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Abstract—The globe was rocked by unprecedented levels of 

disruption, which had devastating effects on daily life, global 

health, and global economy. Since the COVID-19 epidemic 

started, methods for delivering accurate diagnoses for multi-

category classification have been proposed in this work (COVID 

vs. normal vs. pneumonia). XceptionNet and Dense Net, two 

transfer learning pre-trained model networks, are employed in 

our CNN model. The low-level properties of the two DCNN 

structures were combined and used to a classifier for the final 

prediction. To get better results with unbalanced data, we used 

the GEV activation function (generalized extreme value) to 

augment the training dataset using data augmentation for 

validation accuracy, which allowed us to increase the training 

dataset while still maintaining validation accuracy with the 

output classifier. The model has been put through its paces in two 

distinct scenarios. In the first instance, the model was tested 

using Image Augmentation for train data and the GEV 

(generalized extreme value) function for output class, and it got a 

94% accuracy second instance Model evaluations were 

conducted without data augmentation and yielded an accuracy 

rating of 95% for the output class. 

Keywords—COVID-19; CNN; GEV function; image 

augmentation 

I. INTRODUCTION 

In December 2019 less than four months after coming in 
Wuhan for the first time, the coronavirus has deteriorated into 
a public health calamity. As of March 30, 2021, there were 
127.34 million reported diseases and roughly 2.78 million 
deaths on a global scale [1]. The illness COVID-19 is brought 
on by a virus source that irritates the lungs and makes patients 
develop pneumonia. These pneumonia cases are treated and 
medicated very differently from those caused by other viruses 
or bacteria. In addition to the diagnosis, specific preventative 
measures are implemented if a person exhibits COVID-19 
signs. To prevent the infection from spreading, the COVID-19 
patient is isolated for a predetermined number of days. 
Therefore, it is crucial to accurately and promptly identify 
COVID-19-related pneumonia in order to stop the virus's 
transmission. In the medical field, machine learning 
algorithms for automated diagnosis have recently gained 
traction as a tool for physicians [2], [3]. Deep learning 
algorithms have been used to correctly classify skin cancer 
[4],  [5], Breast cancer diagnosis [6], [7]. Psychiatric disorder 
classification, detection of pneumonitis using chest x-rays, and 
image segmentation, COVID-19 is most commonly diagnosed 

RT-PCR is the method used here. The early detection and 
treatment of this condition necessitates the use of chest CT 
and X-ray imaging. It's still possible to find symptoms on CT 
scans, even with test results that come back negative[8], 
because the RT-sensitivity of PCRs has dropped to 70% from 
60% before [9], [10]. A good approach for diagnosing 
COVID-19 pneumonia when paired with CT has been 
demonstrated [11]. CT scans are often clear for the first two 
days or so after symptoms start to appear. When COVID-19 
pneumonia survivors underwent CT lung examinations 10 
days following the onset of symptoms, the most substantial 
pulmonary pathology was found [12], [13]. This is a black and 
white picture of the body's internal organs. The X-ray is a 
medical diagnostic tool that has been around for a long time 
and is still commonly used today. An X-ray image of the 
thoracic cavity can detect chest infections and other lung 
illnesses including pneumonia, making X-ray imaging a viable 
alternative diagnostic method for COVID-19, in light of the 
present healthcare crises throughout the world. In order to 
create a COVID-19 case identification system based on 
machine learning, we specified the following goals. 

• Helping radiologists and other medical professionals 
identify minute, slow changes in X-rays that could 
otherwise go undetected. 

• Because radiologists are so expensive, many people in 
developing nations do not have access to them. They 
might use this technology to identify their X-ray 
images as pneumonia, COVID-19, or normal; to build 
a model to scan complex data like CT and MRI scans 
for COVID-19 cases. 

II. RELATED WORKS 

 Classification and recognition jobs have been proven to be 
an effective machine learning method. Different deep-learning 
techniques have been used by researchers to detect COVID-19 
in clinical pictures such chest CT scans and X-rays Alakwaa, 
Wafaa, Nassef, and Amr Badr [14]. For the detection of 
COVD-19, several of these radiological imaging techniques 
have recently gained popularity, The segmented CT images 
were initially fed straight into 3D CNNs for classification, but 
this proved to be insufficient. Instead, nodule candidates in the 
Kaggle CT scans were first identified using a modified U-Net 
trained on LUNA16 data (CT scans with tagged nodules). The 
U-Net nodule detection method had a high rate of false 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 9, 2022 

891 | P a g e  

www.ijacsa.thesai.org 

positives, so regions of segmented CT scans of the lungs were 
used to feed 3D convolutional neural networks (CNNs) to 
determine whether the CT scan was positive or negative for 
lung cancer. These regions were where the U-Net output had 
identified the most likely nodule candidates. The test set 
accuracy produced by the 3D CNNs was 86.6%. 

