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Abstract—Anomaly detection finds application in several 

industries and domains. The anomaly detection market is 

growing driven by the increasing development and dynamic 

adoption of emerging technologies. Depending on the type of 

supervision, there are three main types of anomaly detection 

techniques: unsupervised, semi-supervised, and supervised. 

Given the wide variety of available anomaly detection 

algorithms, how can one choose which approach is most 

appropriate for a particular application? The purpose of this 

evaluation is to compare the performance of five unsupervised 

anomaly detection algorithms applied to a specific dataset from a 

small and medium-sized software enterprise, presented in this 

paper. To reduce the cost and complexity of a system developed 

to solve the problem of anomaly detection, a solution is to use 

machine learning (ML) algorithms that are available in one of 

the open-source libraries, such as the scikit-learn library or the 

PyOD library. These algorithms can be easily and quickly 

integrated into a low-cost software application developed to meet 

the needs of a small and medium-sized enterprise (SME). In our 

experiments, we considered some unsupervised algorithms 

available in PyOD library. The obtained results are presented, 

alongside with the limitations of the research. 
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I. INTRODUCTION 

The current societal landscape has seen an increase in the 
quantity and complexity of information processed daily. Such 
increasing use is required for effective management of current 
industrial processes and depends on the data acquired from the 
process itself, data that is cleaned and converted into 
information that can be used to create meaningful 
visualizations, be fed in complex control and prediction 
algorithms, or even stored for future reference and use. 
Moreover, data reliability is paramount. Correct information 
must be used to obtain correct responses from the managed 
processes and incorrect information can lead to inefficiency, 
loss of precision, data, or product that in turn can negatively 
impact the organization's reputation or the bottom line. 

In general, the data is acquired from the process via 
sensors, manually or through automated systems. To eliminate 
acquisition errors, data is sanitized and, if possible, corrected. 
This prevents the propagation of errors further in the system. 
Data that does not meet the criteria for correction may appear 
anomalous compared with its dataset values or regarding the 

median of the dataset. In any scenario, this might indicate 
either erroneous data or valid data signaling a potential 
problem with data acquisition or in the process itself. 
Therefore, isolating anomalous data is an important indicator 
of data health and a promising path in data analysis. 

Anomalies are unexpected instances of deviation from a 
large part of the dataset. Thus, solving them will allow for 
improving the efficiency of the underlying process [1]. In fact, 
according to various studies (e.g., [2]), applications based on 
anomaly detection could help an enterprise detect possible 
issues in time, before they emerge by identifying anomalous 
behavior, thus minimizing the risk of data loss and 
streamlining business processes. Anomaly detection finds 
application in multiple industries and domains, including 
healthcare, finance, manufacturing, construction, logistics, 
cyber security, and many others [3], [4]. There are various 
specific applications of anomalies detection, such as, system 
health monitoring, early detection of sepsis [5], event 
detection, product quality, intrusion detection, energy 
optimization, various real-time applications, to name only a 
few. 

The anomaly detection market is witnessing growth, thus, 
according to [2], “the anomaly detection market size is 
expected to grow from USD 2.08 Billion in 2017 to USD 4.45 
Billion by 2022, at a Compound Annual Growth Rate (CAGR) 
of 16.4%”. This growth is being driven by the increasing 
development and dynamic adoption of emerging technologies 
such as big data analytics, data mining and business 
intelligence, machine learning and artificial intelligence. 

According to scientific literature, there are three main types 
of anomaly detection techniques, depending on the type of 
supervision: unsupervised, semi-supervised, and supervised. 
Essentially, the choice of anomaly detection method can be 
made according to the labels available in the dataset [6]. 

Considering the extensive variety of available anomaly 
detection algorithms, how can one choose which approach is 
most suitable for a particular application? Clearly, performance 
in anomaly detection is a significant factor in algorithm 
selection. Unfortunately, there is no one approach that is best in 
every context and for all domains. Depending on the specifics, 
one algorithm may be superior to the others for a given user or 
dataset. Selecting an appropriate algorithm for a specific 
application is still a difficult design choice [7]. This is even 
more important in traceability systems that must ensure that the 
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product's lifecycle is correct, where the detection of an 
anomaly in the process can have a major impact on the 
production pipeline. However, these workflows can vary from 
company to company, which means that the use of supervised 
learning would imply higher costs to develop a custom model, 
whereas unsupervised learning and more precisely, anomaly 
detection would allow building a model that does not require 
human intervention, does not need prior knowledge about the 
process and, at the same time, can be very dynamic in terms of 
feature selection. 

