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Abstract—For years, humans have pondered the possibility of 

combining human and machine intelligence. The purpose of this 

research is to recognize vehicles from various media and while 

there are multiple models associated with this, there has not been 

enough testing and training of models when it comes to vehicle 

datasets that originate from countries like Bangladesh, India, etc. 

Our focus was to assimilate the largest dataset of vehicles 

exclusive to South Asia in addition to the more common universal 

vehicles and apply it to track and recognize these vehicles, even 

in motion. To develop this, we increased the class variations and 

quantity of the data. We trained different versions of the 

YOLOv5 model with our dataset to properly measure the degree 

of accuracy between the models in detecting the more unique 

vehicles. If vehicle detection and tracking are adopted and 

implemented in live traffic camera feeds, the information can be 

used to create smart traffic systems that can regulate congestion 

and routing by identifying and separating fast and slow-moving 

vehicles on the road. The comparison between the three different 

YOLOv5 models led to an analysis that indicates that the large 

variant of the YOLOv5 architecture outperforms the rest. 

Keywords—You Only Look Once (YOLOv5); vehicle detection; 

neural network; deep learning; vehicle tracking 

I. INTRODUCTION 

Advancements in automobile manufacturing have given 
rise to more affordable cars which has resulted in over five 
million registered vehicles [1] coasting through the roads of 
Bangladesh. Road infrastructures in this country were not 
designed to hold the growing number of vehicles which 
presents grave environmental and health concerns. Given the 
circumstance, congestion is inevitable, and this significantly 
contributes to the rising air and noise pollution levels in the 
city. To circumvent this obstacle, restless drivers resort to 
maneuvering chaotically without any regard to traffic rules and 
are thus responsible for most of the road fatality cases in the 
country. One of the biggest obstacles is that traditional methods 
of prevention such as traffic lights and pedestrian crossings are 
not sufficient because they are generally ignored. 

To address this issue, an intuitive system is needed to 
observe traffic patterns and direct different vehicles into proper 
lanes. Most vehicles in South Asia are very different than those 
in the western world as they differ drastically in shapes, sizes, 
and colors. This is a major challenge the algorithm will face [2] 

as it needs to differentiate between these vehicles to identify 
them individually. The height and angle at which these 
vehicles are posed and captured also factor into this problem. 
Datasets that include traditionally used South Asian vehicles 
are scarce and do not contain the required amount of data 
which presents a separate challenge. Due to the erratic nature 
of traffic in South Asian countries, different CNN models that 
are usually tested in other environments have not been applied 
enough to see how they perform in the tumultuous streets of 
cities like Dhaka. A major challenge of our research is that we 
have had data scarcity, particularly for South Asian vehicles. 

Machine learning has progressed enough to make use of 
traffic cameras [3] to track vehicles and their patterns. 
Additionally, using Neural Network-based Object Detection 
can produce valuable tracking and surveillance data that could 
be essential to coming up with a solution to the traffic problem. 
Further applications in the division of slow- and fast-moving 
vehicles and the identification of missing vehicles can also be 
pursued through Deep Learning. Smart traffic systems [4] can 
utilize these applications to reduce mishaps while also 
improving the flow of traffic. Autonomously driven cars [5] 
can also employ the previously mentioned applications to 
avoid different vehicles, clogged roads, and potential accidents 
while on the road. 

However, one of the key difficulties in using machine 
learning algorithms is the requirement of a vast amount of data 
to train a model. In this research, we develop a sizable vehicle 
dataset from scratch and train a model to accurately recognize 
them. The intention was to set our work apart from 
conventional vehicle detection systems. Our research is 
distinctive in that we have curated a dataset consisting of 21 
classes of vehicles commonly available worldwide and those 
that are only seen in South Asian regions. Unique vehicles like 
rickshaws, human haulers, three-wheelers, etc. all vary in build 
and proportion. The collected images are put through a lengthy 
process of cleaning, augmenting, and finally labeling through 
bounding box annotations. To address the data scarcity issue, 
we used different augmentation techniques to balance the 
dataset. This is done to ensure we have enough data for 
accurate testing and training. We chose a well-known object 
detection algorithm called YOLOv5 (You Only Look Once) 
[6] to use in our model for training and we compared the 
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performance of different architectures of YOLOv5 models: 
Small, Medium, and Large. Previous versions [7] were an 
option but the new update presented a more efficient and time-
saving alternative. YOLOv5’s hyperparameters are tweaked to 
accurately detect objects in real-time through bounding box 
coordinates of objects from the carefully labeled data it has 
been trained with. This model will be able to recognize 
different native vehicles which can then be used in systems to 
reduce the traffic problem that plagues South Asian cities. 

