined
as:

M =
1

n

p∑
i=1

q∑
j=1

[
Ãi,j −

kidj
n

]
∂ (Qi, Qj+p) (5)

Where Ã is the bi-adjacency matrix. ki is the degree of
node i from the document nodes and dj is the degree of node
j from the word nodes. n is the total number of edges in the
graph and Qi is the partition of a document node i while Qj+p

is the partition of a word node j indexed as j = i+ p. Thus
equation 5 in matrix form becomes:

M =
1

2n
Tr(RT B̃T) (6)

Where R is the cluster index matrix similar to S but for
document nodes, while T is the cluster index matrix similar
to S but for token or word nodes. B̃ is the difference between

www.ijacsa.thesai.org 8 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

the biadjacency matrix Ã and the reformulated bipartite null
model P̃ where B̃ =

[
Ã − P̃

]
. The goal is to maximize

Modularity in matrix form as in equation 6. The term B̃T

in equation 6 could be rewritten as
[
ÃT − P̃ T

]
indicating

that the bipartite null model is calculated on the token nodes
only. We refer to this case as T̃ . Or it could be written as[
ÃRT − P̃RT

]
indicating that the bipartite null model is

calculated on the document nodes only. We refer to this case as
R̃. In terms of summation over the matrix in an optimization
scheme, these two cases can be rewritten as:

M =
1

n

p∑
i=1

(
c∑

k=1

[
Ri,kT̃i,k

])
(7)

M =
1

n

q∑
j=1

(
c∑

k=1

[
R̃i,kTi,k

])
(8)

Where c is the maximum number of clusters in the graph,
note that this is equivalent to hypothetically assigning document
nodes to clusters of word tokens and vice versa, similar to
traditional modularity optimization approaches such as Louvain
[40] hence the delta modularity, in this case, was the summation
of both delta modularities from both node types. Given the
previous formulation, we maximize Modularity using a greedy
approach described in Algorithm 6.

b) Conditional Greedy Modularity Maximization: This
second step aims first to recast the documents as a document-
document graph as as in Fig. 5. Second to break down the soft
clusters in a hierarchical manner by maximizing Modularity
M using a conditional modularity maximization algorithm
as seen in Fig. 2. That step is seen as further filtering. The
assumption here is that clusters in a graph are often defined
by the density of edges between a set of nodes. Hence, the
number of connections or edges between clusters characterized
by high Modularity is often meager. Modularity is defined in
equation 3 as M . It measures the difference between the actual
number of edges and an expected number of edges between
nodes. An expected number of edges between nodes can be
considered a random rewiring of the graph given the same
nodes. Optimizing Modularity through maximization in a graph
is a complex problem and is often tackled through various ways
to reduce the number of comparisons between all nodes in a
graph. During maximization, we use the shorthand equation
provided in [40] to reduce the computational cost of computing
delta Modularity of all nodes as shown in equation 9.

∆M =

[∑
in +ki,in
2n

−
(∑

tot +ki
2n

)2
]
− (9)[∑

in

2n
−
(∑

tot

2n

)2

−
(
ki
2n

)2
]

(10)

Where M is Modularity, in are incident nodes to cluster,
tot all nodes inside cluster, k is the degree of the node, n is
the total number of edges. We also apply a condition that a
node is only assigned to the maximum Modularity difference
cluster if the delta modularity is positive and the matching
probability between both document references is 100%. That

Algorithm 6: Spectral Bipartite Modularity Optimiza-
tion

Input : V ′, D′, W ′: set of nodes in current soft
cluster, document references, unique words

Result : updated node labels
edges← list
p = length(V ′)
q = length(W ′[V ′])
c = p+ q
rg = index(W ′[V ′])
gn = index(V ′)
A = zeroMatrix(p, q)
for v ∈ V ′ do

for w ∈ D′[v] do
edges.append((v, w))
A[gn[v], rg[w]] = 1.0

end
end
for i = 0 and V ′ and i++ do

assignMembership(V ′[i], i)
end
for i = i and W ′[V ′] and i++ do

assignMembership(W ′[V ′][i], i)
end
ki = sum(A, 1), dj = sum(A, 0), kd = kidj
m = sum(ki), B = A− (kd/m)
T0 = initializeModularityMatrix(gn, V ′)
R0 = initializeModularityMatrix(rg,W ′[V ′])
minimumDeltaModularity = min(1/m, 0)
deltaModularity = 1,modPrevious = 0
while
deltaModularity > minimumDeltaModularity
do

Tp = T0T .B
maximumModularityIndex = argMax(TpT)
R = zeroMatrix(q, c)
for i, length(maximumModularityIndex) do

R[i,maximumModularityIndex[i]] = 1
end
Rp = B.R
maximumModularityIndex = argMax(Rp)
T = zeroMatrix(p, c)
for i, length(maximumModularityIndex) do

R[i,maximumModularityIndex[i]] = 1
end
T0 = T
modCurrent = modPrevious
RtBT = TT .B.R
sumMod = (1/m) ∗RtBT
modCurrent = sum(modCurrent)
deltaModularity =
modCurrent−modPrevious

end
updateNodeMemberships(extractMemberships(T))

www.ijacsa.thesai.org 9 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 5. Modeling a Data Set as a Record-Record Weight Graph based on the Similarity between the Records.

ensures that precision is not compromised by breaking precise
clusters discovered in the first step. In addition, that is also to
assure that discriminative terms are factored into the composite
Modularity optimization method. Our Conditional Modularity
Maximization algorithm is formalized in Algorithm 7.