Reviewing the literature on machine learning-based 
anomaly detection algorithms reveals the diversity of 
algorithms evaluation and comparison approaches used by 
researchers. Consequently, the authors of [7] draw attention to 
the inconsistency in splitting between training and test datasets, 
in the selection of performance metrics and in the threshold 
used to indicate anomalies. Moreover, they point out the 
ambiguity in the definition of the positive class (i.e., the class 
of interest) utilized to evaluate the various models. Because of 
these inconsistencies, the authors find it difficult to understand 
the experimental evaluations presented in different papers [7]. 

To reduce the cost and complexity of a system developed to 
solve the problem of anomaly detection, a solution is to use 
machine learning (ML) algorithms that are available in one of 
the open-source libraries, such as the scikit-learn library [8], 
[9] or the PyOD library [10]. These algorithms can be easily 
and quickly integrated into a low-cost software application 
developed to meet the needs of a small and medium-sized 
enterprise (SME). Once the relevant features considered for 
anomaly detection are selected and pre-processed, the 
integrated algorithms can be applied within the specific 
software application. 

In this paper, we will examine the viability of 
implementing anomaly detection in a traceability system by 
applying unsupervised anomaly detection algorithms. In this 
regard, we will study and compare the performance of some of 
the unsupervised anomaly detection algorithms applied on a 
dataset provided by the information technology (IT) 
department of a small and medium-sized software enterprise. 
We considered some un-supervised algorithms available in one 
of the popular open-source libraries, namely PyOD library. 
This library provides several benefits over comparable existing 
libraries. For instance, it contains more than 20 algorithms, it 
“implements combination methods for merging the results of 
multiple detectors and outlier ensembles which are an 
emerging set of models”, and “all models are covered by unit 
testing with cross platform continuous integration, code 
coverage and code maintainability checks” [10]. These benefits 
have led to its widespread adoption in academic and 
commercial applications [10]. According to [11], [12], the 
GitHub repository has more than 10,000 monthly visitors, and 
more than 6,000 monthly downloads for PyPOD. 

The remainder of this paper is structured as follows. 
Section II provides an overview of machine learning-based 
solutions for traceability domain, methods and algorithms in 
anomaly detection and the evaluated anomaly detection 
algorithms. The methodology we relied on to conduct the 
presented research is also discussed. Section III describes the 

experimental process and results obtained on a real dataset. 
Section IV is dedicated to presenting insights on the 
performance of the algorithms. The limitations and directions 
for future research are presented in Section V. The final section 
provides the concluding remarks of the paper. 

II. MATERIALS AND METHODS 

In this section, we review prior work in terms of machine 
learning in traceability, and methods and algorithms in 
anomaly detection. 

A. Machine Learning in Traceability 

By employing traceability systems, products can have 
better quality, or the workflow can be improved. Thus, this 
concept has been applied in a variety of domains, ranging from 
managing the food supply chain [13], [14] to the automotive 
industry [15]. Moreover, given the high volume of data, ML 
algorithms could be used to analyze and provide relevant 
information that can be used in the decision-making process. 

Given that food safety is a critical concern, traceability has 
been used in this industry in order to follow the process taken 
by perishables to ensure safety and quality. For example, De 
Nadai Fernandes et al. [16] employed three supervised ML 
algorithms to determine the source of bovine meat in Brazil, 
where there was a loss of information during the slaughtering 
or marketing processes. On the other hand, Alfian et al. [13] 
used Radio Frequency IDentification (RFID) tags and Internet 
of Things (IoT) sensors to collect information regarding the 
environment and track when produce would pass through a 
space, for example, a warehouse door. They also employed 
supervised learning to identify the direction of the product and, 
thus, determine whether the products were safely stored. To 
prevent food safety incidents, Wang et al. [14] developed a 
traceability system that ensured quality at each stage of the 
production pipeline by developing supervised ML algorithms 
to determine the quality at each stage and establish the final 
quality, whereas Shahbazi and Byun [17] utilized ML and 
blockchain to detect counterfeits and ensure the validity of the 
expiration dates. 