II. LITERATURE REVIEW 

The subject of object detection has attracted attention from 
various independent researchers over the years. Different 
detection systems were used over the years for identifying 
objects. LIDAR (Light Detection and Ranging) was used in the 
form of sensors attached to both vehicles and certain points of 
the road to detect oncoming vehicles [8]. Other non-intrusive 
methods like ASFF (Adaptive Spatial Feature Fusion) [9] and 
Radar Sensors [10] were also used. The interest in this field 
and its innovations date back to the 1970s [11]. 

Object detection [12] by the camera has become more 
prevalent in recent years and more accurate and cost-effective 
than other sensors. To accurately identify vehicles, real-time 
detection speed and high accuracy are required for a quick 
response to fast-moving vehicles and to get a reduced latency. 
While most algorithms repurpose classifiers by taking images 
at multiple scales and locations and applying the algorithm to 
perform detection [13], YOLO applies a neural network that 
dissects an image into different parts and can predict bounding 
box regions based on predicted probabilities [14]. YOLO 
detects objects using a single inference which makes it faster 
than its peers, SSD (Single Shot Detector) and Faster R-CNN 
(Region-based Convolutional Neural Network) [15]. 

Research by Liu & Zhang [16] aimed to improve the 
standard YOLOv3 model by training it to adapt to actual traffic 
conditions and applying a scale prediction layer to improve the 
detection accuracy of large vehicles. They use the k-means++ 
algorithm to improve the efficiency of the anchor box 
dimension clustering as shown in Fig. 1. The resulting F-
YOLOv3 algorithm clocked in at 91.12% on the mAP (Mean 
Average Precision) accuracy scale beating out Faster R-CNN 
at 90.01% and base YOLOv3 at 78.68%. The recognition 
performance of large vehicles is poor when compared to small 
vehicles because of their contrasting characteristics. 

 

Fig. 1. Anchor Box Dimension Clustering [16]. 

Redmon [17] suggested the integration of classification and 
localization into a single convolutional neural network which 
would improve the speed at the cost of precision. While it 
achieves a combined accuracy of 75.0%, the model has 
difficulty in detecting smaller grouped objects due to the 
spatial constraints imposed by YOLO and objects in different 
aspect ratios. Chandan suggested a different approach [18] 
where he opted to use OpenCV to detect objects in a python 
environment with the assistance of the Single Shot Detector 
algorithm. This algorithm used optical flow and background 
subtraction to achieve an optimal accuracy in detecting 
standard vehicle classes and this was a great basis for 
comparison with the earlier versions of YOLO. A detection 
system for localized mobile environments like roads and 
railways was made by Chen [19]. Using the same COCO 
dataset, they compared YOLOv3, and the Single Shot Detector 
mentioned above to find their efficiency and applicability in 
traffic. It was found that YOLOv3 had attained an 85% score 
over SSD’s 79.5% in terms of mAP at high resolution. A more 
recent comparison of YOLOv4 with SSD and Faster R-CNN 
was conducted by Kim [20] for real-time vehicle detection. 
After evaluating the different models, it was observed that 
YOLOv4 performed at 98.1% precision while Faster R-CNN 
and SSD performed at 93.4% and 90.5% respectively. 

Phillips suggested a system [21] for distance estimation 
between vehicles in traffic to avoid collision by mounting a 
monocular camera to a vehicle dashboard. It is fitted with 
systems for object tracking and detection and is modular 
enough to switch out systems for other uses. Errors in 
estimation increase as the distance increases. Wang has used 
edge Detection technology [22] to demonstrate the detection of 
objects such as vehicles by their outer edge lines. The edge 
detection technique must remove noises from an image 
background using a higher threshold before identification of 
the vehicle in question can begin. This changes how we can 
detect vehicles from a certain height and makes detection 
possible using image-capturing objects like Drones. 