Hemdan Ezz, Marwa A. and Mohamed Esmail [15] using 
25 confirmed positive COVID-19 instances on 50 chest X-
rays serve as the study's validation data. Seven distinct deep 
convolutional neural network designs, including the updated 
(VGG19) and the second version of Google MobileNet, are 
included in the COVIDX-Net, experiments and evaluate the 
COVIDX-Net, 80–20% of X-ray pictures were used for the 
model's training and testing stages, respectively. With f1-
scores of 0.89 and 0.91 for normal and COVID-19.[16] 
COVID-Net was developed by Alexander Wong, Linda, 
Wang and Zhong Lin ,COVID-19 identification is based on a 
deep model that achieved 93.2 percent accuracy rate in 
categorizing (COVID-19, normal and pneumonia). 
Tartaglione, Enzo, et al .[17] For COVID-19, we advocate a 
combination of Deep Learning and Transfer Learning, which 
has been the most thoroughly studied field of research these 
papers examine the extent to which COVID-19 identification 
may be improved by modifying popular deep models. Abdul 
Hafeez and Muhammad Farooq [18] are two such men. 
COVID-ResNet, Radiograph Detection, and more there are 
5941 chest images in the COVIDx dataset, and the ResNet 
was trained with X-ray images of varying sizes and learning 
rates, resulting in an accuracy of 96.23 percent using COVID-
ResNet. Tzani and Ioannis D .[19] used chest X-rays with 
different hyper parameter settings to test 5 different models 
for COVID-19 detection, all 1427 X-rays showed 224 people 
who had Covid-19 sickness, 700 people who had confirmed 
common pneumonia, and 504 people who were healthy. VGG-
19, InceptionNet, MobileNetV2, XceptionNet, and Inception 
ResNetV2 are five conventional CNN designs that have been 
evaluated for the job of categorizing X-rays using various 
model parameters like the number of untrainable layers and 
the top layer neural network classifier settings achieve 96.78 
%, 98.66 %, and 96.46 %, respectively, are the greatest levels 
of accuracy. Sultan Mahmud and Kh. Mustafizur Rahman [20] 
used Convolutional Neural Networks (CNNs) in a deep 
learning model that is proposed to automatically identify 
COVID-19 disease using CXR (Chest X-ray) pictures. Model 
was trained using 10293 X-ray pictures, 875 of which were 
from COVID-19 instances. The collection includes three 
separate types of tuples: pneumonia, COVID-19, and normal 
cases. The empirical results demonstrate that, while using a 
CNN with fewer layers than those works, the suggested model 
achieved 97% specificity, 96.3% accuracy, 96% precision, 
96% sensitivity, and 96% F1-score, which are better than the 
works currently available. Junaid Latief and Asif Iqba [21] 
Exception’s CoroNet deep neural network was used to identify 
and diagnose COVID-19 in chest x-ray images. ImageNet and 
a chest X-ray dataset generated by merging COVID-19 and 
other publically accessible X-ray pictures were used to train 
this. Accuracy was attained in the model with 98% recall and 
93% accuracy in three of the COVID instances after 
conducting several tests (COVID vs. pneumonia vs. normal). 
Rajib Kumar and Sagar Deep [22] used CNN models to 

identify COVID from chest X-ray images, the ensembles 
network is comprised of three CNN networks that have been 
trained. There was a 91.99 percent success rate for the 
NASNet, MobileNet, and DenseNet. Hasan K. Naji, Hayder 
K, Fatlawi, 