Algorithm 7: Conditional Greedy Modularity Opti-
mization

Input :G′ = (V ′, E′): subgraph nodes
Result : updated node labels
Minitial ← computeModularity(V ′, E′)
for i ∈ V ′ do

iCom = G′.getMembership(i)
neighbors = G′.getNeighbors(i)
for j ∈ neighbors do

jCom = G′.getMembership(j)
weight ∈ G′.getEdgeWeight(i, j)
∆M ← compute difference in Modularity M

according to Louvain’s equation
LM ← (j,∆M)

end
ci ← argmax (LM)
find the largest cluster with the largest delta

Modularity
∆ M
and the corresponding weight
v2← v1 assign the current node to the maximum
cluster if edge weight is 1
updateMemberships(V ′)

end
Mfinal ← computeModularity(V ′, E′)

G. Canonicalization

The clusters representing unique entity profiles are defined
and persisted to the disk in this final step through a link index
file. The link index file describes the final entity clusters of the
unsupervised entity resolution framework as a list of ordered
pairs where the first element of each pair represents the entity
profile identifier to which the record is assigned. The entity
profile identifier is simply the least recorded identifier in the
cluster. The second element of each pair represents a member’s
unique record identifier.

V. EXPERIMENTS

A. Datasets

1) Synthetic Datasets: ModER is tested on a synthetic
benchmark dataset. The reason lies in the fact that there is a
lack of benchmark datasets for the task of entity resolution.
Most entity resolution systems are evaluated against benchmark
datasets [41] that are designed for an entity matching task and
not an entity resolution task. Hence we use the synthetic dataset
described in [42] as seen in Fig. 5 that is specifically designed
for the task of entity resolution. This simulator-based data
generator uses probabilistic approaches to generate coherent
individual data for persons that do not exist except for S3 and
S6, which both represents generated addresses and names of
restaurants that do not exist and were introduced in [43]. The
data fields are names, addresses, social security numbers, credit
card numbers, and phone numbers mixed in several layout
configurations. Some samples are labeled as mixed layout,
meaning that each row might come with a different order of
those attributes and might not be delimited. The standard label
means that all the rows in the data file have the same order and
attributes. The generator described in [44] used a probabilistic
error model to inject various errors in the previously developed
simulated dataset. For example, in this excerpt of a generated
data file shown in Fig. 5, the first four records are almost

www.ijacsa.thesai.org 10 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

identical except for that record A956296 has a missing last
name and the format of the phone numbers or whether they
exist at all, all are errors injected and generated on purpose. In
addition, the last two records are almost identical except for the
first name, where an intentional error was introduced. A ground
truth set recording the actual clusters of the simulated records
is then sampled from the generated synthetic database. Next,
the corresponding references are pulled from the generated
synthetic database to create various sample files with different
sizes, levels of quality, and layouts. Sizes of files can vary from
50 to 20K rows. For a more detailed description of the dataset
please refer to [15].

2) Benchmark Dataset: Abt-Buy is an e-commerce bench-
mark dataset introduced and curated by [41]. Despite the lack
of benchmark datasets that are desgined specifically for the task
of entity resolution rather than entity matching we used this
dataset as a means to compare results with other systems. The
dataset represents an entity matching task between products
listed on 2 e-commerce websites2. The dataset appears as one
data file containing attributes, product names, descriptions of
products, manufacturer of the products, and price. The data set
also is provided with a ground truth file containing a perfect
matching between entities across both websites. The number
of rows in this dataset is 1081 from the first source file and
1092 from the second data file.

3) Benchmark Models: Data Washing Machine (DWM):
the Data Washing Machine (DWM) [1] implements a fully
probabilistic, iterative, and token frequency-based approach.
The DWM produces remarkable results on simulated datasets
of various sizes, layouts, and qualities. The DWM is computa-
tional, iterative, and probabilistic; it follows a traditional data
cleaning and merging pipeline, tokenization, blocking, matching,
clustering, profiling, and canonicalization. The DWM relies
on the idea of starting with a set of configuration parameters
and then iteratively incrementing the parameters according to
a self-administered evaluation of the quality of the clusters
using an entropy-based metric. The DWM has been shown to
provide robust results in large datasets. In addition, the current
implementation is very modularized, allowing for room for
improvement.