Sokalski [23] produced another alternative that combines 
edge detection with color identification to differentiate between 
artificial and natural objects. The only drawback is the process 
of extracting the nine features from various channels of each 
color in the image which are used to define the edges. An 
identification approach by thickness estimation and edge 
detection was put forward by Kanistras [24] where angle 
vectors of an elevated image would be determined in its edge 
guide. These vectors are constantly changing by determining 
the standard deviation of slope vectors therefore pre-defining 
edges to detect vehicles. 

Different datasets and their use in creating a large diverse 
dataset in the training of algorithms are discussed by Xiao & 
Kang [25]. This paper has influenced how we approached 
diversifying and enriching our dataset to obtain satisfactory test 
results. The paper also provides tips for being efficient in 
collecting and labeling datasets properly. The importance of 
data augmentation is made clear by Zoph [26] in his 
discussions about how different augmentation strategies such 
as rotating, shearing, equalizing, changing colors, etc. can not 
only expand the dataset but also increase accuracy up to 6% 
but at the cost of data loss during training. 
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A YOLO-based traffic counting system developed by Lin 
[27] was employing three different pieces. The detector 
generates the bounding boxes of the vehicles, the buffer stores 
the vehicle coordinates, and the counter is responsible for 
counting the vehicles. Images/videos are put through the 
detector where it passes through filters and then the YOLO 
algorithm. Data access is built from the frame number input 
and output, previous and current array in buffer, and vehicle 
counting algorithm in counter. Checkpoints are also added for 
validation of detection whereas the overall accuracy is 
determined by using a video that has a different height and 
angular perspective. The counting accuracy seen during the day 
was around 95% but dropped to unfavorable rates at night due 
to factors such as headlight exposure, dim streetlights, etc. 
which was later improved upon by implementing night vision 
technology. An alternate YOLO method created by Tao [28] 
removes the last two layers of the connected system and adds a 
pooling layer. This is faster than its peers and the addition of a 
pre-processing procedure for night images enhances detection 
in darkness by removing highlights and modifying contrast and 
brightness. This new optimized O-YOLO algorithm executes 
an accuracy of 66% on a standard VOC dataset and 80.1% on a 
custom-curated dataset. Corovic [29] implemented YOLO to 
detect objects in real-time traffic and pre-trained the algorithm 
to detect them in five categories. These were cars, trucks, 
civilians, signs, and lights. Tests were conducted to prove that 
YOLO was suitable for real-time detection and in different 
weather. They deducted detection could be improved in place 
of obstructions by incorporating datasets that contain weather 
conditions into the training. After training of 120 epochs was 
conducted, the accuracy had a steady increase from 18.98% to 
46.60% but failed to climb to higher rates due to many 
occluded objects in the dataset. Salarpour [30] realized an 
algorithm to track multiple vehicles using the Kalman filter and 
background subtraction. A region-based algorithm is then 
combined with the filter to track and predict the region of the 
vehicle in the continuing frame while also using its color and 
size to get an accurate result of 96%. This method helps detect 
issues such as occlusion and clutter with minimal loss of 
accuracy. 

Occlusion makes it hard for vehicles to be distinguished for 
detection and therefore a procedure to reduce dense occlusion 
from surveillance cameras was put forward by Phan [31]. This 
is also a combination of background subtraction and detection 
but mixed with occlusion detection where each occluded 
vehicle is extracted from images based on their features. The 
method improves the accuracy of detection in occluded images 
at higher angles proven by its 85% accuracy score during high 
traffic. To address the problem of detecting vehicles at varying 
scales and distances, Lu [32] produced a modified version of 
the Region Proposal Network (RPN) which is tailored to be 
scale aware during detection. This system has two different 
sub-networks to detect large and small case proposals and 
inputs through two separate XGBoost (Extreme Gradient 
Boosting) algorithms to create final predictions. Both 
algorithms boasted scores of 64.1% and 84.8% respectively in 
terms of precision. 

The most consistently accurate model out of the many 
commented on above is the YOLOv4 algorithm. It offers a 

staggering 98.1% mean average precision when applied over a 
vehicle recognition system. YOLOv5, which currently lacks 
substantial research documentation, has data that exhibits 
improved accuracy and speeds over its previous iteration [33] 
which will be nothing but beneficial to our training. 