Ammar J [23] implements classifiers using both ensemble 
classification algorithms (Adaptive Boosting and Adaptive 
Random Forest). The study of the data revealed a striking 
correlation between the patient's age, the presence of a chronic 
illness, and the rate of recovery. The experimental results 
show that adaptive boosting classifiers perform exceptionally 
well, reaching 99% accuracy, while adaptive random forest 
classifiers scored just 91% accuracy, Mahmoud B. Rokaya, 
[24]. The work emphasizes the value of bioscience in 
identifying recovered patients from mortalities. The decision 
trees (DT) could distinguish between recovered patients and 
mortalities with 94% accuracy even with little data. A shallow 
dense network attained a 75% accuracy rate. However, the net 
reached 99% accuracy when a 10-fold approach was used with 
the same data. They gathered the data for this study from King 
Faisal Hospital. Two parameters had the highest power to 
distinguish between recovered patients and mortalities, 
according to PCA analysis. When trained using only calcium 
and hemoglobin, the shallow net provides an accuracy of 92%. 

Convolutional Neural Networks (CNNs) are used in a deep 
learning model suggested by Sohaib Asif, Ming Zhao, 
Fengxiao Tang, and Yusen Zhu [25] to automatically identify 
COVID-19 disease using CXR (Chest X-ray) images. They 
use a model to assess the performance of various pre-trained 
deep learning models (InceptionV3, Xception, MobileNetV2, 
NasNet and DenseNet201). Second, a lightweight shallow 
convolutional neural network (CNN) architecture with a low 
false-negative rate is developed for identifying X-ray pictures 
of a patient. The data set used in this study includes 2,541 
chest X-rays from two separate public databases that have 
been confirmed as COVID-19 positive and healthy cases. The 
suggested model's performance is compared to those of pre-
trained deep learning models. According to the results, the 
proposed shallow CNN has a maximum accuracy of 99.68% 
and more importantly sensitivity, specificity and AUC of 
99.66%, 99.70% and 99.98%. 

III. MATERIAL AND METHODS 

According to the guidelines in this section, chest X-rays 
should be classified as normal, pneumonia, or COVID-19. The 
issue with medical imaging is the lack of huge data sets. 
Because it isn't recommended to start from scratch and build a 
DCNN, the medical images can be categorized by using the 
features learned through a process called transfer learning 
[26]. The ensemble architecture suggested here will make sure 
that all of the descriptors needed for picture classification are 
there, so that the process can go smoothly. To get features 
from photos, a layer called "Filter" is used. These features are 
combined and then applied to a FC classification. We used 
features from two trained models as a starting point for the 
proposed model, with Global Average Pooling added to them. 
This layer is to cut down on feature length, which means that 
there will be fewer neurons in the last classifier input layer. 
This is good because it reduces the number of parameters, 
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which makes it less likely that the network will become over 
fit [27]. In this section, we will list the methods used in this 
model. 

A. Convolutional Neural Networks 

A convolutional layer, which is made up of groups of 
kernels or filters, is the most important part of a CNN. During 
training, the layer parameters are learned. Filters are often 
smaller in size than the original image, and each filter 
constructs an activation map by combining with the image. 
The filter is moved over the image height and width, and at 
each spatial position we calculate the dot product between 
each filter element and the input. Fig. 1 depicts the 
convolution process. When a filter is applied to an image, the 
first layer of the activation map (shown in blue in Fig. 1) is 
formed via convolution with the image blue component. This 
method is repeated for each image element to create the 
activation map. Stacking the activation maps of each filter is 
used to enable convolutional layers to build their output 
volume along the depth dimension. The output of a neuron 
helps equalize each component of the activation map. 

As the previous data led to the conclusion, the size of input 
image is equal to the size of the corresponding filter because 
each neuron is connected to a small local area of the input 
image. There are also factors that are shared by all neurons in 
an activation map. Because the convolutional layer has such a 
strong local connection, the network is forced to train filters 
that respond strongly to a specific portion of the input. The 
first convolutional layer looks for low-level characteristics 
like lines. The next convolutional layers look for high-level 
features like shapes and individual objects, as shown in Fig. 1. 

B. Data Augmentation 

Accumulating fresh training data from previously collected 
data is known as "data augmentation". It is possible to 
improve photographs using simple image processing methods 
such as padding, cropping, rotation, and flipping. In order to 
train neural networks, these edited photographs are added to 
the original collection of photos, increasing the data set size. 
Data augmentation is used to artificially expand the training 
data set [28]. 