Sharma et al. [18] reviewed the use of ML algorithms in the 
agricultural supply chain and observed that these algorithms 
were implemented at each step of the production process to 
improve efficiency. For instance, in the preproduction stage, 
ML algorithms were used to predict the harvest, soil properties 
and irrigation management. In the production step, they were 
used to predict the weather, protect the harvest, detect weeds, 
manage animals, and overview the harvest quality. The 
processing step consisted of algorithms used to predict the 
demand and plan the production, while in the distribution 
phase they were used to improve transportation, analyze the 
consumers, and manage the inventory. 

Other domains have also included ML algorithms to 
analyze performance, for instance, in the automotive industry 
[15], or to determine validity in software maintenance for 
traceability link recovery [19]. One important observation is 
the focus on quality control and preventing issues that could 
occur. However, most of the discussed systems used 
supervised machine learning algorithms that need labeled data 
as input, which means that the process must be firmly 
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established, and any change means having to reformat and 
revalidate the training dataset. In this context, we looked at 
unsupervised anomaly detection algorithms that could be 
applied to a more dynamic process to alert the user of any 
abnormalities in the system by using an unlabeled dataset. 

The next sections provide brief descriptions of the 
algorithms used for anomaly detection. 

B. Methods and Algorithms in Anomaly Detection 

Detection of anomalous instances in various datasets is of 
great importance in many processes. Outlier observations, 
records, recorded values, states, and devices can either affect 
the workflow of processes or can induce bias in computed 
values or scores. Removing the outliers is a valid and known 
technique, but the detection of the aforementioned anomalous 
values is not an easy process – especially when the data is not 
identified and tagged [6]. 

Anomaly detection techniques are employed in various 
working domains, but especially in supply chain management, 
where the capabilities of various techniques allow to manage 
complicated processes, using predictive algorithms and other 
use cases. For example, using blockchain technologies in 
supply chain systems allows for novel methods to manage all 
aspects of the process. However, to have a robust data model 
and verification mechanism to ensure the integrity of the 
processes it is required to implement mechanisms to correct 
anomaly signals in the acquired data required in verification 
processes for the business logic involving transactions (both 
resource intensive and critical for the wellbeing of the 
platform) [20], [21] between entities in the platform, for a 
better quality in supply chain management (not only from a 
performance point of view, but also from a security 
perspective). 

In many applications that require anomaly data detection, 
ML algorithms are used to highlight the relevant data for future 
correction, removal, or analysis [22]. Many times, the detection 
algorithms are paired with traditional detection systems, 
usually rule-based, for better performance. In this regard, there 
are various application domains where these types of 
algorithms are used [6]: network security for intrusion 
detection (used for behavior analysis in enterprise settings for 
known and novel threats), surveillance for suspicious moves 
and actions (via visual and audio capture systems) [23], [24], 
detection of fraudulent transactions in banking industry 
(including transactions involving digital goods) [25], [26], 
energy optimization in smart buildings [27], medical smart 
equipment (capable of identification and analysis of anomalies 
to assist in medical diagnosis) [28], [29], and, generally, in use-
cases where anomalous states can appear infrequently enough 
in the operating processes to be properly treated, but pose 
enough dangers to warrant such a system. 

Even in processes that are tied to physical mediums, like, 
for example, nuclear radiation detection [30], telemetry data for 
spacecraft operations [31], traffic patterns analysis [32], sensor 
arrays and IoT systems [33], unmanned ground and aerial 
vehicles detection [34], edge computing systems and novel 
large-scale IT systems [35] or network quality of service 
assurance by using a Greedy algorithm [36] or even genetic 

algorithms [37], such ML algorithms can be used for 
identification of anomalies. Moreover, similar algorithms are 
used in domains like supply chain management, where genetic 
rule-based and graph-based detection methods are employed to 
verify business transactions regarding their validity [20]. 

Anomaly detection domain can be classified in three types 
[6], based on the approach regarding labelling of the dataset 
content: supervised anomaly detection where the training data 
and the test data are fully labelled (in practice this is less used 
given that labelling the data is not always feasible or even 
possible), semi-supervised anomaly detection where the 
training is done on non-anomalous datasets (the anomalies 
being detected when they deviate from the “correct” model) 
and unsupervised anomaly detection that does not require 
labels to classify data (most flexible approach), the distinction 
being made on the internal properties of the dataset. 