To train a varied dataset such as this, we needed a 
sustainable system powerful enough to process and execute all 
the data. The model we used in conjunction with neural 
networks was built to enhance every aspect of its previous 
build and therefore the dataset was processed much quicker 
than expected. The dataset itself is a mixture of both common 
and unique vehicles found here in the South of Asia but the 
rarity in variety of some of these vehicles was a complication. 
21 assorted classes were selected, collected, processed, and 
augmented to create a robust dataset for this research. 

III. ARCHITECTURE 

The method of detecting items in an image as shown in Fig. 
2 and calculating their location using bounding boxes is known 
as object detection. The classification of images is concerned 
with determining whether an object exists in each image based 
on calculative likelihood. Images have characteristics like 
distinct edges that an object recognition method must extract. 
Convolutional Neural Networks, Auto Encoder techniques, and 
others, can be used to automate this procedure. The most 
effective object identification strategy is one that assures that 
all objects of vivid size are given a bounding box to be 
recognized, as well as having high computational capabilities 
allowing for faster processing. Both YOLO and SSD promise 
good outcomes, but there is a speed/accuracy trade-off. 

A. Proposed Methodology 

In the South Asian region, we began gathering images of 
various vehicle items. The dataset was sorted and categorized 
after the image collections were completed to prepare it for the 
machine learning model. This dataset was then split at random 
using the standard splitting technique, with 80% of the data 
going to the training set for training and 20% going to the 
validation set for validation. 

 

Fig. 2. Detection Process during a Training Phase. 
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This is done to assess the model's correctness while 
avoiding over-fitting. The prediction model was evaluated 
using the set developed for the validation procedure, whereas 
the training set provided the algorithm. We were given 
numerous metrics and statistics to evaluate because of the 
outcome. The whole process is outlined in Fig. 3. 

The YOLO model is part of the Fully Convolutional Neural 
Networks (FCN) family that allows for the most optimally 
achievable outcome and real-time object recognition in every 
end-to-end model. YOLOv5 as shown in Fig. 4 contains a 
variety of internal models, each with its own set of complexity 
and architectures. The largest and most sophisticated network 
is YOLOv5l, which is followed by YOLOv5m and YOLOv5s. 

Each of these models was trained to see how the various 
architectures influence the overall model's speed and accuracy. 
The three different and crucial aspects of YOLOv5's 
architecture can be outlined. 

Backbone - The backbone is primarily responsible for 
resolving gradient information and incorporating changes into 
feature maps, hence lowering parameter numbers and the 
overall model's FLOPS (Floating Point Operation per Second). 

Neck - The neck improves the data flow within the model. 
It includes a feature pyramid network with an upgraded 
bottom-up approach that can expose new low-level 
complicated features, as well as localization signals in lower 
layers that can improve localization accuracy. Through 
interconnection provided by Adaptive Feature Pooling, the 
feature grids, and levels produce useful data on all levels. 

Head - The head contains algorithms for creating feature 
maps of many sizes with prediction procedures that the model 
employs to recognize objects of many sizes. Because vehicles 
might have components and add-ons of various shapes and 
sizes, this technique is critical for vehicle recognition. Each of 
these items can be easily detected using the multi-scale 
detection feature. When the training on the model is started in 
YOLOv5, the procedure begins. 

 

Fig. 3. Block Diagram of Vehicle Detection & Tracking Process. 

 

Fig. 4. YOLOv5 Architecture 

The data is fed into the Sparked module, which extracts the 
features, which are subsequently transmitted to the PANet 
(Path Aggregation Network) [34] module to be fused. 

It is all gathered in the YOLO layer, which is then 
processed to produce important analytic data like class, 
location, score, and size. 

B. Data Annotation Format in YOLOv5 

Each image was annotated in the form of an a.txt file, with 
each line of the content record depicting a bounding box. In 
Fig. 5, for example, there are five items (car, three-wheeler, 
motorbike, minivan, and bus). 

 

Fig. 5. Bounding Boxes For Data Annotation. 

IV. DESIGN AND IMPLEMENTATION 

On the vehicle dataset, three distinct YOLOv5 architectures 
– small, medium, and large were implemented and trained. 
Table I lists the dataset specifications that have been defined. 
The total number of bounding box instances and their 
respective classes are displayed in Fig. 7. 

