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Abstract—In the modern world, everyone wishes that their 

personal information wouldn't be made public in any manner. In 

order to keep personal information hidden from prying eyes, 

privacy protection is essential. The data may be in the form of 

big data and minimization of risk and protection of sensitive data 

is important. In this research, a revolutionary customized 

privacy-preserving method is implemented that addresses the 

drawbacks of earlier personalized privacy as well as other 

anonymization methods. There are two main components that 

make up the proposed method's core. Delicate Information and 

Delicate Weight are two additional attributes which are used in 

the record table, are covered in the first section. The record 

holder's Delicate Information (DI) decides whether or not secrecy 

should be kept or if it should be shared. How delicate an 

attribute value is compared to the rest is indicated by its Delicate 

weight (DW). The second part covers a new representation used 

for anonymization termed the Frequency Distribution Block 

(FDB) and Quasi-Identifier Distribution Block (QIDB). 

According to experimental findings, the proposed system 

executes more quickly and with less data loss than current 

approaches. 
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I. INTRODUCTION 

Electronic Medical Records (EMRs) are currently widely 
used in healthcare networks. It makes it possible for people to 
easily and adaptably exchange their medical data. For instance, 
instead of needing to search through multiple physical records, 
a patient or his/her physician merely needs to access the data 
from a database to locate their diagnostic report. Advanced 
electronic medical record systems face a significant issue when 
it comes to securely storing and accessing electronic medical 
records because healthcare information is so sensitive [1]. 
Hadoop and big data analytics play a significant part in 
analyzing and processing the patient information in many 
forms to provide potential uses [2]. Investigation can leverage 
private data from several organizations to identify patterns. For 
instance, if a patient's private data is available across various 
hospitals, researchers can utilize it to better understand the 
patterns associated with a given disease and, as a result, make a 
more accurate diagnosis. The unprocessed information found 
in hospitals includes specific information on the patient, such 
as identity, address, date of birth, zip code, symptoms and 

illness[3]. Before being delivered to the data receiver, the name 
and residential address information that are deemed private are 
stripped from the raw data which is also known as micro data. 
Furthermore, this micro data includes information like postal 
code and date of birth that can be connected to other external, 
publicly accessible data bases to re-identify sensitive value[4]. 
Linking attack refers to the process of re-identifying a record 
by connecting published data to publicly available data. Let us 
consider the patient records released by the hospital in Table I, 
for instance, which excludes data like name, residential data, 
and other private details. By joining the information from 
Table I with the publicly accessible external data base given in 
Table II, the intruder can disclose personal information. The 
query may appear like, 

Select name, disorder from external_table as A, 
patient_table as B where A.postal=B.postal and A.age=B.age; 

Since people are reluctant to volunteer their private data, it 
is extremely concerning that the answer to this query provides 
complete data about the illness and the name of the person. The 
join, which is referred to as Record Level Disclosure, may 
provide a value for age 36 and postal code 38677. Researchers 
employ techniques categorized as Privacy Preserving Data 
Publishing (PPDP) to hide confidential material from 
recipients. Quasi-Identifier (Q) attributes are characteristics 
found in Released Patient Data that can be connected to 
external, publicly accessible data bases, such as Postal Code, 
Date of Birth, etc. Data is modified in a way that leads to 
duplicate rows in the resulting table, limiting disclosure. 
Through the use of generalization, there has to be more than 
one implicit connection to the external data base. Thus, the k-
anonymity algorithm is implemented for measuring this. Each 
entry in a table is indistinguishable from minimum k-1 other 
entries with regard to each and every set of quasi-identifier 
attributes if it fulfills the k-anonymity condition; such a table is 
known as a k-anonymous table. 

With personalized anonymization, a guard node is utilized 
to determine if the record holder is willing to disclose the level 
of sensitivity upon which the anonymization will be carried 
out. As the record owner sensitivity is a generic one, the 
majority of the sensitive values that are included in the secret 
data base do not necessitate privacy protection. Therefore, just 
a small portion of the distribution's records need to be private. 
For instance, a record holder with malaria will not really mind 
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sharing his identity, in contrast to a record holder with HIV. 
The fact that some HIV-positive record owners are willing to 
expose their identities justifies this proposed privacy 
preservation strategy. 

In other words, every group of quasi-identifier values needs 
a minimum k-1 records, and they can be tricked by connecting 
a record from the disclosed data to a database with many 
entries that is publicly accessible. A two-anonymous 
generalization for Table I is shown in Table III. Assuming that 
the intruder uses a publicly accessible database and discovers 
that Ramesh is 36 years old with a postal code of 38677 and 
that he has a disorder, the intruder looks at anonymized Table 
III and learns that 38677 and 36 have been generalized to 
386** and [30-40] which can be associated with two entries of 
releases table and that the disorder cannot be derived from this 
information. Lungs disease has been hidden and is not intended 
for publishing in this table (<386**,[50-60],Lung Disease>). 
Similar findings occur if the intruder attempts to infer Sitaram's 
illness, which belongs to category 3, but since every member 
of the category possesses the same sensitive property, the 
attacker deduces that Sitaram has fever. 