As stated in the introduction section, this paper has 
considered the evaluation of several unsupervised algorithms 
for anomaly detection in the context of traceability. According 
to [6], unsupervised anomaly detection algorithms can be 
roughly classified into the following main categories as 
illustrated in Fig.1 (1) Nearest-neighbor based techniques, (2) 
Clustering-based methods, (3) Statistical algorithms, (4) 
Subspace techniques, (5) Classifier-based algorithms. 

In this paper, the evaluated algorithms are part of the first 
three groups. 

Fig. 1. Taxonomy of Unsupervised Anomaly Detection Algorithms 

(Adapted after [6]). 

C. The Evaluated Anomaly Detection Algorithms 

In the following, it briefly presents the five anomaly 
detection algorithms that were evaluated. The k-nearest 
neighbor (k-NN or KNN) algorithm consists of finding the 
nearest neighbors and calculating the anomaly score based 
either on the distance to the nearest neighbor [38] or the mean 
distance to the k nearest neighbors [39]. One of the drawbacks 
of this algorithm is that it detects only global anomalies, an 
issue that was tackled in the Local Outlier Factor (LOF) 
algorithm [40], which was the first algorithm to detect local 
anomalies. The Cluster-Based Local Outlier Factors (CBLOF) 
algorithm [41] uses the grouping to determine the dense areas 
from the data and uses a heuristic to classify the groups, 
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whereas Histogram-based Outlier Score (HBOS) [42] is based 
on statistics and assumes that there are no dependencies 
between the features of the model. One challenge faced by 
clustering algorithms is choosing the number of groups, which 
was addressed by Local Correlation Integral (LOCI) [43] that 
uses a maximization approach. 

The implementation of these algorithms in various software 
libraries, such as the PyOD library [10], facilitates their use in 
the development of software applications for anomaly 
detection. 

D. Performance Criteria 

In this paper, we have examined the possibility of 
employing anomaly detection in a traceability system by 
applying five unsupervised anomaly detection algorithms and 
compared their performance. 

The algorithms evaluated in the considered scenario must 
be analyzed from a performance perspective. Given that not 
necessarily all algorithms can be implemented in the 
traceability platform (for performance reasons), usually the 
best algorithm will be employed in the final product, for best 
performance/accuracy ratio. Alternatively, two or three 
algorithms can be employed in certain circumstances, where 
their performance can compensate for their weaknesses in 
certain datasets configurations or certain limited cases. Thus, it 
is important to establish the performance of the potential 
solution in the given circumstances, including when adjusting 
the settings in the classifier model. 

In this regard, a criterion that is often used to test the 
performance of algorithms in machine learning is the ROC 
curve (Receiver Operating Characteristics) [44]. ROC metric 
will help establish the performance of the model (higher the 
value, better the outcome) by plotting the rate of true positives 
compared (higher is better) with the rate of false positives 
(lower is better) and thus establishing a threshold for the 
performance of the model in classifying the input data [44]; 
this approach is important when deciding between various 
algorithms or when adjusting operating parameters of a given 
algorithm. 

Another important criterion is the accuracy score. In 
performance metrics [45], the accuracy score is the measure by 
which the classifier will offer correct predictions compared 
with the total number of predictions made. Obviously, a greater 
accuracy is a highly desirable behavior of the model. 

Finally, precision @ rank n represents the precision of the 
model up to nth prediction from the total number of predictions 
[46]. This metric helps usually in choosing a better model for a 
given type of problem, given that the goal is to obtain a good 
fit for our algorithm. 

Precision@k = 
truepositives@k

truepositives@k + falsepositives@k
           (1) 

Training time is also an important factor in choosing a 
certain algorithm. Given that the time spent training the models 
can be an expensive proposition (for example in big datasets or 
when the datasets change in time, requiring re-training of the 
model), choosing an algorithm that is faster on training is 
better, as long as the performance metrics are not suffering. 

As highlighted in [7], different splits of the training and test 
data can be used while comparing the performances of various 
algorithms. Thus, decisions have to be made regarding the 
splitting of training and test sets. For anomaly detection, it 
must additionally be decided whether one of these two sets will 
contain normal data, abnormal data, or both. Regardless of the 
decision taken, it must be used in a consistent manner when 
evaluating different algorithms [7]. 

In the next section, we present the considered use case. 

E. Use Case 

In order to perform the proposed comparison of some 
anomaly detection algorithms, we have considered the use case 
of the traceability of different equipment types in an IT 
department Fig. 2 presents the main steps of our process of 
evaluation. 