Imaging and labels are regularly altered in medical images 
to achieve this effect. Contrary to popular belief, data 
augmentation is a common practise in the training industry. It 
is simple to generate and decrease overfitting in CNNs using 
data augmentation and regression. COVID Image [29] is an 
excellent example of an image augmentation technique that 
uses only a little amount of training data to create modified 
copies of training data sets that belong to the same class as the 
original images. 

 

Fig. 1. Convolution Layer Sample. 

The training data set is often utilized for data augmentation 
rather than validation or testing of the data sets. However, this 
is distinct from other data settings, such as pixel and image 
scaling. Consistency must be maintained across all datasets 
with which the model interacts. CNN models for deep learning 
have lately proved the necessity of data augmentation, since 
data augmentation enhances outcomes when training CNN on 
sparse data, but only when the augmentation procedures 
utilized are appropriate for each dataset [30]. 

There are a number of simple data augmentation strategies 
that are being tested. Table I shows the parameters utilized in 
the picture augmentation process. 

C. Transfer Learning Features Extraction and Concatenation 

Each layer of the CNN learns ever-more-complex filters. 
The initial layers demonstrate how to employ fundamental 
feature detection filters, such as corners and edges, to look for 
things. They learn how to use filters to look for parts of things, 
like eyes and noses. This is how the last layers work. They 
develop the ability to recognize complete things in a variety of 
shapes and orientations. For the time being, I'll briefly 
describe what transfer learning is and how it works. How can 
you train an image classifier in a few hours? Training image 
classification models might take many days or even weeks, 
depending on the size of the networks and datasets used. 

As a result, why do not we use the work of dedicated data 
scientists working on in image classification projects at 
businesses like Google and Microsoft as a starting point for 
the image classification initiatives? Transfer learning is based 
on the concept of taking pre-trained models, i.e. known-
weights models, and applying them to a new machine learning 
issue. You cannot simply replicate the model and expect it to 
operate, you must retrain the network using the new data. 
However, because the weights from earlier layers are more 
generic, they can be frozen for training. 

Consider pre-initialized networks to be intelligently 
constructed networks rather than a randomly generated 
network. Because we are effectively tailoring the network, 
lower learning rates are often employed in transfer learning 
than in regular network training. Transfer learning may not be 
beneficial if high learning rates are applied and the network's 
early layers are not frozen. In many transfer learning cases, 
just the final layer or a few layers are taught. There are many 
free neural networks available online that can be used for 
transfer learning if the problem is fairly general and the user 
doesn't have enough data to train the network — this is 
common. 

TABLE I. IMAGE AUGMENTATION PARAMETER USED 

Parameter Value 

samplewise_center True 

width_shift 0.23 

height_shift 0.22 

shear 0.15 

zoom 0.15 

horizontal_flip Ture 

brightness [0.4,1.5] 
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Fig. 2. Transfer Learning Model. 

We may sum up this principle by saying that lower-level 
characteristics can be adapted to different environments by 
adjusting their weighting in later and fully connected layers, as 
we can see in Fig. 2, an example of a transfer learning model, 
as shown in Fig. 2. 

The two-transfer model DCNN structures used in our 
model are described briefly below. 

1) DenseNet169: In 2018, Huang et al. proposed densely 

linked convolutional networks, which interconnect each layer 

of a network in a feed-forward manner. A convolutional 

neural network with much more depth and accuracy was made 

feasible as a result of this groundbreaking achievement. Each 

layer of a dense network is linked directly to the next in a 

feed-forward method (inside every dense block). To create 

each subsequent layer, the feature mappings from prior layers 

are transferred to the new inputs. 

2) xception Net: Deep detachable convolutions are used in 

the architecture of this CNN. A team of Google researchers 

came up with it. As a stepping stone between a regular 

convolution and a deep-separable convolution, Google has 

described the component units of convolutional neural 

networks. The input flow is the initial stop for data, followed 

by eight trips via the middle flow and a final stop at the 

outgoing flow. In addition, batch normalisation was used on 

all convolution and separable convolution layers in the final 

product. 

D. GEV Activation Function 

 The majority of the data in a dataset is organized into a 
few number of classes, whereas several classes appear only 
sporadically. There is a considerable tail to the data in this 
example. Students who took classes with a larger number of 
students had a greater impact on their learnt traits. In this 
scenario, it's easier to simulate the more frequent classes than 
the rarer ones [31]. In both, binary and multiclass contexts, 
this problem exists. 