Attribute level disclosure results from this release of 
confidential information. This occurs when a set of disorders 
are indeed symptoms of the same condition. To tackle this 
issue l-diversity was introduced. If the sensitive characteristic 
has at minimum l "well-represented" values, then an 
equivalence class has l-diversity. If each equivalence class in a 
table possesses l-diversity, the table has l-diversity. 
Additionally, skewness and similarity attacks are a drawback 
of l-diversity. Proximity was viewed as a method of 
overcoming this. The distribution of sensitive attributes in this 
strategy must match the anonymized chunk. Thus, there is a 
data loss. 

In this paper, the research work is arranged into five 
sections. In Section 2, related work of various researchers and 
research limitations are described in detail. In Section 3, our 
proposed model is discussed. Experimental findings and 
discussion of each test is described in Section 4. Thus, in 
Section 5, research work is concluded and future scope of work 
is discussed. 

TABLE I. PATIENT RELEASED DATA 

Postal Code Age Disorder 

38677 36 Mouth ulcer 

38602 38 Brain cancer 

38678 42 Fever 

38685 46 Fever 

38905 52 Fever 

38906 56 Fever 

38909 53 Fever 

38673 58 Lungs Disease 

38607 65 Lungs Disease 

38655 68 Brain cancer 

TABLE II. EXTERNAL DATABASE 

Name Postal Code Age 

Ramesh 38677 36 

Laxmi 38677 45 

Suresh 38602 38 

Nageshrao 38602 32 

Anupama 38678 42 

Sitaram 38905 52 

Kishor 38909 53 

Vijay 38906 56 

-- -- -- 

TABLE III. ANONYMOUS DATA 

Postal Code Age Disease 

386** [30-40] Mouth ulcer 

386** [30-40]   Brain cancer 

386** [40-50] Fever 

386** [40-50] Fever 

389** [50-60] Fever 

389** [50-60] Fever 

389** [50-60] Fever 

386** [50-60] Lungs Disease 

386** [60-70] Lungs Disease 

386** [60-70]    Brain cancer 

II. LITERATURE SURVEY 

Two anonymous techniques were presented by Xingguang 
Zhou et al. [5] that not only ensure data secrecy but also realize 
anonymity for patient. When attackers select attack 
destinations before gathering data from the electronic health 
record, the first strategy obtains modest security. The second 
strategy ensures total security by having attackers select attack 
targets in an adaptive manner upon contact with the electronic 
medical record system. It also suggested a method for EMR 
holders to use an anonymous search engine to find their 
electronic health records. As per Safa Bahri et al. [6]  
enormous amount of information, especially clinical data, has 
recently been amassed as a result of the intensification of 
emerging innovations that the large majority of people in the 
globe have accepted. Medical associations have acquired and 
analysed this clinical information and gain information and 
ideas that may be used to a variety of clinical judgments, 
including recommendations for medications and improved 
diagnoses. This paper mentions the significant effects that Big 
Data has on healthcare stakeholders, including patients, 
doctors, pharmaceutical and medical technicians, and medical 
insurance companies. It also examines the various difficulties 
that must be overcome in order to maximize the advantages of 
all the Big Data and the software that are presently accessible. 
Such large data can be stored on the devices customized to 
application processing [7]. 
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A Secured as well as Anonymous Biometric Based User 
Authentication technique is introduced by B D Deebak et al. in 
2017 [8] to guarantee secure data transmission in medical 
applications. This study demonstrates that a hostile cannot 
pretend to be a registered user in order to get unauthorized 
entry to or revoke an intelligent mobile card. For the purpose of 
demonstrating security and energy efficiency in healthcare 
application systems, a formal study relied on the random-oracle 
approach and resource evaluation is presented. The suggested 
method also incorporates some efficiency study to demonstrate 
that it offers high-security characteristics for developing 
intelligent medical application systems in the IoM. In 2019, 
Jorge Bernal Bernabe et al. [9] conducted a thorough 
evaluation of the State-of-Art (SoA) for privacy-preserving 
research approaches and methods in blockchain, and also the 
primary connected privacy issues in this exhilarating and 
disruptive technology. The survey includes privacy strategies 
in permissioned and privatized blockchains along with privacy-
preserving research report and methods in accessible and 
private blockchain, such as Bitcoin and Ethereum. The analysis 
of various blockchain use cases includes looking at areas 
including Electronic-Government, Electronic-Health, crypto 
currency, developed cities, and cooperative ITS. 

