
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

931 | P a g e

www.ijacsa.thesai.org

A Comparative Study of Unsupervised Anomaly

Detection Algorithms used in a Small and Medium-

Sized Enterprise

Irina Petrariu1, Adrian Moscaliuc2, Cristina Elena Turcu3, Ovidiu Gherman4

ASSIST Software SRL, Suceava, Romania1, 2

Stefan cel Mare University, Suceava, Romania3, 4

Abstract—Anomaly detection finds application in several

industries and domains. The anomaly detection market is

growing driven by the increasing development and dynamic

adoption of emerging technologies. Depending on the type of

supervision, there are three main types of anomaly detection

techniques: unsupervised, semi-supervised, and supervised.

Given the wide variety of available anomaly detection

algorithms, how can one choose which approach is most

appropriate for a particular application? The purpose of this

evaluation is to compare the performance of five unsupervised

anomaly detection algorithms applied to a specific dataset from a

small and medium-sized software enterprise, presented in this

paper. To reduce the cost and complexity of a system developed

to solve the problem of anomaly detection, a solution is to use

machine learning (ML) algorithms that are available in one of

the open-source libraries, such as the scikit-learn library or the

PyOD library. These algorithms can be easily and quickly

integrated into a low-cost software application developed to meet

the needs of a small and medium-sized enterprise (SME). In our

experiments, we considered some unsupervised algorithms

available in PyOD library. The obtained results are presented,

alongside with the limitations of the research.

Keywords—Unsupervised anomaly detection algorithms; small

and medium-sized enterprise; traceability; open-source libraries

I. INTRODUCTION

The current societal landscape has seen an increase in the
quantity and complexity of information processed daily. Such
increasing use is required for effective management of current
industrial processes and depends on the data acquired from the
process itself, data that is cleaned and converted into
information that can be used to create meaningful
visualizations, be fed in complex control and prediction
algorithms, or even stored for future reference and use.
Moreover, data reliability is paramount. Correct information
must be used to obtain correct responses from the managed
processes and incorrect information can lead to inefficiency,
loss of precision, data, or product that in turn can negatively
impact the organization's reputation or the bottom line.

In general, the data is acquired from the process via
sensors, manually or through automated systems. To eliminate
acquisition errors, data is sanitized and, if possible, corrected.
This prevents the propagation of errors further in the system.
Data that does not meet the criteria for correction may appear
anomalous compared with its dataset values or regarding the

median of the dataset. In any scenario, this might indicate
either erroneous data or valid data signaling a potential
problem with data acquisition or in the process itself.
Therefore, isolating anomalous data is an important indicator
of data health and a promising path in data analysis.

Anomalies are unexpected instances of deviation from a
large part of the dataset. Thus, solving them will allow for
improving the efficiency of the underlying process [1]. In fact,
according to various studies (e.g., [2]), applications based on
anomaly detection could help an enterprise detect possible
issues in time, before they emerge by identifying anomalous
behavior, thus minimizing the risk of data loss and
streamlining business processes. Anomaly detection finds
application in multiple industries and domains, including
healthcare, finance, manufacturing, construction, logistics,
cyber security, and many others [3], [4]. There are various
specific applications of anomalies detection, such as, system
health monitoring, early detection of sepsis [5], event
detection, product quality, intrusion detection, energy
optimization, various real-time applications, to name only a
few.

The anomaly detection market is witnessing growth, thus,
according to [2], “the anomaly detection market size is
expected to grow from USD 2.08 Billion in 2017 to USD 4.45
Billion by 2022, at a Compound Annual Growth Rate (CAGR)
of 16.4%”. This growth is being driven by the increasing
development and dynamic adoption of emerging technologies
such as big data analytics, data mining and business
intelligence, machine learning and artificial intelligence.

According to scientific literature, there are three main types
of anomaly detection techniques, depending on the type of
supervision: unsupervised, semi-supervised, and supervised.
Essentially, the choice of anomaly detection method can be
made according to the labels available in the dataset [6].

Considering the extensive variety of available anomaly
detection algorithms, how can one choose which approach is
most suitable for a particular application? Clearly, performance
in anomaly detection is a significant factor in algorithm
selection. Unfortunately, there is no one approach that is best in
every context and for all domains. Depending on the specifics,
one algorithm may be superior to the others for a given user or
dataset. Selecting an appropriate algorithm for a specific
application is still a difficult design choice [7]. This is even
more important in traceability systems that must ensure that the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

932 | P a g e

www.ijacsa.thesai.org

product's lifecycle is correct, where the detection of an
anomaly in the process can have a major impact on the
production pipeline. However, these workflows can vary from
company to company, which means that the use of supervised
learning would imply higher costs to develop a custom model,
whereas unsupervised learning and more precisely, anomaly
detection would allow building a model that does not require
human intervention, does not need prior knowledge about the
process and, at the same time, can be very dynamic in terms of
feature selection.

Reviewing the literature on machine learning-based
anomaly detection algorithms reveals the diversity of
algorithms evaluation and comparison approaches used by
researchers. Consequently, the authors of [7] draw attention to
the inconsistency in splitting between training and test datasets,
in the selection of performance metrics and in the threshold
used to indicate anomalies. Moreover, they point out the
ambiguity in the definition of the positive class (i.e., the class
of interest) utilized to evaluate the various models. Because of
these inconsistencies, the authors find it difficult to understand
the experimental evaluations presented in different papers [7].

To reduce the cost and complexity of a system developed to
solve the problem of anomaly detection, a solution is to use
machine learning (ML) algorithms that are available in one of
the open-source libraries, such as the scikit-learn library [8],
[9] or the PyOD library [10]. These algorithms can be easily
and quickly integrated into a low-cost software application
developed to meet the needs of a small and medium-sized
enterprise (SME). Once the relevant features considered for
anomaly detection are selected and pre-processed, the
integrated algorithms can be applied within the specific
software application.