Magellan: Magellan, introduced in [45], is an end-to-
end solution to entity resolution developed as a user-centric
approach. It has been used and adopted widely. The model
relies on providing guides that tell users what to do in entity
matching scenarios. The framework also provides tools to cover
the entire entity matching pipeline using a simple, approachable
implementation.

B. Evaluation Metrics

For evaluation we measured the precision and recall against
the generated ground truth entity clusters. The ground truth is
a list of each record and its membership cluster identifier. After
canonicalization, the saved link index is grouped by the least
record identifier in each cluster. Thus, all records belonging
to the same cluster have the same record identifier as the first
element in the link index pair. We then loop on each pair in
the canonicalized link index and examine whether they belong
together in the ground truth. Finally, we measure the following

2www.buy.com and www.rakuten.com

statistics against the ground truth for each sample run as shown
in Table I. That is also shown in the increased balanced accuracy
[46], which is a valuable measure for problems such as entity
resolution. Entity resolution is characterized by having a class
imbalance as the number of matched pairs is usually way less
than the number of unmatched pairs causing a very high number
of true negatives.

C. Results

We ran our model on an Intel Core i7 − 4720HQ CPU
@ 2.60GHz and 32GB of RAM. We ran ModER and DWM
first on the samples S1 through S18, as described in Tables III
and II. To determine optimal parameters for ModER relative
to maximum F1-Scores, we ran each sample 10 times on
incrementing beta, sigma, and delta and chose the parameters
that gave the best F1-Scores. Please note that we do not set
them directly as numbers when setting parameters beta β, sigma
σ, and delta δ. Instead, we set them using a percentile formula
where the percentile of stop words is σ, the percentile of
blocking words is β, and the percentile of word length is δ. For
running the DWM, we set the parameters to the equivalent in
our model. For example, we assume that our baseline matching
threshold µ is 0.5 or 50% quantifying maximum uncertainty.
Also, in the DWM runs, the quality epsilon ϵ is tuned based
on our previous work’s data [15]. we also informed the setting
of β and σ similar to what we did in the GDWM and set them
to 6 and 7, respectively.

Table II shows the results from running the DWM on the
18 samples with equivalent set parameters. Even though it is
challenging to compare both techniques due to their differences,
it is helpful to compare both in relatively limited runs. Table V
compares the final F1-Scores of both the DWM and ModER.
On the other hand interpreting Table IV is tricky because more
experimentation needs to be done to get a complete picture of
the performance of the developed approach concerning what
has already been done. However, ModER improves overall
precision at the expense of recall from those results. Balancing
precision and recall is challenging for most classifiers.

Composite Modularity Optimization as a technique for entity
profiling is very efficient at detecting large clusters and breaking
them down due to the reliance on a bipartite technique of
modeling document nodes and unique words. That initialization
is used in the second stage of Conditional Greedy Modularity
maximization to refine the detected clusters further. Note that
the conditional aspect of the greedy Modularity Maximization
technique is intentionally injected into the algorithm to ensure
that no nodes are assigned to new clusters if the delta modularity
change is positive yet too little. That is also to ensure that we
only see similarity at 100% or 1.0 as the most certain value
indicating matching, and anything else below 100% is mere
speculation and prediction and should be treated that way in
other entity resolution systems.

In addition, when averaging all samples, as in Table V,
ModER offers less F1-Scores performance than the GDWM
and the DWM. Note that those averages were directly taken
from [15]. Those values were for matching probabilities set
at 70% and higher. That might not be fair because ModER
does not rely on matching threshold settings. ModER could be
seen as a quick and initial entity profiler before using other

www.ijacsa.thesai.org 11 | P a g e

www.buy.com
www.rakuten.com

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

TABLE I. EVALUATION METRICS AND STATISTICS

Statistic Symbol Description

True Positives TP The number of record pairs that appeared together in the same cluster correctly

True Negatives TN The number of record pairs that did not appear in the same cluster correctly

False Positives FP The number of record pairs that appeared together in the same cluster falsely

False Negatives FN The number of record pairs that did not appear in the same cluster falsely

Precision P TP / (TP + FP)

Recall R TP / (TP + FN)

F1-Score F1 2 × (P × R) / (P + R)

Balanced Accuracy A TP × (TN + FP) + TN × (TP + FN) / (TP + FN) × (TN + FP)

TABLE II. RESULTS FROM RUNNING DWM ON EQUIVALENT PARAMETER SETTINGS

Sample Precision Recall F1-Score

S1 76.47 96.3 85.25

S2 62.69 87.5 73.05

S3 41.15 95.54 57.52

S4 70.47 87.27 77.98

S5 71.84 87.94 79.08

S6 81.95 75.63 78.66

S7 73.57 86.65 79.58

S8 67.32 36.64 47.45

S9 64.22 17.48 27.48

S10 72.85 27.58 40.01

S11 70.69 26.19 38.22

S12 73.27 26.37 38.78

S13 76.64 83.32 79.84

S14 70.43 84.73 76.92

S15 68 82.04 74.36

S16 74.02 26.84 39.4

S17 70.59 24.39 36.25

S18 69.79 30.33 42.28

systems or rely on a highly unsupervised system that does not
require the user to set a matching threshold. In addition to a
system that does not rely on matching threshold settings, unlike
most state-of-the-art systems, the results are comparable and
tell something about the need for matching thresholds. When
a user uses such a system to detect entity profiles in a file,
they have no experience with what a matching threshold might
mean. Hence in ModER, we only let the user set 3 explainable
parameters using percentiles, assuming they have studied their
data statistically before running any entity resolution system.