A Privacy-Preserving-Reinforcement-Learning (PPRL) 
architecture for the cloud computing system is proposed by 
Jaehyoung Park et al. in 2020 [10]. The proposed methodology 
makes use of learning with errors based cryptosystem for 
completely homomorphic encryption. Various cloud 
computing dependent intelligent service contexts are used to 
carry out effective analysis and assessment for the developed 
PPRL architecture. A stateless cloud monitoring approach for 
non-manager adaptive group data with preserving the privacy 
is proposed by Xiaodong Yang et al. [11]. With the random 
masking approach, the proposed methodology not only 
achieves individual identity privacy preservation but also data 
confidentiality preservation. Marwa Keshk et al. [12] present a 
thorough analysis of the most recent privacy-preserving 
methods for defending Cyber Physical System (CPS) 
technologies and their data against online threats in 2021. The 
ideas of privacy preservation and CPSs are examined, with an 
emphasis on the parts of cyber physical systems and how these 
systems might be hacked physically or digitally. Abdullah Al 
Omar et al. [13] presented an approach for the healthcare 
system which ensures data security and transparency. 
Additionally, the Ethereum platform is used to integrate 
insurance policies into the suggested system's blockchain, and 
cryptographic techniques are used to protect private 
information. 

A mathematical formulation for an identity-based 
encryption strategy for the protection of patient confidentiality 
during the gathering of clinical records for evaluation is 
presented by Kissi Mireku Kingsford et al. in 2017[14]. The 
submission of medical data for analysis is becoming an 
essential element of daily life. To protect the confidentiality of 
patient, the model dissociates the identity of the patient from 
the investigated data upon data submission. A thorough 
analysis of privacy protection in big data from the 
communication point of view is presented by Tao Wang et al. 
in 2018[15]. It focuses on privacy-preserving methods, 

especially differential privacy, and the basic privacy-preserving 
paradigm. Additionally, it examines the difficulties with 
differential privacy as well as its variations and modifications 
for various novel apps. Muneeb Ul Hassan et al. [16] have 
performed a detailed analysis of differential privacy 
approaches for CPSs as presented in 2019. Specifically, it 
looks at how differential privacy is used and implemented in 
four key CPS uses: energy, medical, transportation, healthcare 
& industrial Internet of things. It also outlines unresolved 
problems, difficulties, and prospective research directions for 
CPS differential privacy approaches. This investigation can be 
used as the foundation for the creation of cutting-edge 
differential privacy methods to handle numerous issues and 
CPSs' data privacy contexts. 

The privacy of Kim's approach was assessed by Kefei Mao 
et al. [17], who show that the plan is actually vulnerable to the 
stolen smart - card threat. The plan also has some impassable 
stages, and the privacy assumption is excessively rigid. In 
addition, a novel technique built on Kim's as well as the 
quadratic residue hypothesis is investigated. In contrast to the 
current plans, the latest proposal does not call for the electric 
medical record database to personally communicate different 
secure values with patients and physicians. As a result, it is 
more useful and practical. It demonstrates that the suggested 
approach can offer greater protection than Kim's earlier plan. A 
unique architecture to enable privacy-preserving Machine 
learning (ML) was proposed by Kaihe Xu et al.[18], where the 
training data are spread and every shared data chunk is of 
enormous volume. To accomplish privacy preservation, it 
actually makes use of the Apache Hadoop platform's data 
locality attribute and just a few cryptographic functions at the 
Reduce functions. The comprehensive simulations used to 
show the presented strategy's robustness and consistency 
demonstrates that it is safe in the semi-honest framework. 

In 2017, Tanashri Karle et al. [19] focused on protecting 
privacy by utilizing an anonymization methodology and a 
thorough investigation of two anonymization techniques are 
discussed namely - Datafly Technique and the Mondrian 
Algorithm. While Mondrian method is more suited for real 
datasets, Datafly technique is better suited for synthetic 
datasets. By using privacy preservation on a medical dataset in 
2017, Balaji K. Bodkhe et al. [20] preserve a person's identity 
and any associated disorders (sensitive feature). The techniques 
including slicing, generalization, suppression and bucketization 
are utilized. These techniques guarantee privacy preservation 
while maintaining the usefulness of the data. The goal of  
S.Sathya et al. [21] is to take advantage of the new privacy 
difficulties posed by big data and focus on effective, privacy-
preserving computation in the big data era. In order to address 
the effectiveness and privacy needs of Data Mining (DM) in 
the big data era, it first formalizes the overall framework of big 
data analytics, identifies the related privacy requirements, and 
introduces an effective and Privacy-Triple-DES as an instance. 