 

Fig. 2. The Workflow of the Experiment. 

Next, we describe the data pre-processing and applied 
methods. 

To perform the proposed anomaly detection comparison, 
we were provided with a set of data in the form of an Excel 
spreadsheet or a CSV (comma separated values) file that 
contained information regarding the management of equipment 
in an IT department. The spreadsheet was composed of records 
of items that were registered and then assigned to employees. 
There were cases when items malfunctioned, so they were sent 
back to the IT department for repairs and assigned back to an 
employee or had to be scrapped. The file consists of multiple 
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data columns, such as unique ID, date, equipment name, 
equipment type, employee name, status, etc. The dataset 
contained a number of 347 transitions for 130 items with 130 
records for the acquired status, 177 instances of assigning an 
item to an employee for use, 22 cases of sending the item to the 
IT department for repairs, and 18 recorded for items being 
scrapped. It was considered that the data provided was valid 
and could be used for training a machine learning model, and 
that artificial anomalies could be added to the set of data for 
validation. It should be noted that this process can be applied to 
other types of items, regardless of their statuses as this process 
is generic and does not require any previous setup. 

The first step of the pre-processing phase is extracting the 
relevant information, in this case from the Excel or CSV file, 
but other sources, such as databases, can be used. The 
significant attributes are the item unique identifier, and the date 
and status of the item when that record was made. Depending 
on how the data is stored, the status of the item may have a 
variety of formats, ranging from integers to strings. For 
example, we considered the coding of statuses presented in 
Table I. 

Based on the previous coding of the statuses, Table II, 
illustrates the case of a monitor with the ID 132606, which was 
purchased (status with unique ID 1) on January 27th and given 
in use (status with unique ID 3) to an employee the next day, 
on January 28th. On June 25 of the same year, the item 
identified with ID 132606 is sent for repairs. 

The date, and time if available, must have the same format 
and should be converted to a format that would allow for 
simple time difference calculations. Since the provided 
spreadsheet contained only the registration date, it was 
converted to the number of days since January 1st, 1900, in 
accordance with the ISO 8601:2000 YYMMDD format. 

Secondly, to define the item transitions, all data must be 
grouped according to the unique identifier and sorted by date 
inside that group. If time is known, it should also be considered 
in the ordering, and this would be of greater significance in 
situations in which items transition multiple statuses on the 
same day. In our case, after going through these steps, the data 
for an item should reveal how an item was purchased and then 
assigned to employees with some cases where it was sent for 
repairs or was scrapped. A transition is represented based on 
the time elapsed between the current state and the previous 
state in the form of a number of days, or a number of minutes 
or milliseconds (depending on the granularity of the data), if 
the data contained time. The transition token is composed of 
the concatenation of the current and previous status identifier, 
which was defined in the previous step. A sample of the data is 
shown in Table III. 

In this example, if item 132606 was purchased on the 27th 
of January and assigned (status with the three unique ID) to an 

employee on the 28th of January that same year, then this 
transition will be characterized by a one-day time interval, 
resulting from the difference between the two dates, and the 
“13” token, which represents the concatenation of the unique 
identifiers assigned to the status attributes. These will be the 
two features that will be used to train the ML model, which 
were selected as relevant as a result of an analysis of what 
information is critical in a traceability system with the purpose 
of creating a trained model that could point out the incorrect 
transitions. Therefore, mistakes could be made while changing 
the status of an item, for instance, moving a monitor from 
acquired to scrapped would be invalid, whereas if, for example, 
the monitor is left in the in-repair state for a prolonged period 
reveals a different type of issue such as the lack of available 
employees to check the monitor. When an item is added to the 
system and is assigned its first status, the elapsed time should 
be set to zero and the token should consist of the doubling of 
the unique identifier status, in our case, the token for the first 
transition of item 132606 is “11”. If an item starts with a 
different status, then the ML algorithm should be able to signal 
it as an anomaly. 

TABLE I. THE CODING OF THE CONSIDERED STATUSES 

Status Code 

Purchased 1 

Scrapped 2 

In use 3 

Maintenance 4 

TABLE II. SAMPLE OF THE ENCODED DATA RECEIVED FROM IT DEPT. 