This dataset needed to be carefully sliced for training. 
There was no exact way to divide the dataset, so we employed 
the traditional slicing technique. We separated 80% of the data 
for training and a small 20% for the validation process which is 
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required to reduce over-fitting. A random selection was made 
from the main dataset to create the test set which was sufficient 
for the calculation of the accuracy of the model. 

The first dataset contains 11,808 images of different classes 
of vehicles, out of which 9,447 images were used for training 
and 2,361 images were used for validation. After splitting the 
dataset and annotating the images, the training set and 
validation set were fed into the machine learning model.  The 
training set was used for the algorithm training process and the 
validation set was used for the prediction model which 
provided us with the different evaluation metrics and statistics. 

The instances of some of the classes are higher than others 
and this makes the dataset non-uniform in nature. For example, 
the ‘Car’ class contains the highest number of appearances in 
our dataset with a total of 10,926 times whereas classes like 
‘garbage van’ and ‘Police car’ appear less in the dataset. 

A. Dataset Preparation 

We used a custom data collection with about 21 types of 
automobiles in South Asian territory for our research. Most of 
the images as shown in Fig. 6 were gathered from real-time 
data acquired by users, social networking pages, blogs, and 
other online sources, and the improper images were filtered out 
of the dataset. 

Filtering the data collection is intensive, and as with any 
model preparation, it is required to increase the amount of 
relevant data that our model can extract from the dataset. 
Because there are images containing items that aren't supposed 
to be there, the dataset is full of noise. 

B. Dataset Pre-processing and Augmentation 

When it comes to improving the model's performance, pre-
processing the dataset is essential. It is a necessary step toward 
improving the quality of data and the amount of useful 

information the model can derive from it. It is also critical to 
generate a balanced dataset to improve the accuracy of an 
existing model. Before the dataset was supplied to the model 
for training, the images with their pixels had to be reshaped and 
resized. The images were resized using the numpy.reshape() 
method, and the pixels were replaced with pixel/255 using 
vector scalar division. 

Fig. 8 shows how the different augmentations were carried 
out and as a result, multiple different versions of the image 
were created. Balancing this dataset was a complex task as 
different categories of images had massive disparities in 
numbers. 

 

Fig. 6. Sample Images from the Dataset. 

TABLE I. DATASET SPECIFICATIONS 

Attributes Features 

Image Type RGB 

Image Extension JPG, PNG 

Image Dimension Various 

 

 

Fig. 7. Number of Bounding box Instances Per Class before Augmentation. 
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Fig. 8. Different Types of Image Augmentations Applied to Our Dataset. 

To solve this, only two different augmentations were 
carried out. The Contrast, Darken and Grayscale filters were 
utilized on our dataset to create augmented data with distinct 
differences that would be easily identifiable by the machine 
when trained. Because our original dataset was imbalanced and 
non-uniform, augmentation was used to increase the number of 
instances of classes in the dataset, particularly those that 
appeared less frequently like ambulances, bicycles, etc., thus 
improving the model's accuracy and performance by making 
the dataset more balanced. 

After augmentation, a relative balance within the dataset 
was achieved which can be seen in Fig. 9 which shows the 
number of bounding box instances of different classes after 
augmentation was applied to it compared to Fig. 7 above which 
was before augmentation. 

C. Model Training 

YOLOv5 has multiple architectures such as YOLOv5s, 
YOLOv5m, and YOLOv5l in order of complexity and depth. 
We have implemented and juxtaposed each of these models on 
our dataset to determine the one which fits best. Each of the 
models was trained for 100 epochs which took around 12 hours 
per model. The model training process is illustrated in Fig. 10. 
The network is trained using a collection of training data, and it 
then learns to predict the target values. We have also improved 
the accuracy of the dataset for the YOLOv5l, YOLOv5m, and 
YOLOv5s designs. 

An appropriate dataset is required to train a deep learning 
network. A train-test split needs to be made depending on the 
available data. During the training phase, validation losses are 
tracked, and non-constant values are generated after several 
epochs. Otherwise, the model will be adjusted for hyper-
parameters, and the validation loss value will be kept as low as 
possible. 