To minimize and protect the data from unwanted parties, S. 
Shimona et al. [22] offer the PPDM strategies in a concise 
manner together with other privacy preservation measures in 
2020. In 2020, Suneetha V et al. [23] introduced a unique 
concept called spark that uses Apache Spark to manage big 
data in the health care industry quickly and effectively while 
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using K-anonymization as well as L-diversity to disguise 
private data. The suggested method ensures that shared 
information will not reveal the actual information and that 
sensitive data is separated before being sent to Hadoop 
distributed file system. In 2019, Hui Jiang et al. [24] 
highlighted the fundamental steps of Hadoop-based big data 
analysis and included technical recommendations for common 
actual and off-line application scenarios. These 
recommendations were based on a review of the ecological 
structure of Hadoop. In order to have some reference value for 
the development of a big data platform and for the analysis and 
processing of huge data, Hadoop was utilized to construct the 
application context and the WordCount scenario was merged to 
assess the MapReduce calculation procedure. 

A cooperation privacy preservation strategy for wearable 
technology was developed in 2018 by Hong Liu et al. [25] with 
id validation and data access control concerns in the space and 
time-aware settings. To obtain a secure healthcare pathway 
query under e-medical cloud servers without disclosing the 
secret data of patients like name, sex, age, location and also the 
information of hospitals like diagnosis, medication, and cost. 
Mingwu Zhang et al. [26] suggested a Privacy Preserving 
Enhancement of medical pathway query method. To maintain 
confidentiality in the e-Healthcare system, the suggested 
methodology first develops a number of privacy-preserving 
protocols like privacy-preserving medical comparison, privacy-
preserving phase selection, and privacy-preserving phase 
update. It then implements the greedy approach in a secure way 
to carry out the query as well as the Min-Heap innovation to 
make it more efficient. This approach is feasible and effective 
with regard to computational time and cost, according to test 
findings. In 2018, Abdulatif Alabdulatif et al. [27] set out to 
propose a cloud-based solution for real-time patient monitoring 
that protects user privacy by spotting changes in a variety of 
important health indicators of participants of smart 
communities. IoT-enabled wearable devices' produced vital 
sign information is analysed in real-time on the cloud. The 
construction of a predictive method for the smart community 
while taking into account the sensitivity of information 
processing in a third-party context is the main topic of this 
paper (e.g., cloud computing). For enabling data prediction 
with patterns, it designed a crucial sign change detection 
method employing Holt's linear trend approach, where 
completely homomorphic encryption technique is applied to 
carry out calculations on an encrypted area that may protect 
data privacy. Additionally, a parallel strategy for encrypted 
operations using the MapReduce method of Apache Hadoop 
was proposed in order to minimize the burden of the 
completely homomorphic encryption technique across massive 
healthcare data. 

The difficulties and needs of creating frameworks and 
procedures for globally distributed data processing are 
investigated and discussed by Shlomi Dolev et al. in 2017 [28]. 
It categorizes and studies the overhead problems associated 
with batch, stream and SQL-style processing using geo-
distributed architectures, methods, and techniques. Using 
differential privacy, Miao Du et al. [29] present and put into 
practice a ML technique for smart edges in 2018. In a wireless 
big data situation, anonymization in training datasets is the 

main priority. Additionally, it designs two distinct techniques, 
Output and Objective Perturbation which fulfill differential 
privacy, and guarantees privacy and security by including 
Laplace techniques. Additionally, for correlated datasets, 
differential privacy preservation algorithms are offered, 
providing privacy through theoretical inference. Ultimately, 
tests were conducted using TensorFlow and the effectiveness 
of the technique was assessed using the four datasets STL-10, 
SVHN, MNIST and CIFAR-10. The suggested approach 
effectively ensures accuracy upon benchmark datasets while 
safeguarding the confidentiality of training datasets. 

A scalable approach to the local-recoding issue for big data 
anonymization over proximity privacy violations was 
investigated by Xuyun Zhang et al. [30]. The study proposes a 
proximity privacy framework that provides the semantic 
proximity of sensitive values including numerous sensitive 
attributes. It also models the local recoding issue as a 
proximity-aware clustering issue. It presents a scalable two-
phase clustering method that combines the proximity-aware 
agglomerative clustering technique and the t-ancestors 
clustering technique. The methods were created using 
MapReduce to provide good scalability using cloud-based 
data-parallel processing. Numerous tests using real data sets 
show that the method greatly outperforms existing methods in 
terms of scalability, time efficiency, and capacity to fight 
against proximity information leakage. 