In Table VI, we benchmarked ModER using the Abt-
Buy dataset introduced in [41]. In addition, Table VII pro-
vides insight into multiple runs of ModER on the Abt-Buy
dataset with different parameter configurations. Table VI

reports running ModER with parameters that resulted from 10
times increasing parameters with the best F1-Score. As seen,
ModER outperforms our previous system, DWM, in addition
to Magellan. That is mainly due to the Composite Modularity
Optimization algorithm efficiency. In addition, our reliance
on discriminative words has favored ModER since most data
contain a higher percentage of discriminative keywords. In
Table VII, it appears that the number of single nodes varied
widely as with the number of edges in the graph formed after
matching. That is due to the threshold of the varying parameter.
In addition, those initial parameter settings affect the initial
Modularity widely regardless of the final Modularity. A Higher
F1-Score was tied to lower σ levels, suggesting that filtering
stop words are always beneficial before running any entity
matching algorithm.

www.ijacsa.thesai.org 12 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

TABLE III. RESULTS FROM THE SYNTHETIC DATA SET EXPERIMENTS ON MODER. BETA IS THE PERCENTILE OF BLOCKING WORD FREQUENCIES ACROSS
THE WHOLE FILE. SIGMA IS THE PERCENTILE OF STOP WORD FREQUENCY ACROSS THE WHOLE FILE. FURTHERMORE, DELTA IS THE PERCENTILE OF

TOKEN LENGTHS ACROSS THE DATA FILE. BA IS THE BALANCED ACCURACY AND IS COMPUTED AS DESCRIBED IN TABLE I. FINALLY, THE FINAL
MODULARITY IS MEASURED ON THE FULL DISCONNECTED GRAPH AFTER ASSIGNING THE NEW MEMBERSHIPS AFTER THE COMPOSITE MODULARITY

OPTIMIZATION STEP.

Sample Beta Sigma Delta BA Precision Recall F1 Modularity

S1 80%=3 99%=31.16 100%=17 98.15 100 96.3 98.11 76.74

S2 80%=3 100%=95 80%=9 93.73 95.45 87.5 91.3 66.76

S3 80%=2 95%=7 69%=9 94.19 83.19 88.39 85.71 96.13

S4 90%=5 95%=8 70%=9 86.82 91.35 73.64 81.54 61.21

S5 90%=5 95%=8 70%=9 87.55 93.78 75.1 83.41 62.11

S6 94%=6 99.99%=1972 40%=6 64.03 71.37 28.06 40.28 33.72

S7 93%=6 99%=36.5 95%=9 85.69 92.17 71.39 80.46 56.66

S8 95%=7 100%=400 50%=5 58.99 67.33 18.04 28.45 20.91

S9 95%=7 100%=322 60%=6 58.93 59.47 17.93 27.56 32.88

S10 80%=6 99%=32.5 60%=6 58.58 71.15 17.21 27.71 53.76

S11 80%=5 100%=1458 50%=6 56.25 76.39 12.51 21.5 50.36

S12 80%=4 100%=1859 30%=5 54.51 79.43 9.0 16.2 47.88

S13 90%=6 100%=1887 45%=5 81.05 68.65 62.13 65.23 42

S14 90%=7 100%=4738 90%=9 77.8 79.82 55.6 65.54 43.98

S15 90%=7 100%=9447 90%=9 76.81 81.82 53.62 64.79 46.34

S16 80%=5 100%=713 30%=5 57.01 77.0 14.05 23.76 51.84

S17 75%=4 100%=17.91 30%=5 54.11 78.92 8.23 14.9 50.52

S18 75%=4 100%=3405 30%=5 53.84 78.26 7.69 14.0 51.53

VI. DISCUSSION

A. Overall Effectiveness

Ideally, we need a better measure to quantify the balance
between precision and recall, as seen in Fig. 6. The F1-
score or the harmonic mean between precision and recall fails
to differentiate between instances where recall or precision
was very high and when they were balanced. A better entity
resolution system always provides a balance between both.
In that light, ModER appears to balance both precision and
recall on S1, S2, S3, and S13. Despite their relative diversity,
the common characteristic between those samples is relatively
higher quality. That is, the difference between document
references injected errors is not significant. They indicate that
the first bipartite spectral Modularity optimization did all the
work to detect entity profiles. The problem is that bipartite
Modularity optimization is a memory-intensive optimization for
more significant clusters even though its time complexity is at

O(2N), returning only two passes on the Modularity matrix to
compute the difference. That points us to address this limitation
in the future of balancing space and time complexities.