The model with the largest validation loss is saved for 
testing on the real data. When a model obtains high precision 
and recall rates for new datasets, or when it demonstrates 
improved performance after training on an enriched dataset, it 
is said to perform satisfactorily. 

D. Dataset Demonstration 

For model training, the entire vehicle dataset is provided. 
Table II shows the number of images evaluated for 
implementation, the number of images used to train the model, 
and the number of images used in testing. 

 

Fig. 9. Number of Bounding Box Instances Per Class after Augmentation. 
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Fig. 10. Flow Diagram of Model Training. 

TABLE II. DATASET DISTRIBUTION 

Features Before Augmentation After Augmentation 

Number of Classifiers 21 21 

Total Input Images 11,808 47,232 

Images to be Trained 9,447 37,786 

Images to be Tested 2,361 9,446 

V. DISCUSSION 

We were able to create a big dataset with over 21 unique 
classes and about 11,808 images. The dataset size increased to 
exactly 47,232 images after the various Data Augmentation 
methods were applied. 

A. Performance Matrices 

Confusion Matrix: Assists us in this by providing a 
comprehensive assessment of each model's performance, 
including faults. 

• TP (True Positive) - When the anticipated value is equal 
to the actual value and the result is positive. 

• TN (True Negative) - When the projected value is the 
same as the actual value, but the value is negative. 

• FP (False Positive) - The anticipated value was 
incorrectly predicted as positive when the actual value 
was negative. 

• FN (False Negative) - The anticipated value was 
incorrectly predicted as negative when the actual value 
was positive. 

A variety of performance measures can be calculated using 
these numbers. 

Accuracy: Measurement as a singular metric is invalid 
because it assigns equal costs to different types of errors and 
can only be used with a well-balanced dataset. The formula is 
as follows: 

Accuracy = 
TP+TN

TP+FP+TN+FN
                (1) 

Precision: Precision is a metric for how many accurately 
anticipated situations turn out to be positive, which can help 
establish a model's eligibility. 

The formula for precision is as follows: 

Precision = 
TP

TP+FP
                (2) 

Recall: Recall is the measure of the positive cases that were 
correctly classified by our model and is defined by the 
following formula: 

Recall = 
TP

TP+FN
                (3) 

mAP (mean Average Precision): mAP is used to evaluate 
object detection models like Fast R-CNN, YOLO, and Mask 
R-CNN. It considers both types of errors, false positives (FP) 
and false negatives (FN), as well as the trade-off between 
precision and recall (FN). 

mAP = 
1

N
 ∑ APi

N
i =1                (4) 

The mAP is calculated by averaging each class's Average 
Precision (AP) over several classes. 

F1 Score: It combines the values of Precision and Recall 
into a single metric that must be maximized to enhance our 
model. However, interpreting the F1 score is challenging, 
leaving us oblivious to which of the metrics the model is 
optimizing. The formula is as follows: 

F1 Score = 
2

1

Recall  
+  

1

Precision

                 (5) 

Loss function: We will summarize YOLOv5 losses and 
metrics to help you better comprehend the outcomes. The three 
parts of the YOLO loss function are box loss, obj loss, and 
class loss. 

VI. RESULT ANALYSIS 

For this research, three distinct YOLOv5 designs – small, 
medium, and large – were implemented and used. Before 
training, the dataset was pre-processed and supplemented. The 
complexity and depth of the three YOLOv5 architectures 
differ. Each model was tested against our dataset, and the 
results were compared to determine which model performed 
the best in terms of vehicle detection. 
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Mean average precision is a well-known and commonly 
used object detection evaluation metric. Faster R-CNN [35], 
YOLO [36], and MobileNet [37] are all state-of-the-art models 
that use mAP to evaluate their models. We tried to test the 
performance of the three YOLOv5 models – small, medium, 
and large – in our implementation. 

A. Mean Average Precision (mAP) Analysis 

The mAP 0.5 of the three designs employed throughout 100 
epochs is illustrated in Fig. 11 and Fig. 12. The YOLOv5l 
model achieves more accuracy in Fig. 11 and Fig. 12 than the 
other two models both before and after augmentation, as shown 
in the graphs. 