As per Haiping Huang et al. [31], Electronic-healthcare has 
substantially benefited from the industrialization of cloud 
computing, Internet of things and Wireless-body-Area-
Networks (WBANs). Furthermore, there are still several 
obstacles standing in the way of e-Healthcare's growth, 
especially issues with data security and privacy protection. 
Healthcare system architecture is formulated to overcome these 
issues. It gathers health information from WBANs, transfers it 
across a substantial wireless sensor network, and then releases 
it into Wireless-Personal-Area-Networks (WPANs) through a 
gateway. Additionally, healthcare system uses the 
Homomorphic Encryption Dependent on Matrix scheme to 
assure confidentiality, the Groups of Send-Receive Model 
strategy to accomplish key distribution, and an intelligent 
system capable of autonomously analyzing the encrypted 
health data and reporting the findings. The confidentiality, 
privacy, and improved efficiency of healthcare system are 
evaluated theoretically and experimentally in comparison to 
existing systems or techniques. Lastly, the practicality of the 
healthcare system prototype implementation is examined. A 
privacy-preserving approach is put forth by Marwa Keshk et al. 
in 2019 [32] in order to obtain both safety and confidentiality 
in intelligent power networks. A two-level privacy component 
and an anomaly detection component are the framework's two 
core components. Using open datasets, the outlier detection 
module trains and validates the outcomes of the two-level 
privacy component using a Long-Short-Term-Memory DL 
approach. In contrast to various cutting-edge methodologies, 
the experiments demonstrated that the proposed architecture 
can effectively secure data of intelligent power networks and 
identify anomalous behaviors. The term "optimal distributed 
estimate" refers to a conceptual framework created by Jianping 
He et al. in 2018 [33] to examine how to maximize the 
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assessment of a neighbor’s original data using the collected 
local data. The disclosure probability is then looked into as part 
of the best estimation for the data privacy evaluation. The 
privacy-preserving average consensus method's data privacy 
has been further examined using the established framework, 
and the best noises for the technique are identified. 

In 2018, Weichao Gao et al. [34] used the idea of 
homomorphic encryption as well as secured network protocol 
development to tackle the issues of privacy preservation for 
information auction in CPS. A general Privacy-Preserving 
Auction Strategy is put forth, in which an unreliable third-party 
trade platform is made up of the two distinct entities of the 
auctioneer and interim platform. A winner in the auction 
procedure is defined and all bidder data is hidden by using 
homomorphic encryption as well as a one-time pad. However, 
it also suggests an Enhanced Privacy Preserving Auction 
Method that makes use of an extra signature verification 
technique in order to increase the overall security of the 
privacy preserving auction. Each strategy’s viability is 
confirmed through in-depth theoretical analysis and thorough 
performance tests, which also include an examination of attack 
tolerance. A unique privacy-preserving anomaly - based 
detection methodology, known as PPAD-CPS, is suggested by 
Marwa Keshk et al. in 2018 [35] for safeguarding private data 
and identifying hostile findings in power technology and 
associated network traffic. There are two primary components 
in the architecture. In order to meet the goal of privacy 
preservation, a data pre-processing component is first proposed 
for filtering and changing original information into a new 
format. Secondly, an anomaly-based detection component 
utilizing a Kalman Filter as well as Gaussian Mixture Model 
for accurately predicting the posterior probabilities of normal 
and malicious events is proposed. Two open datasets, the 
Power System as well as UNSW-NB15 dataset, are used to test 
the efficiency of the architecture. 

III. PROPOSED SYSTEM 

The privacy-preserving method we propose overcomes the 
drawbacks of existing techniques and other anonymization 
methods. There are two main parts that make up the proposed 
method's core. The first part of the equation concerns with 
additional attributes utilized in the table namely Delicate 
Information and Delicate weight. The DI indicates whether the 
privacy of the record owner's private data should be protected 
or released. DW determines the sensitivity of the attribute. DW 
is necessary for DI. 

When the person provides their data, DI can be accessed 
easily from them. DW could be based on previously acquired 
sensitive attribute information. The same level of protection is 
provided for every sensitive attributes by conventional privacy 
approaches, which has been addressed in this approach by the 
implementation of DI and DW. The flag DI=0 indicates that 
the entry holder is not willing to share his confidential 
attribute, while DI=1 indicates that he has no problem doing 
so. The publisher has highlighted DW for any sensitive 
attributes where confidentiality is crucial.  For instance, a 
record holder with the fever or gastroenteritis is less reluctant 
to expose his identify than a label owner with cancer. 
Whenever the sensitive attribute is a very common disorder 

like the fever or mouth ulcer, DW=0 is being used; for a 
sensitive attribute like brain cancer, which is uncommon, 
DW=1 is utilized. For DW=0, DI has a default value of 1, and 
for DW=1, the record holder's DI values are accepted. 

TABLE IV. DW FOR DISORDERS 

Disease DW 

Mouth ulcer 0 

Brain cancer 1 

Fever 0 

 Lungs Disease 1 

The second section discusses a novel approach for 
evaluating the distribution known as the FDB and QIDB. Each 
disorder's spread in the FDB is based on original, personal 
data. QIDB is formed for each entry with DW=1 and DI=0. 
Several QIDB chunks will exist. These chunks are needed to 
make sure that each particular QIDB and distribution of FDB is 
synchronized. 