Unique item ID Status Date 

132606 1 January 26, 2021 

132606 3 January 28, 2021 

132606 4 June 25, 2021 

132606 3 July 02, 2021 

134338 1 April 29, 2021 

134338 3 May 14, 2021 

134338 2 July 30, 2021 

TABLE III. EXAMPLE OF ITEM TRANSITIONS 

Unique item ID Transition token Timelapse (days) 

132606 11 0 

132606 13 1 

132606 34 148 

132606 43 7 

134338 11 0 

134338 13 15 

134338 32 77 
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The third step before training the models is normalizing the 
data, which in this case was performed using the preprocessing 
scale function from the scikit-learn [9] Python package. 
Normalization needs to be applied to each feature, because 
having overly broad scales could cause issues when training 
the ML model. This is avoided through the fact that the new 
values are smaller and at the same time they maintain the 
general distribution and data ratios, which means that the 
relevant information is preserved. Before applying this step, we 
also added a number of four artificial anomalies consisting of 
invalid transitions, new statuses, and prolonged periods of 
time, which should be signaled by the ML model. The added 
artificial anomalies had to be run through the same scaling 
process as the valid set of data to avoid inaccuracies. We added 
such a small number of anomalies, because, as per their 
definition, anomalies are events that occur rarely. 

To analyze the performance of the applied algorithms the 
data has been formatted and split into a file that contains all the 
valid transitions, a file that contains 80% of the data and four 
artificial anomalies that can be used for training the model, and 
a file that contains the rest of the 20% of the data and other 
four artificial anomalies that can be used as the test data, which 
will be utilized to validate whether the model is overfitted. The 
split between the test and training data is done randomly by 
shuffling the item IDs and then selecting 20% of the IDs and 
their corresponding transitions for the test data. The rest of the 
items are assigned to the training dataset. In addition, when the 
data is split, it should be normalized separately to avoid any 
data leakage. Given that the IDs are separated randomly, this 
means that the data will be split differently when the process is 
run again on the same set of data. 

III. RESULTS 

Next, the results of the training and tests processes for the 
ML algorithms having as input the datasets described in the 
previous section of this paper are presented. To evaluate and 
compare the anomaly detection methods we use the standard 
metrics of precision, ROC and accuracy. Also, it was 
considered the training time for each algorithm. The 
experimental evaluation is conducted on a laptop with i7-
8550U CPU @1.80 GHz x 8, 16 GB of RAM, running Ubuntu 
16.04 LTS. The code is written in Python 3. 

In the experiments conducted, the split of data was 
performed considering normal and anomalous data, both in the 
training and in the testing phase. For the first analysis, we used 
the training dataset that had 80% of the whole data, and the test 
train dataset composed of 20% of the provided information. 
Each set contained the same four artificial anomalies that were 
used for validation. The first set of data was used to train five 
separate anomaly detection algorithms available in the PyOD 
Python package [10] by first initializing them and then 
applying the fit function that received the training set of data. 
This resulted in a list of prediction labels and outlier scores of 
the training data, which we used to compute the accuracy of 
the model based on the training dataset. To evaluate the model, 
the predict and decision_function functions were used, which 
received the test dataset as input, whose results were used to 
calculate the accuracy of the test predictions. Accuracy was 
calculated based on the assumption that the received dataset 
contained only valid records and that there were four artificial 
anomalies. To calculate the ROC and the Precision @ rank n, 
we used the evaluate_print function provided by the PyOD 
library. It was also recorded the time needed to train each 
model. Table IV contains the results of these metrics for the 
analyzed five algorithms. The evaluation results are shown in 
Fig. 3. 

Given that the provided dataset was small, during the 
second analysis the complete dataset was used as the training 
data and some predictions were made based on four cases: 
normal record for item just being added to the system (N1), 
normal record for item being assigned to employee (N2) that 
was taken from the initial dataset, anomaly with non-existent 
states (A1), and anomaly with item assigned to employee but 
with an anomalous time (A2). Before sending these datasets to 
the algorithms for predictions they were processed by using the 
same normalization parameters used for the training set. Table 
V shows the results of training the five algorithms with the full 
set of data and using the previously described cases to validate 
the predictions. The evaluation results are shown in Fig. 4. 

Nevertheless, in a normal setting, the prediction would be 
made based on a model that was trained using the full set of 
data, which could occur right when there is a request to predict 
whether a transition is anomalous or not, if the training is fast 
enough, or periodically, in which case it would contain only 
the records that were registered until the time of training. 