B. Training Loss Analysis 

The training loss is a metric that measures how well a deep 
learning model matches the training data. That is, it evaluates 
the model's error on the training data. The training set is a 
subset of the dataset that was used to train the model originally. 
The training loss is calculated computationally by adding the 
sum of errors for each sample in the training set. It is also 
worth noting that the training loss is calculated after every 
batch. 

According to Fig. 13 and Fig. 14, it showed that the 
training loss is minimal for the YOLOv5l model. The lesser the 
training loss, the faster a model's performance can be obtained. 

 

Fig. 11. mAP Comparison between Models before Augmentation. 

 

Fig. 12. mAP Comparison between Models after Augmentation. 

 

Fig. 13. Train/Box Loss Comparison between Models before Augmentation. 

 

Fig. 14. Train/Box Loss Comparison between Models after Augmentation. 

C. F1 Score Analysis 

By comparing the F1 Score among the three models before 
and after the augmentation of the dataset as seen in Fig. 15 and 
Fig. 16, we can see that the large model has a higher score, 
followed by the medium model and the small model. 

 

Fig. 15. F1 Score Comparison between Models before Augmentation. 
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Fig. 16. F1 Score Comparison between Models after Augmentation. 

D. Augmented Vehicle Dataset Epoch Results 

We have augmented our dataset and run for 100 epochs. At 
the end of the last epoch, the precision was 0.64, recall was 
0.63 and mAP was 0.66 for an augmented dataset in YOLOv5 
three architecture, Table III. 

TABLE III. PERFORMANCE MEASUREMENT AND COMPARISON OF 

DIFFERENT YOLO MODELS 

Model Precision Recall mAP_0.5 

YOLOv5l 0.64214 0.63763 0.66877 

YOLOv5m 0.59261 0.60812 0.60112 

YOLOv5s 0.58038 0.61149 0.57469 

The performance is not up to the mark as our dataset was 
unbalanced and we have a higher amount of car dataset by 
comparing with other types of vehicles. 

E. YOLOv5 Overall Performance Analysis 

For analyzing the performance of YOLOV5 based on three 
different architectures, we have measured the performance 
based on before and after augmentation data. The outcome is 
presented in Tables IV and V. 

Based on the findings, we can conclude that the YOLOv5l 
model does better out of the three architectures when it comes 
to vehicle detection for our dataset. 

TABLE IV. RESULT COMPARISON OF YOLOV5S, YOLOV5M AND 

YOLOV5L BEFORE AUGMENTATION 

Attributes YOLOv5s YOLOv5m YOLOv5l 

mAP_0.5 0.33505 0.35135 0.36361 

mAP_0.5:0.95 0.20561 0.23274 0.24556 

train/box_loss 0.03026 0.02182 0.01924 

train/class_loss 0.01448 0.00737 0.00503 

validation/box_loss 0.03443 0.03407 0.03309 

validation/class_loss 0.02466 0.02801 0.02853 

F1 Score 0.42211 0.43096 0.4438 

TABLE V. RESULT COMPARISON OF YOLOV5S, YOLOV5M AND 

YOLOV5L AFTER AUGMENTATION 

Attributes YOLOv5s YOLOv5m YOLOv5l 

mAP_0.5 0.57469 0.60112 0.66877 

mAP_0.5:0.95 0.41897 0.43868 0.48071 

train/box_loss 0.02711 0.0225 0.01574 

train/class_loss 0.00977 0.013675 0.00158 

validation/box_loss 0.02235 0.022442 0.02112 

validation/class_loss 0.00952 0.009342 0.00802 

F1 Score 0.59552 0.600264 0.63987 

VII. CONCLUSION 

The application of the different modules of YOLOv5 has 
significantly improved the detection of vehicular objects in 
traffic and on the road. The accumulated dataset has provided a 
vast amount of variety in vehicle classes which led to a richer 
and more accurate result across all the models. For 
performance comparison, we utilized different models with 
different nodes, layers, and speeds. After an extensive data 
training and processing, period was carried out, it was seen that 
YOLOv5l had outperformed the rest. Its deeper node 
complexity and increased number of convolutional layers make 
it the most efficient in terms of processing, but it was also seen 
that it takes the most time although by a short margin. The 
significant performance efficiency of the YOLOv5l model 
compared to YOLOv5s and YOLOv5m solidifies the real-
world application opportunities for the detection of uniquely 
South Asian vehicles. 
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