TABLE V. PATIENT RELEASED DATA WITH DW AND DI 

Postal Code Age Disorder DW DI 

38677 36 Mouth ulcer 0 1 

38602 38 Brain cancer 1 0 

38678 42 Fever 0 1 

38685 46 Fever 0 1 

38905 52 Fever 0 1 

38906 56 Fever 0 1 

38909 53 Fever 0 1 

38673 58 Lungs Disease 1 1 

38607 65 Lungs Disease 1 0 

38655 68     Brain cancer 1 1 

TABLE VI. FREQUENCY DISTRIBUTION BLOCK 

Disease Probability 

Mouth ulcer 0.1 

Brain cancer 0.2 

Fever 0.5 

Lungs Disease 0.2 

A. Model and Terminology for Proposed Personalized 

Privacy 

Let R be a connection providing personal information about 
a set of people. There are four groups of attributes in R. 

• Unique Identifiers Uj - It can be used to identify 
individuals who are eliminated from R. 

• Quasi identifiers QIj - its value can be combined with 
publicly available information to determine a person's 
identity. 
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• Delicate attributes Dj – It is secretive or delicate to the 
record holder. 

• Non quasi identifiers NQIj – It doesn’t fall into any of 
the three categories. 

The goal of proposed method is to obtain a generalized 
table R* such that distribution of every QIDB is comparable to 
the diversity of the entire distribution as seen in FDB. For ease 
of use, the full set of quasi identifiers is denoted by QI, and its 
values by q. In a similar manner, there is a single delicate 
attribute Di and its value d. Relation R comprises of m number 
of tuples R={r1,r2,…,rn}. Record holder data can be obtained 
by referring as rj.d to represent delicate value and rj.q for quasi 

identifier value 1≤ j ≤ m. 

1) Delicate Weight- for every tuple r ∈R, its delicate 

weight is added. This value is derived from Relation W(ds,dw) 

where ds indicates disorder and dw indicates delicate weight. 

W contains p records 

rj.dw={ wj.dw if wj.ds=ri.d 1≤ i ≤ p } for every 1 ≤ j ≤ m 

Table IV provides the dw value for every disorder. Table I 
is used to create this distribution. 

2) Delicate Information - for every tuple r ∈ R, its 

Delicate Information is indicated as r.di. 

rj .di= {1 if ri .dw=0  ud      rj.dw=1 } for every  1 ≤ j ≤ m 

The value of user defined (ud), is either 0 or 1. If the value 
of ri.di is zero, the user is not prepared to share his information, 
and if it is one, the user agrees. 

Table V shows the values of dw and di assuming that the 
record holder will approve di value for DW=1. Additionally, it 
can be seen that if dw=0, the corresponding di is set to 1, 
showing that the entries’ sensitivity is not really important. 

3) Thresholds - To improve and enhance effectiveness of 

disclosure, generalization, and suppression, values of threshold 

are established for a number of personalized privacy aspects. 

• Tn - It indicates minimum number of entries in R. 

• Titr - It indicates maximum number of required 
iterations. 

• Tsup - It indicates minimum number of delicate values 
for suppression. 

• Tdis – It indicates minimum number of delicate values 
for disclosure 

• Tacc – It indicates minimum number of thresholds for 
addition or subtraction. 

Several threshold values are suggested because the 
dispersion aspect is being taken into account. The first value, 
which was never specified in the earlier representations, 
denotes the bare minimum number of item sets that must be 
provided in order to execute anonymization. Titr is calculated 
using information of the Value domain hierarchy's height. The 
generalization is greater and information loss is 
correspondingly greater when the value of Titr is high. Tsup 

denotes the absolute minimal amount of sensitive distribution 
that could exist in QIDB for that block's deletion following 
Titr. The threshold value Tdis represents the amount that can 
be added or removed from every frequency distribution for 
every disorder in order to make it equal to the FDB 
distribution. The frequency of QIDB and FDB will not be 
completely the same, thus while examining the distribution of 
every disorder is examined if the frequency in that qidb.v.d± 
Tacc always Tdis > Tacc. 

4) Frequency Distribution Block - Distribution of every 

wj.ds in regards to the original distribution ri.d is stored in 

relation FDB(ds,p) where d represents disorder and p 

represents probability distribution of it Every p for ds is 

computed by mapping every ds in R (values of ri.d=fdbv.ds) to 

the total no. of tuples in R, for every 1 ≤ v ≤ 𝑘 . Considering 

there are m entries in the relation. 

5) Quasi– Identifier Distribution Block- for every rj.d 

where rj.dw=1 & r.di=0 a new QIDB is generated comprising 

ri.s for every 1 ≤ j ≤ m. The relation QIDB.V(q,d) where 

qidb.vl.q=rj.q & qidb.vl.d=rj.d. Considering there are m QIDB 

chunks. 