B. The Effect on Modularity

Here we refer to the final Modularity as the Modularity com-
puted on the final overall graph that has been projected before
the entity profiling step. The final cluster memberships have
been computed using our Composite Modularity Optimization
approach.

In Fig. 7, modularity is more correlated with precision
than recall. The more clusters are broken down during the
entity profiling step, the higher the Modularity is. Note that
Modularity is weakly correlated with the F1 score, meaning
that higher modularity values do not necessarily mean higher F1
scores. Modularity is a comparison of edge densities between

www.ijacsa.thesai.org 13 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

TABLE IV. COMPARISON BETWEEN DWM AND MODER

Samples DWM F1-Score ModER F1-Score Performance

S1 85.25 98.11 Improved

S2 73.05 91.3 Improved

S3 57.52 85.71 Improved

S4 77.98 81.54 Improved

S5 79.08 83.41 Improved

S6 78.66 40.28 Worse

S7 79.58 80.46 Improved

S8 47.45 28.45 Worse

S9 27.48 27.56 Improved

S10 40.01 27.71 Worse

S11 38.22 21.5 Worse

S12 38.78 16.2 Worse

S13 79.84 65.23 Worse

S14 76.92 65.54 Worse

S15 74.36 64.79 Worse

S16 39.4 23.76 Worse

S17 36.25 14.9 Worse

S18 42.28 14.0 Worse

TABLE V. THE AVERAGE SAMPLE RUNS ON DWM, GDWM, AND MODER

Method Precision Recall F1-Score Balanced Accuracy

DWM 72.43 57.82 62.97 76.89

GDWM 84.78 68.62 71.47 84.31

ModER 80.308 44.24 51.691 72.113

TABLE VI. BENCHMARK RESULTS ON THE ABT-BUY DATASET

Model F1-Score

DWM 10.83

Magellan 43.6

ModER 58.82

TABLE VII. BENCHMARK RESULTS ON THE ABT-BUY DATASET. BA IS THE BALANCED ACCURACY AND IS COMPUTED AS DESCRIBED IN TABLE I. THE
INITIAL AND FINAL MODULARITY IS MEASURED ON THE FULL DISCONNECTED GRAPH AFTER ASSIGNING THE NEW MEMBERSHIPS AFTER THE COMPOSITE

MODULARITY OPTIMIZATION STEP.

Beta Sigma Delta # Nodes # Single Nodes # Edges Initial Modularity Final Modularity Precision Recall F1-Score BA

5 819 9 2173 274 3477 0.0827 0.4577 0.0182 0.3292 0.0345 0.6604

5 92 34 2173 854 2173 0.505 0.647 0.138 0.0367 0.058 0.5183

5 26 8 2173 273 3407 0.083 0.31 0.1669 0.1905 0.1779 0.595

2 92 8 2173 428 1611 0.2697 0.76134 0.6686 0.525 0.5882 0.7625

the current memberships and hypothetical random memberships,
also known as the null model.

C. The Interplay between Precision and Recall

Finally, we plot precision as a function of recall, also known
as the precision-recall curve in Fig. 8. The difference is that

precision-recall curves are usually interpreted in the case of
binary classification. In our entity resolution system, we are
not assessing a binary classifier. We are, however, assessing
cluster quality. Nevertheless, plotting precision as a function of
recall on the 18 samples arranged in an ascending order shows
that recall tends to be more stable than precision affirming
our conclusion that ModER provides higher precision but not

www.ijacsa.thesai.org 14 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 6. A Bar Chart of Precision, Recall, f1-Scores, and Final Modularity after Running on ModER on the 18 Synthetic Samples.

necessarily recall.

D. Limitations

It is imperative and expected of course to understand the
limitations of our approach here. First the 3 parameters that
are controlled by the user β, σ and δ determine the sizes of
the blocks. The size of the blocks eventually determines the
sizes of the clusters in the modeled graph.

E. Takeaways and Future Work

In this work, we focused on the problem of unsupervised
entity resolution for identifying unique entity profiles in
ambiguous data. We defined ambiguous data as documents or
records that do not adhere to a schema and come in unknown
layouts and sometimes with inferior quality. In addressing this
problem, We first focused on the meaning of similarity and
matching. The problem lies in that if two documents are 100%
similar, that does not mean that they refer to the same entity.
In contrast, if 2 documents match at 10%, that does not mean
that we are 100% sure that both do not refer to the same
entity. Hence the inherent uncertainty and the nature of the
problem. We started from the position that the only sure thing
is that similarity between 2 documents of 50% is extreme
uncertainty. Then assumed that below 50% of matches tend
to ensure that the two documents do not refer to the same
entity. On the other hand, two documents with a matching
probability of more than 50% have some certainty that they
might refer to the same entity. In the GDWM [15], we designed
the system based on the later observation that higher mating
probabilities should be detected with more certainty. While in