TABLE IV. RESULTS OF ALGORITHM BASED ON TRAINING AND TEST DATASET 

Metric/ 

algorithm 

KNN LOF CBLOF HBOS LOCI 

Train Test Train Test Train Test Train Test Train Test 

ROC 0.9982 0.9786 0.9188 0.5000 0.9657 0.9893 0.9251 0.8429 0.6922 0.9643 

Precision @ rank n 0.7500 0.7500 0.5000 0.0000 0.7500 1.0000 0.2500 1.0000 0.0000 0.5000 

Accuracy (%) 91.45 72.97 90.74 52.70 91.10 82.43 96.44 98.64 88.61 87.83 

Time (seconds) 0.0023 0.0037 0.0699 0.0019 44.8992 
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Fig. 3. Experiment Results for the First Analysis: (a) ROC Curve; (b) 

Precision @ Rank n; (c) Accuracy (Expressed as Percentages). 

 

Fig. 4. Experiment Results for the Second Analysis: (a) ROC Curve; (b) 

Precision @ Rank n; (c) Accuracy (Expressed as Percentages); (d) Execution 

Time (in Seconds). 

TABLE V. RESULTS OF THE ALGORITHMS TRAINED ON THE FULL 

DATASET AND VALIDATED BASED ON FOUR PREDICTIONS 

Metric/ 

algorithm 
KNN LOF CBLOF HBOS LOCI 

ROC 1.0000 0.9366 1.0000 0.9712 0.9323 

Precision @ 

rank n 
1.0000 0.0000 1.0000 1.0000 0.0000 

Accuracy (%) 91.73 91.45 91.16 91.73 87.74 

Time 

(seconds) 
0.0042 0.0044 2.5900 2.5399 88.51 

N1 prediction Correct Correct Correct Correct Correct 

N2 prediction Correct Correct Correct Wrong Correct 

A1 prediction Correct Correct Correct Correct Wrong 

A2 prediction Correct Correct Correct Correct Wrong 

IV. DISCUSSION 

In this section we discuss and analyze the results of running 
the five machine learning algorithms, mainly k-NN (k-nearest-
neighbor) - a nearest-neighbor-based unsupervised algorithm 
focused on detection of global anomalies (global relative to the 
dataset) with low computational impact [47], LOF (Local 
Outlier Factor) - a nearest-neighbor-based algorithm able to 
detect local anomalies alongside global ones [40], [48], LOCI 
(Local Correlation Integral) - a nearest-neighbor-based local 
algorithm with increased precision over k-NN but also with 
increased computational complexity [43], [45], CBLOF 
(cluster-based local outlier factor) - a clustering-based global 
algorithm [49] and HBOS (histogram-based outlier score), a 
very fast statistical algorithm almost an order of magnitude 
faster than k-NN [50]. 

By examining the results for the ROC scores from Table 
IV, it can be observed that most of the algorithms had good 
outcomes for the training values apart from LOCI with 0.6922, 
with the best being KNN (0.9982) followed by CBLOF 
(0.9657). On the other hand, the ROC values for the test sets 
show us that not all the models generalized well, for instance, 
the test ROC for LOF was 0.5, whereas HBOS had a lower 
score than the other algorithms with 0.8429. The best results 
were achieved again by KNN (0.9786) and CBLOF (0.9893), 
followed by LOCI (0.9643). 

In terms of the precision @ rank n score, overall, CBLOF 
had the best results (0.75 for training and 1.0 for test) followed 
by KNN (0.75 for both the training and test datasets). Although 
HBOS had a low value of 0.25 for the training set, it had an 
exceptionally good score of 1.0 for the test set, whereas the 
other algorithms had low scores in general with 0.5 and 0.0 for 
train and test, respectively, for LOF, and 0.0 and 0.5 for train 
and test, respectively, for LOCI. 

The accuracy score results revealed that HBOS performed 
the best with 96.44% for training and 98.64% for test with 
CBLOF being second with 91.10% for training and 82.43% for 
test. Even though KNN had a good result for the training 
dataset, 91.45%, it scored lower for the test dataset, 72.97%. 
Albeit having lower accuracy ratings, LOCI had similar values 
for both the train and test sets with 88.61% and 87.83%, 
respectively, whereas LOF had a considerable difference 
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between the test and train scores (90.74% and 52.70% 
respectively), which denotes that the model did not generalize. 