TABLE VII. QIDB.1 DATA 

Postal Code Age Disorder 

38602 38 Brain cancer 

TABLE VIII. QIDB.2 DATA 

Postal Code Age Disorder 

38607 65 Lungs Disease 

Table VI illustrates the frequency distribution of every 
disorder. This distribution demonstrates that the fever is a 
widespread disorder with a higher frequency—roughly 50 
percent in the reported data. Every QIDB maintains the exact 
similar distribution. Due to the fact that the quasi values 
<38602, 28> and <38607, 55> have the DW and DI values of 1 
and 0 respectively, in the first cycle 2 blocks of QIDB will be 
produced for these values as shown in Table VII and Table 
VII. Table VII shows Brain cancer disease probability is 0.2 in 
distribution block. In the same way Table VIII shows 
Probability of Lungs disease is 0.2 in the frequency distribution 
block. It is calculated from delicate weight of delicate 
information. 

6) Generalization - A generalization function provides the 

general domain of an attribute R.Q. Function will return a 

generalized value in the domain provided a value r.q in the 

original domain. 

7) Check Frequency- for every QIDB, examine 

CFq(QIDB.V ) with QIDB.V FD which is equal to the FD in 

FDB. It is performed as follows 

Let c be the total number of entries in QIDB.V for every 
UNIQ(qidb.vl.d) obtain total number of mappings which match 
qidb.vl.d to the total number of entries that is x in QIDB.V, 
thus CFq will return true if  
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For every 1 ≤ v ≤ m such that fdbv.ds=qidb.vl .d 

fdbv.p = (unique (qidb.vl .d) / x) ± Tacc 

This is examined in each cycle if a QIDB satisfies the FD 
then this chunk won’t be taken into account for the next 
iteration. 

8) Suppression- After Titr iterations, SUP(QIDB.v) 

remove the chunk if it meets the following criteria 

For every 1 ≤  𝑢 ≤  𝑚 such that for every 

fdbu.ds=qidb.vl.d ^ fdbu.ds=wj.ds ^ wj.dw=1 for every j 1≤ j 

≤ 𝑘 

Count (qidb.vl.d) ≤ Tsup 

9) Disclosure - After Titr iterations, DIS(QIDB.v) adds 

extra records if it meets the following criteria for every 1 ≤ 𝑙 
≤ x such that for every fdbu.ds=qids.vl.d ^ fdbu.ds=wi.d ^ 

wi.dw=1 for some i 1≤ i ≤ 𝑘 

(unique (qidb.vl .d) / x) = Tdis ± fdbv.p 

B. Personalized Privacy Breach 

Assume an attacker who tries to estimate important 
information from a record holder h. In the worst situation, the 

attacker only pays attention to the tuples tuples r*∈R* whose 

Q value rj*.q covers x.q for all j such that 1≤ j ≤ 𝑛 since it is 

assumed that the adversary knows Q of H. Q-group is formed 
by these tuples. That is, if rj* and rjp* are two such tuples then 

rj*.q=rjp*.q for all j such that 1≤ j ≤ 𝑛. The adversary cannot 

deduce a sensitive attribute of h if this group is not established. 

1) Required Q-Group/ Actual (h) - Given an individual h, 

the Required Q-group ReqG(H) is the only Q-group in r* 

covers h.q. Considering Actual (X) represents those records 

which are generalized to RG(H). 

The attacker has no knowledge about Actual (H). To 
acquire Actual (H), the adversary must locate some external 
data base External (H) that should be covered in ReqG(H). 

2) External DataBase Ext (x)- External (H) is a collection 

of individuals whose value is covered by ReqG(H). 

Actual (H) ⊆ External (H) 

The adversary uses a combinational strategy to deduce 
sensitive attribute of h. let us consider that h.s is present in one 
of ri* and h is not repeated. The possible reconstruction of the 
ReqG(X) contains h different record holders h1, h2, h3,…,hr 
who belong to External(H) but there can be only y in ReqG(H). 
This can be seen by the probabilistic nature and can be 
represented as perm(x,y). 

perm(x,y) is Possible Reconstruction that can be created by 
with h holders and y mappings. Breach Probability represents 
the probability of inferred information. Let us consider Actual 
N represents actual number of entries with sensitive attribute 
from which h can be deduced. 

Breach probability = Actual N/perm(x,y) 

Breach probability will decide the privacy factors, If it is 
100 percent then h can be deduced; if it is poor then the 
inference will be tough for the adversary. 

C. Quasi-Identifier Distribution Block - Anonymization 

Algorithm 

Since it is assumed that the sensitivity distribution in every 
location is typically fairly uniform, this technique processes 
quasi values sequentially. Consider the following algorithm of 
QIDB. 