When dealing with data that is very asymmetrical, with 
many instances in one class and few in the other, new 
techniques are needed. GEV distribution from extreme value 
theory yields a better activation function than sigmoid 
activation function when one class dominates the other. 
Binary and multiclass classification can be improved using 

GEV activation functions rather than sigmoid or softmax 
activation functions. COVID-19 and other diseases with 
limited training examples may benefit from this new 
paradigm. When one side of the training dataset is much better 
than the other, or when the dataset is very imbalanced. CNN 
may then be used to extract the pictures' characteristics. The 
characteristics are then reduced to a single value by a liner 
combination in the fully linked layer. GEV (Generalized 
Extreme Value) is the activation function used to transform 
this single value into a probability [32]. GEV activation is 
provided by the function. 

𝐺𝐸𝑉(𝑥|𝜇, 𝜎, 𝜀) = {
𝑒𝑥𝑝 {− exp (−

𝑥−𝜇

𝜎
) , 𝑖𝑓 𝜀 = 0,

𝑒𝑥𝑝 {− {1 + 𝜀 (
𝑥−𝜇

𝜎
) } −

1

𝜀 𝑖𝑓 𝜀 ≠ 0,
 (1) 

Where µ, σ, and ξ are in the deep learning framework, 
parameters must be learned. According to the extreme value 
theorem the properly normalized maximum of a sample of 
independent and identically distributed random variables, can 
only converge to the GEV distribution. To give a probability, 
the GEV activation rescales the values between zero and one. 

The parameters, on the other hand, enable the curve to 
better model the long-tail distribution that occurs with extreme 
data [33]. 

E. Evaluation of Performance 

The most crucial metric for assessing how well our deep 
learning classifiers perform is accuracy. It's the sum of true 
positive and negative values divided by the total value 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
               (2) 

Precision is a measure of how many predictions in a 
certain class are really in that class. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
               (3) 

Recall is a metric that measures how many correct class 
predictions might be produced given all of the data that was 
found to be correct. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (4) 

The F1 score is measurement accuracy metric. The F1 
score is equal to twice the ratio of the accuracy and recall 
measurements multiplied by the total of the accuracy and 
recall measures. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑅𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛
             (5) 

F. Data Collection 

The images were captured from a number of publically 
available resources. 

• https://www.kaggle.com/prashant268/chest-xray-
covid19-pneumonia 

• https://github.com/agchung 

• https://github.com/ieee8023/covid-chestxray-dataset 

https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia
https://github.com/agchung
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Three sub-volumes comprises each of the two volumes 
(“training and testing”) in which the data is organized and 
labelled into (COVID19, PNEUMONIA and NORMAL). 
Which contains 6,432 X-ray pictures make up the dataset 
divided as follows 1583 image as normal and 576 labelled 
COVID-19 and 4273 as pneumonia, which 20% of the data 
are test images. As seen in Fig. 3 and Fig. 4, we can see the 
dataset is highly unbalanced, we used GEV function to solve 
this problem. We plot some samples of data in Fig. 5. 

 

Fig. 3. Training and Validation Dataset. 

 

Fig. 4. Test Dataset. 

 

Fig. 5. Samples of Data. 

IV. RESULTS AND DISCUSSION 

 COVID-19 detection is the primary goal of this 
investigation. We used a dataset that was organized into 
(COVID19, PNEUMONIA, and NORMAL) instances and 
used our model to classify the COVID-19 by employing 
features derived from two separate transfer learning models 
using GEV activation function to accomplish our study goal. 
In our models, we have a three-step process. Every step of the 
process will be described in depth, including pre-processing, 
categorization, and validation. Fig. 6 depicts the suggested 
framework. During the classification phase, we feed the 
proposed model the "feature maps" generated by two 
previously trained models (DensNet 169 and xception Net). 
Filters or feature detectors are applied to the input image, and 
the outcomes of those operations are calculated to produce 
these feature maps. Based on the model's design, a variety of 
feature maps was generated. Table II displays the feature maps 
generated by the DensNet 169 model, which were [7, 7, 1664]. 