ModER, we generalized to all cases. That generalization came
with some cost in performance, but it was not that significant,
and compared with other methods in similar conditions, it
gave respectable results. The point is that unsupervised entity
resolution is a complex problem that needs to be addressed in
a more sophisticated way. In addition, the concept of string
similarity needs to be reconsidered as traditional similarity
functions are the actual bottlenecks in this process. Some deep
learning, machine learning, and graph approaches introduced
learned similarities, such as in [13] and in [47]. In addition, this
problem of unsupervised entity resolution could be generalized
to other topics in natural language processing and information
retrieval since it resembles the entity recognition problem and
the search problem.

VII. CONCLUSION

Here we introduced ModER, which stands for Modularity
Composite Optimization for Entity Resolution, a framework
combining multiple steps and algorithms. The method can
quickly identify entity profiles in highly ambiguous data,
overcoming the need to set matching thresholds. The method
also limits user input to 3 parameters set using statistical
percentile approximations. We based our work on the state-of-
the-art unsupervised entity resolution, the DWM. In addition
to the GDWM. To our knowledge, this technique has not been
explored before. Our Composite Modularity Entity profiling step
is innovative and can provide better results when benchmarked.
In the future, we plan to address challenges such as the
breakdown of high recall clusters even though they might not
be imprecisely profiled. In addition, we address the memory-
intensive bipartite approach posing a bottleneck for large

www.ijacsa.thesai.org 15 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 7. A Scatter Plot of Values of Precision, Recall and f1-Score against Final Modularity Values on ModER after Running the 18 Synthetic Datasets.

profiles.

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

IAE created the ModER framework and wrote the article,
JRT created the DWM framework and provided feedback and
guidance on creating ModER as main PI, NH benchmarked
the ModER framework and the GDWM framework and MAS
tested the ModER framework and the GDWM framework on
synthetic datasets and preprocessed the benchmark datasets.

FUNDING

This material is based upon work supported by the National
Science Foundation under Award No. OIA-1946391.

REFERENCES

[1] J. R. Talburt, D. Pullen, L. Claassens, R. Wang et al., “An iterative,
self-assessing entity resolution system: First steps toward a data washing
machine,” International Journal of Advanced Computer Science and
Applications, vol. 11, no. 12, 2020.

[2] D. G. Brizan and A. U. Tansel, “A. Survey of Entity Resolution and
Record Linkage Methodologies,” vol. 6, no. 3, p. 11, 2006.

[3] J. R. Talburt and Y. Zhou, “A Practical Guide to Entity Resolution
with OYSTER,” in Handbook of Data Quality: Research and Practice,
S. Sadiq, Ed. Berlin, Heidelberg: Springer, 2013, pp. 235–270.
[Online]. Available: https://doi.org/10.1007/978-3-642-36257-6 11

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
Record Detection: A Survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 19, no. 1, pp. 1–16, Jan. 2007, conference Name:
IEEE Transactions on Knowledge and Data Engineering.

[5] V. I. Levenshtein et al., “Binary codes capable of correcting deletions,
insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8.
Soviet Union, 1966, pp. 707–710.

[6] M. S. Waterman, T. F. Smith, and W. A. Beyer, “Some biological
sequence metrics,” Advances in Mathematics, vol. 20, no. 3, pp. 367–
387, 1976.

[7] T. F. Smith, M. S. Waterman et al., “Identification of common molecular
subsequences,” Journal of molecular biology, vol. 147, no. 1, pp. 195–
197, 1981.

[8] M. A. Jaro and V. C. Walker, Unimatch: A record linkage system: Users
manual. The Bureau, 1978.

[9] J. R. Ullmann, “A binary n-gram technique for automatic correction
of substitution, deletion, insertion and reversal errors in words,” The
Computer Journal, vol. 20, no. 2, pp. 141–147, 1977.

[10] A. E. Monge, C. Elkan et al., “The field matching problem: algorithms
and applications.” in Kdd, vol. 2, 1996, pp. 267–270.

[11] P. Jaccard, “Étude comparative de la distribution florale dans une portion
des alpes et des jura,” Bull Soc Vaudoise Sci Nat, vol. 37, pp. 547–579,
1901.

[12] K. S. Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of Documentation, vol. 28, pp. 11–21,
1972.

[13] D. Zhang, D. Li, L. Guo, and K. Tan, “Unsupervised Entity Resolution

www.ijacsa.thesai.org 16 | P a g e

https://doi.org/10.1007/978-3-642-36257-6_11

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 8. Precision-Recall Curve.

with Blocking and Graph Algorithms,” IEEE Transactions on Knowledge
and Data Engineering, pp. 1–1, 2020.