Although the training time would not be a major factor to 
consider if the training is performed daily when there is no 
heavy traffic in the system, it can be still noted that LOCI had a 
significantly higher training time compared to the other 
algorithms. Its training lasted almost 45 seconds even if the 
dataset was relatively small while all the other models had 
times lower than a second, making LOCI definitively not a 
suitable candidate for such a system. 

The second round of experiments displayed in Table V, 
which are closer to a real scenario, revealed some interesting 
results. Firstly, when using the full dataset for training, all 
algorithms had high scores for the ROC values with KNN and 
CBLOF having 1.0 followed by LOF and LOCI that had 
remarkably similar results, 0.9366 and 0.9323, respectively. On 
the other hand, the precision @ rank n was either exceptionally 
good with 1.0 for KNN, HBOS and CBLOF or bad with 0.0 for 
LOF and LOCI. 

The accuracy scores were also higher in general, with KNN 
and HBOS having the same outcome of 91.73% followed by 
LOF at 91.45%, CBLOF at 91.16% and LOCI at 87.74%, 
which had a very similar result to the first experiment denoting 
a consistent pattern in the ability of this model to predict the 
anomalies for this dataset. In terms of the training time, KNN 
and LOF had the lowest results with times under a second. 
However, CBLOF and HBOS had significantly higher times 
(around 2.5 seconds), which can indicate a more rapid increase 
in time given that the training from the first experiment was 
performed on 80% of the data. LOCI still had the highest time 
with 88.51 seconds. 

Regarding the four predictions, two normal cases and two 
anomalies, KNN, LOF and CBLOF correctly predicted all four 
cases, HBOS wrongly detected N2 as an anomaly, whereas 
LOCI was not able to detect the two anomalies. Although 
HBOS had similar results to KNN and CBLOF for the other 
evaluation conditions, it did not perform as well in terms of the 
test prediction. Thus, overall, the best results were achieved by 
KNN followed closely by CBLOF apart for the training time. 

V. LIMITATIONS 

The size of the used dataset is a limiting factor in our work, 
however, even with such a small size we were able to 
demonstrate that anomaly detection can be applied to 
traceability with good results. Nonetheless, having a larger 
dataset could offer more insight, an analysis that could be 
undertaken in future work, where we could also include more 
algorithms in the comparison. The difficulty in creating a 
database for anomaly detection lies in the fact that the results 
will emulate the logic that was used in generating the data, 
thus, it is important to have access to a real dataset. 

In future research, data splitting will be performed 
considering the normal data for training and all anomalous 
samples in the test set. 

In terms of the discussed logic, adding a new process or 
status will automatically result in an anomaly detection. To 
solve this problem, the described logic could be adapted to add 

a threshold, for example, there must be a minimum number of 
products that went through a status in order to send that 
transition to the anomaly detection algorithm. Another option 
would be to check if a generated group has lower elements than 
a set threshold. However, this could also mean that transitions 
that could be anomalous are not sent or are not taken into 
account by model. Handling this issue could be further 
investigated in future work. 

In this analysis, only one process was considered. In order 
to improve the performance of the model, anomaly detection 
should be conducted for each type of process if the company 
workflow has various processes with different statuses. 
Obviously, for training a model there must be a minimum 
number of transitions for each category, which might be 
determined by user input or by involving a user in model 
validation. Once the model was able to properly detect 
anomalies, the threshold could be automatically set for future 
categories. Nevertheless, this could open the door to semi-
supervised learning, which will be investigated in future work. 

VI. CONCLUSIONS 

In recent years, there has been an increase in the number of 
artificial intelligence-based solutions for problems in various 
fields. Anomaly detection is an issue for which there are 
currently several approaches. One of the most widespread 
methods involves the use of ML techniques. 

In this paper, the performance of five unsupervised 
anomaly detection algorithms regarding a traceability dataset 
that contains information on the management of devices from 
an IT department was analyzed and compared. The models 
used with anomaly detection algorithms based on machine 
learning do not require labeled data. Given the importance of 
reproducibility in research, we presented all the information 
regarding the implementation that allow double-checking the 
results and verifying whether they are reliable. By analyzing 
the precision, accuracy, ROC, and time we determine which 
algorithms tend to perform better or worse on the presented use 
case. We have demonstrated experimentally that these 
algorithms can be successfully applied to determine whether a 
new transition is an anomaly with an accuracy of up to 91.73%. 
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