Using the ImageNet dataset, the input of the 224x224x3 
form is sampled down to 7x7x1664 at the conclusion of the 
model. Table III indicates the xception Net feature maps 
generated, which is [7, 7, 2048] (see Table III). 224x224x3 
input is down sampled to 7x7x2048 at the model's conclusion. 
ImageNet-trained model structure was used to create this 
feature. Table IV's concatenation output feature that was 
generated from two preview Models [7, 7, 3712], is the input 
to our proposed model. In the form of a feature map created 
by merging two previously trained models, this layer 
significantly speeds up deep network training and boosts 
neural network robustness by normalizing data between neural 
network layers instead of normalizing raw data. Instead of 
analyzing the full dataset, a flattening layer reduces the result 
of normalization to a single-dimensional feature vector, which 
aids learning by speeding up training and increasing the pace 
at which information is absorbed. The flattening layer 
combines all the pixel data from convolutional layers into a 
single vector. 

Once the model has received the vector, it uses it as an 
input layer. To feed data to each neuron in our model, we 
utilise the flatten function, which reduces multi-dimensional 
input tensors to just one dimension. Flattening layer output is 
shown in Table IV as [3712]. When the vector data has been 
flattened, it is transmitted to the CNN's layers, which are 
referred to as "completely linked" or "dense layers," where it 
is processed in one of two ways. Because of these 
interconnections between neurons at every level, the brain 
may function as a single unit. It is the initial responsibility of 
dense layers to categories the picture using the flattened 
output results of convolution and pooling layers as input. 

As a result, the categorization determination is ultimately 
driven by the completely linked layer. We used three fully 
connected (FC) layers, which represent the global averaged 
attributes of the two models utilizing three neural layers, were 
used to solve the classification problem. There are 128 nodes, 
32 nodes, and then 3 nodes in each layer of the brain. Every 
FC layer has a PRELU Activation Function applied. Neurons 
can be activated or deactivated using an activation function. It 
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will be determined whether or not the input from the neuron to 
the network is crucial, using simple mathematical approaches. 

TABLE II. DENSNET 169 ARCHITECTURE 

Layer Output Shape Parameter 

Input Layer 224,224,3 0 

DenseNet169 7,7,1664 12642880 

Normalization 7,7,1664 6656 

Global Average 1664 0 

Flatten 1664 0 

Dropout 1664 0 

Dense 128 213120 

PReLU 128 128 

Dropout_1 128 0 

Dense_1 32 4128 

PReLU_1 32 32 

Dropout_2 32 0 

Dense_2 3 99 

TABLE III. XCEPTION MODEL ARCHITECTURE 

Layer Output Shape Parameter 

Input Layer 224,224,3 0 

XceptionNet 7,7,2048 20861480 

Normalization 7,7,2048 8192 

Global Average  2048 0 

Flatten 2048 0 

Dropout 2048 0 

Dense 128 262272 

PReLU 128 128 

Dropout_1 128 0 

Dense_1 32 4128 

PReLU_1 32 32 

Dropout_2 32 0 

Dense_2 3 99 

TABLE IV. PROPOSED MODEL ARCHITECTURE 

Layer Output Shape Parameter 

Input Layer 224,224,3 0 

DensNet169 7,7,1664 12642880 

XceptionNet 7,7,2048 20861480 

Concatenate 7,7,3712 0 

Normalization 7,7,3712 14848 

Global Average 3712 0 

Flatten 3712 0 

Dropout 3712 0 

Dense 128 475264 

PReLU 128 128 

Dropout_1 128 0 

Dense_1 32 4128 

PReLU_1 32 32 

Dropout_2 32 0 

Dense_2 3 99 

GEV 3 7 

It is common for CNNs to include a "dropout layer," a 
mask that eliminates particular neurons from the next layer 
while keeping all others intact. It is possible to apply a dropout 
layer to an input vector in two ways: either to eliminate part of 
the vector's attributes, or to delete neurons inside a hidden 
layer. The value [0.5] of Dropout was utilized in the first FC 
layer in order to avoid CNNs being unduly dependent on the 
training data. This implies that 50% of the neurons in the input 
were randomly deactivated. This model relies heavily on the 
learning rate parameter. The rate at which we learn determines 
how frequently we need to adjust the settings we're working 
with. The model will take a long time to converge if the 
learning rate is too low, because the parameters will only 
change by modest amounts. If the learning rate is excessively 
high, the parameters may hop over the low spaces of the loss 
function, and the network may never achieve a convergent 
state. The inverse is also true. Learning Rate (0.0003 to 
0.00005) was the range of the steps we utilized on this model 
schedule. Once the model has ceased improving, this callback 
method will attempt to change the model by decreasing the 
learning rate. Up to 13 epochs of training data were utilized 
with the validation data (validation loss'). 