[14] B. Li, W. Wang, Y. Sun, L. Zhang, M. A. Ali, and Y. Wang, “GraphER:
Token-Centric Entity Resolution with Graph Convolutional Neural
Networks,” AAAI, vol. 34, no. 05, pp. 8172–8179, Apr. 2020. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/6330

[15] I. A. Ebeid, J. R. Talburt, and M. A. S. Siddique, “Graph-based
hierarchical record clustering for unsupervised entity resolution,” in
ITNG 2022 19th International Conference on Information Technology-
New Generations. Springer, 2022, pp. 107–118.

[16] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for Similarity
Search: A Survey,” arXiv:1408.2927 [cs], Aug. 2014, arXiv: 1408.2927.
[Online]. Available: http://arxiv.org/abs/1408.2927

[17] A. Broder, “On the resemblance and containment of documents,” in
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No.97TB100171), Jun. 1997, pp. 21–29.

[18] R. Wu, S. Chaba, S. Sawlani, X. Chu, and S. Thirumuruganathan,
“Zeroer: Entity resolution using zero labeled examples,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, 2020, pp. 1149–1164.

[19] Y. Li, J. Li, Y. Suhara, A. Doan, and W.-C. Tan, “Deep entity matching
with pre-trained language models,” arXiv preprint arXiv:2004.00584,
2020.

[20] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang,
and J. Widom, “Swoosh: a generic approach to entity resolution,” The
VLDB Journal, vol. 18, no. 1, pp. 255–276, 2009.

[21] G. Jeh and J. Widom, “SimRank: a measure of structural-context
similarity,” in Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, ser. KDD ’02.
New York, NY, USA: Association for Computing Machinery, Jul. 2002,
pp. 538–543. [Online]. Available: https://doi.org/10.1145/775047.775126

[22] F. Wang, H. Wang, J. Li, and H. Gao, “Graph-based reference table
construction to facilitate entity matching,” Journal of Systems and

Software, vol. 86, no. 6, pp. 1679–1688, Jun. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121213000484

[23] H. Wang, J. Li, and H. Gao, “Efficient entity resolution based on
subgraph cohesion,” Knowledge and Information Systems, vol. 46, no. 2,
pp. 285–314, 2016.

[24] A. Saeedi, M. Nentwig, E. Peukert, and E. Rahm, “Scalable
Matching and Clustering of Entities with FAMER,” Complex
Systems Informatics and Modeling Quarterly, vol. 0, no. 16,
pp. 61–83, Oct. 2018, number: 16. [Online]. Available: https:
//csimq-journals.rtu.lv/article/view/csimq.2018-16.04

[25] U. Draisbach, P. Christen, and F. Naumann, “Transforming Pairwise
Duplicates to Entity Clusters for High-quality Duplicate Detection,” J.
Data and Information Quality, vol. 12, no. 1, pp. 3:1–3:30, Dec. 2019.
[Online]. Available: https://doi.org/10.1145/3352591

[26] L. Kolb, Z. Sehili, and E. Rahm, “Iterative computation of connected
graph components with MapReduce,” Datenbank-Spektrum, vol. 14,
no. 2, pp. 107–117, 2014, publisher: Springer.

[27] N. Kang, J.-J. Kim, B.-W. On, and I. Lee, “A node resistance-based
probability model for resolving duplicate named entities,” Scientometrics,
vol. 124, no. 3, pp. 1721–1743, Sep. 2020. [Online]. Available:
https://doi.org/10.1007/s11192-020-03585-4

[28] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[29] M. Sadiq, S. I. Ali, M. B. Amin, and S. Lee, “A Vertex Matcher for
Entity Resolution on Graphs,” in 2020 14th International Conference
on Ubiquitous Information Management and Communication (IMCOM),
Jan. 2020, pp. 1–4.

[30] D. Zhang, L. Guo, X. He, J. Shao, S. Wu, and H. T. Shen, “A Graph-
Theoretic Fusion Framework for Unsupervised Entity Resolution,” in
2018 IEEE 34th International Conference on Data Engineering (ICDE),
Apr. 2018, pp. 713–724, iSSN: 2375-026X.

[31] M. E. J. Newman, “Modularity and community structure in networks,”
Proceedings of the National Academy of Sciences of the United States

www.ijacsa.thesai.org 17 | P a g e

https://ojs.aaai.org/index.php/AAAI/article/view/6330
http://arxiv.org/abs/1408.2927
https://doi.org/10.1145/775047.775126
https://www.sciencedirect.com/science/article/pii/S0164121213000484
https://csimq-journals.rtu.lv/article/view/csimq.2018-16.04
https://csimq-journals.rtu.lv/article/view/csimq.2018-16.04
https://doi.org/10.1145/3352591
https://doi.org/10.1007/s11192-020-03585-4

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

of America, vol. 103, no. 23, pp. 8577–8582, Jun. 2006. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482622/

[32] L. Hagen and A. Kahng, “New spectral methods for ratio cut partitioning
and clustering,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 11, no. 9, pp. 1074–1085, Sep.
1992. [Online]. Available: http://ieeexplore.ieee.org/document/159993/

[33] S. V. Ovchinnikov, “On the transitivity property,” Fuzzy Sets and
Systems, vol. 20, no. 2, pp. 241–243, Oct. 1986. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0165011486900801

[34] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol. 33, no. 1, pp. 31–88, 2001.