Algorithm 1: QIDB-Anonymization 

Input: personal data R with DW-DI, threshold values Tn, Titr, 

Tsup, Tdis, Tacc and initialized FDB(ds,p) 

 

Output: Released table T * 

Step 1: if (n< Tn ) then return value 1 

Step 2: for each rj.s where rj.dw=1 & rj.di=0 a new QIDB is 

generated comprising rj.d and rj.q for every 1 ≤ j ≤ 𝑛. 

Step 3: inital_iteration=0,  

            receive_flag=0  

            gen=Initial G(R) 

Step 4: while (initial_iteration< Titr and receive_flag=0) 

              QIDB chunks are deleted if CFq() returns true then 

examines the value of QIDB if it is 0 then receive_flag=1 

             Iteration = iteration + 1  

              gen = next G(R) 

Step 5: if receive_flag=0 then             

              execute sup( ) and dis( ) 

Step 6: Examine value of QIDB if it is 0 then receive_flag=1 

Step 7: release R* if receive_flag=1 

The resultant anonymization after implementing Personal 
Anonymization of one of the QIDB with Tacc =0.1 chunk is 
depicted in Table IX. 

TABLE IX. RESULTANT DW-DI BASED QIDB ANONYMIZATION WITH TACC 

=0.1 

ZIP Code Age Disorder 

386** [30-50] Brain cancer 

386** [30-50] Mouth ulcer 

386** [30-50] Lungs Disease 

386** [30-50] Fever 

386** [30-50] Fever 

IV. EXPERIMENTAL FINDINGS AND DISCUSSION 

Effectiveness of proposed method in comparison to k-
anonymity as well as l-diversity is obtained. The investigation 
made use of a common dataset. 400-records of adult dataset are 
taken into account with the relevant quasi-attributes: age, 
gender, marital status, and profession. Age is the only attribute 
that is numerical; all other attributes are categorical.  For 
DW=1, probability is utilized to determine the DI value. 

In Fig. 1, it is shown that data loss for proposed method is 
less than k-anonymity and l-diversity. Number of records can 
be increased in the proportion to see the information loss in 
three methods and compare it. 
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Fig. 1. Information Loss of DW-DI Proposed Personal Anonymization 

Technique Compared with l-Diversity and k-Anonymity Technique. 

 

Fig. 2. Minimal Distortion Parameter of DW-DI Personal Anonymization 

Compared to l-Diversity k-Anonymity Technique. 

 

Fig. 3. Discernibility Metric Parameter of DW-DI Personal Anonymization 

Compare to l-Diversity and k-Anonymity Technique. 

For quasi identification, a generalization hierarchy is 
created and employed and a distance vector is produced and is 
used in this approach. The generalization hierarchy can go up 
to a maximum level of 10. In Fig. 1, the information loss factor 
is displayed. The data quality improves when there is less data 
loss. The concept of minimal distortion centers on penalizing 
every value that has been generalized or repressed. When a 
hierarchy inside the domain generalization hierarchy is 
extended to the next level, it is given a penalty. In Fig. 2, 

minimum distortion is displayed. A penalty of 10 is applied in 
test for each generalization. Fig. 3 illustrates how this 
Discernibility Metric determines the cost by penalizing every 
tuple for being unrecognizable from other tuples. In Fig. 4, 
runtime is displayed. For the test, the threshold values Tn = 
400, Titr = 10, Tdis = 0.01, Tsup = 1, Tacc = 01 was used. 

 

Fig. 4. Run Time of DW-DI Personal Anonymization Compare to l-Diversity 

and k-Anonymity Technique. 

V. CONCLUSION AND FUTURE WORK 

Since the runtime and quality of the data are better with 
personalized privacy, it is an essential research direction. 
Because all entries do not need to be private, using DW not 
only enhances the signal of sensitivity but also increases the 
usefulness of the data. Since many of the record holders are 
willing to expose their identities, DI is an extra flag that 
increases the quality of the data in the DW record. Therefore, 
DW-DI is a better solution for personalized privacy than 
employing a guarding node alone. Using anonymization 
depending on QIDB, several quasi groups can be separately 
generalized. This method improves confidentiality by checking 
each QIDB chunk for a FD of sensitive values that is roughly 
equivalent to the FD of sensitive values in the original 
contents. Additionally, it defeats probabilistic assault, attribute 
connection and record connection. When a specific sensitivity's 
frequency distribution is localized in a small area of an 
individual pattern, this method performs effectively. 

Future research can go in a number of different ways as it 
examines QIDB anonymization of DW-DI personal privacy. 
Firstly, the impact of sequential and multiple distributions of 
released data have not been taken into account. Research on 
sensitivity weighting can be taken into consideration. In this 
method, records are processed sequentially to see if the 
generalized record fits the QIDB generalized value, and if they 
do, the record is added to the block. Different techniques can 
be investigated as an option to sequential processing. Multi-
dimensional data and unorganized schema can both be used 
with this technique. 
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