Using a GEV function to forecast the output class 
improved performance in the imbalance class, when there are 
a lot of samples from one class and a few from the other, but 
only a few instances from the other. GEV distribution from 
extreme value theory yields a better activation function than 
sigmoid activation function when one class dominates the 
other. Binary and multiclass classification can be improved 
using GEV activation functions rather than sigmoid or 
softmax activation functions, as shown in Fig. 6. 

 

Fig. 6. Proposed Framework. 

A. Results and Evaluation Model 

The effectiveness of the proposed model is also compared 
to that of Dense Net and xception Net as single classifiers. As 
illustrated in Table V, to compare model output, we repeat the 
model without the image augmentation parameter, as shown in 
Table VI. 

When compared to two independent models, Xception-
NET and DenseNet, without augmentation, the estimated 
model accuracy is 95.5%, and with augmentation, it is 94% as 
we can see in Fig. 11. As shown in Fig. 7 and 8, DenseNet 
achieves an accuracy of 93.2 percent with picture 
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augmentation and 94 percent without image augmentation, 
whereas Xception NET achieves an accuracy of 84 percent 
with image augmentation and 94 percent without image 
augmentation. 13 is the ideal number of epochs, as we can see 
in Fig. 12 based on intersection of the training line with 
validation line so we stopped the training model at epoch 13. 

We can measure the metrics of the outcomes of our 
categorization investigation using the confusion matrix. The 
confusion matrix for the proposed CNN framework's test 
cases is shown in Fig. 13 with image Augmentation and 
Fig. 14 without, In addition, Fig. 9, 10 graphic representation 
of the CNN classifier performance evaluation shows loss both 
with and without image augmentation during the validation 
and training stages. Additionally, at epoch number 12, the 
validation and training losses attained by the suggested system 
are 0.1587 without image augmentation and 0.1777 with 
augmentation. 

TABLE V. RESULT WITH IMAGE AUGMENTATION TECHNIQUE 

Model Name Precision Recall F1-score Accuracy 

Densnet 0.90 0.94 0.92 0.93 

Xception 0.80 0.85 0.81 0.84 

Proposed model 0.93 0.93 0.93 0.94 

TABLE VI. RESULT WITHOUT IMAGE AUGMENTATION 

Model Name Precision Recall F1-score Accuracy 

Densnet 0.94 0.93 0.93 0.94 

Xception 0.94 0.93 0.94 0.94 

Proposed model 0.95 0.94 0.95 0.95 

 

Fig. 7. Comparison of Three Model using Image Augmentation. 

 

Fig. 8. Three Models are Compared without Image Augmentation. 

 

Fig. 9. Loss Value Plot with Image Augmentation. 

 

Fig. 10. Loss Value Plot without Augmentation. 

 

Fig. 11. Accuracy Graph of the Suggested Model's using Image 

Augmentation. 

 

Fig. 12. Accuracy Graph of the Suggested Model's without Image 

Augmentation. 
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Fig. 13. Confusion Matrix of Suggested Model's with Image Augmentation. 

 

Fig. 14. Confusion Matrix of Suggested Model's without Image 

Augmentation. 

V. CONCLUSION 

Using the GEV activation function, For the purpose of 
identifying and classifying COVID-19 occurrences from X-
ray images, we suggested a deep learning model using two 
DCNN structures. 95 percent of the time, our model is able to 
handle jobs that include numerous classes. To process the 
COVID dataset without data augmentation, our model 
achieved 95% accuracy in just 13 learning cycles. The GEV 
Function surpasses a single classifier in terms of 
generalization performance when features are combined from 
the two DCNN structures without picture augmentation. 
Radiologists can benefit from the suggested strategy by 
learning more about COVID-19's important components. 
Accuracy is expected to increase better with more and more 
training data. The following are some of the most important 
discoveries from this research: For effective and more 
accurate image categorization, CNN models require a 
sufficient number of images. 

When employing an existing dataset with a GEV 
activation function, picture augmentation parameters have 
little impact on the performance of a CNN model. 

In a statistically significant way, the suggested CNN 
model improves the performance of other single CNN models. 
The medical sector may greatly benefit from CNN-based 
diagnosis using X-ray imaging when dealing with large-scale 
testing situations like COVID-19. 
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