[35] A. Rajaraman and J. D. Ullman, Mining of massive datasets. Cambridge
University Press, 2011.

[36] E. Zhu, F. Nargesian, K. Q. Pu, and R. J. Miller, “LSH Ensemble:
Internet-Scale Domain Search,” arXiv:1603.07410 [cs], Jul. 2016, arXiv:
1603.07410. [Online]. Available: http://arxiv.org/abs/1603.07410

[37] J. H. Burrows, “Secure Hash Standard,” DEPARTMENT OF
COMMERCE WASHINGTON DC, Tech. Rep., Apr. 1995, section:
Technical Reports. [Online]. Available: https://apps.dtic.mil/sti/citations/
ADA406543

[38] C. Y. Lee, “An algorithm for path connections and its applications,” IRE
transactions on electronic computers, no. 3, pp. 346–365, 1961.

[39] M. J. Barber, “Modularity and community detection in bipartite
networks,” Physical Review E, vol. 76, no. 6, p. 066102, Dec. 2007,
arXiv: 0707.1616. [Online]. Available: http://arxiv.org/abs/0707.1616

[40] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10,
p. P10008, Oct. 2008, arXiv: 0803.0476. [Online]. Available:
http://arxiv.org/abs/0803.0476

[41] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution
approaches on real-world match problems,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 484–493, 2010.

[42] J. R. Talburt, Y. Zhou, and S. Y. Shivaiah, “Sog: A synthetic occupancy
generator to support entity resolution instruction and research.” ICIQ,
vol. 9, pp. 91–105, 2009.

[43] K.-N. Tran, D. Vatsalan, and P. Christen, “Geco: an online personal data
generator and corruptor,” in Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, 2013, pp. 2473–
2476.

[44] Y. Ye and J. R. Talburt, “Generating synthetic data to support entity
resolution education and research,” Journal of Computing Sciences in
Colleges, vol. 34, no. 7, pp. 12–19, 2019.

[45] P. Konda, S. Das, P. Suganthan G. C., A. Doan, A. Ardalan,
J. R. Ballard, H. Li, F. Panahi, H. Zhang, J. Naughton, S. Prasad,
G. Krishnan, R. Deep, and V. Raghavendra, “Magellan: toward building
entity matching management systems,” Proceedings of the VLDB
Endowment, vol. 9, no. 12, pp. 1197–1208, Aug. 2016. [Online].
Available: https://dl.acm.org/doi/10.14778/2994509.2994535

[46] J. P. Mower, “Prep-mt: predictive rna editor for plant mitochondrial
genes,” BMC bioinformatics, vol. 6, no. 1, pp. 1–15, 2005.

[47] Y. Lin, H. Wang, J. Chen, T. Wang, Y. Liu, H. Ji, Y. Liu, and P. Natarajan,
“Personalized Entity Resolution with Dynamic Heterogeneous Knowledge
Graph Representations,” arXiv:2104.02667 [cs], Apr. 2021, arXiv:
2104.02667. [Online]. Available: http://arxiv.org/abs/2104.02667

www.ijacsa.thesai.org 18 | P a g e

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1482622/
http://ieeexplore.ieee.org/document/159993/
https://www.sciencedirect.com/science/article/pii/0165011486900801
http://arxiv.org/abs/1603.07410
https://apps.dtic.mil/sti/citations/ADA406543
https://apps.dtic.mil/sti/citations/ADA406543
http://arxiv.org/abs/0707.1616
http://arxiv.org/abs/0803.0476
https://dl.acm.org/doi/10.14778/2994509.2994535
http://arxiv.org/abs/2104.02667

	Introduction
	Contribution

	Related Work
	Token-based Graph Entity Resolution
	Record-Record Simiarlity-Based Graph Entity Resolution
	Hybrid Graph-based Entity Resolution

	Preliminaries
	Problem Definition
	Graph Formulation and Modularity
	Similarity and Transitivity

	Method
	Merged Input Corpus
	Preprocessing
	Blocking
	Fast Matching using Locality-Sensitive Hashing
	Graph Modeling
	Graph-based Entity Profiling
	Transitive Closure
	Subgraph Extraction
	Composite Modularity Optimization

	Canonicalization

	Experiments
	Datasets
	Synthetic Datasets
	Benchmark Dataset
	Benchmark Models

	Evaluation Metrics
	Results

	Discussion
	Overall Effectiveness
	The Effect on Modularity
	The Interplay between Precision and Recall
	Limitations
	Takeaways and Future Work

	Conclusion
	References