In this paper, we will examine the viability of
implementing anomaly detection in a traceability system by
applying unsupervised anomaly detection algorithms. In this
regard, we will study and compare the performance of some of
the unsupervised anomaly detection algorithms applied on a
dataset provided by the information technology (IT)
department of a small and medium-sized software enterprise.
We considered some un-supervised algorithms available in one
of the popular open-source libraries, namely PyOD library.
This library provides several benefits over comparable existing
libraries. For instance, it contains more than 20 algorithms, it
“implements combination methods for merging the results of
multiple detectors and outlier ensembles which are an
emerging set of models”, and “all models are covered by unit
testing with cross platform continuous integration, code
coverage and code maintainability checks” [10]. These benefits
have led to its widespread adoption in academic and
commercial applications [10]. According to [11], [12], the
GitHub repository has more than 10,000 monthly visitors, and
more than 6,000 monthly downloads for PyPOD.

The remainder of this paper is structured as follows.
Section II provides an overview of machine learning-based
solutions for traceability domain, methods and algorithms in
anomaly detection and the evaluated anomaly detection
algorithms. The methodology we relied on to conduct the
presented research is also discussed. Section III describes the

experimental process and results obtained on a real dataset.
Section IV is dedicated to presenting insights on the
performance of the algorithms. The limitations and directions
for future research are presented in Section V. The final section
provides the concluding remarks of the paper.

II. MATERIALS AND METHODS

In this section, we review prior work in terms of machine
learning in traceability, and methods and algorithms in
anomaly detection.

A. Machine Learning in Traceability

By employing traceability systems, products can have
better quality, or the workflow can be improved. Thus, this
concept has been applied in a variety of domains, ranging from
managing the food supply chain [13], [14] to the automotive
industry [15]. Moreover, given the high volume of data, ML
algorithms could be used to analyze and provide relevant
information that can be used in the decision-making process.

Given that food safety is a critical concern, traceability has
been used in this industry in order to follow the process taken
by perishables to ensure safety and quality. For example, De
Nadai Fernandes et al. [16] employed three supervised ML
algorithms to determine the source of bovine meat in Brazil,
where there was a loss of information during the slaughtering
or marketing processes. On the other hand, Alfian et al. [13]
used Radio Frequency IDentification (RFID) tags and Internet
of Things (IoT) sensors to collect information regarding the
environment and track when produce would pass through a
space, for example, a warehouse door. They also employed
supervised learning to identify the direction of the product and,
thus, determine whether the products were safely stored. To
prevent food safety incidents, Wang et al. [14] developed a
traceability system that ensured quality at each stage of the
production pipeline by developing supervised ML algorithms
to determine the quality at each stage and establish the final
quality, whereas Shahbazi and Byun [17] utilized ML and
blockchain to detect counterfeits and ensure the validity of the
expiration dates.

Sharma et al. [18] reviewed the use of ML algorithms in the
agricultural supply chain and observed that these algorithms
were implemented at each step of the production process to
improve efficiency. For instance, in the preproduction stage,
ML algorithms were used to predict the harvest, soil properties
and irrigation management. In the production step, they were
used to predict the weather, protect the harvest, detect weeds,
manage animals, and overview the harvest quality. The
processing step consisted of algorithms used to predict the
demand and plan the production, while in the distribution
phase they were used to improve transportation, analyze the
consumers, and manage the inventory.

Other domains have also included ML algorithms to
analyze performance, for instance, in the automotive industry
[15], or to determine validity in software maintenance for
traceability link recovery [19]. One important observation is
the focus on quality control and preventing issues that could
occur. However, most of the discussed systems used
supervised machine learning algorithms that need labeled data
as input, which means that the process must be firmly

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

933 | P a g e

www.ijacsa.thesai.org

established, and any change means having to reformat and
revalidate the training dataset. In this context, we looked at
unsupervised anomaly detection algorithms that could be
applied to a more dynamic process to alert the user of any
abnormalities in the system by using an unlabeled dataset.

The next sections provide brief descriptions of the
algorithms used for anomaly detection.

B. Methods and Algorithms in Anomaly Detection

Detection of anomalous instances in various datasets is of
great importance in many processes. Outlier observations,
records, recorded values, states, and devices can either affect
the workflow of processes or can induce bias in computed
values or scores. Removing the outliers is a valid and known
technique, but the detection of the aforementioned anomalous
values is not an easy process – especially when the data is not
identified and tagged [6].

Anomaly detection techniques are employed in various
working domains, but especially in supply chain management,
where the capabilities of various techniques allow to manage
complicated processes, using predictive algorithms and other
use cases. For example, using blockchain technologies in
supply chain systems allows for novel methods to manage all
aspects of the process. However, to have a robust data model
and verification mechanism to ensure the integrity of the
processes it is required to implement mechanisms to correct
anomaly signals in the acquired data required in verification
processes for the business logic involving transactions (both
resource intensive and critical for the wellbeing of the
platform) [20], [21] between entities in the platform, for a
better quality in supply chain management (not only from a
performance point of view, but also from a security
perspective).

In many applications that require anomaly data detection,
ML algorithms are used to highlight the relevant data for future
correction, removal, or analysis [22]. Many times, the detection
algorithms are paired with traditional detection systems,
usually rule-based, for better performance. In this regard, there
are various application domains where these types of
algorithms are used [6]: network security for intrusion
detection (used for behavior analysis in enterprise settings for
known and novel threats), surveillance for suspicious moves
and actions (via visual and audio capture systems) [23], [24],
detection of fraudulent transactions in banking industry
(including transactions involving digital goods) [25], [26],
energy optimization in smart buildings [27], medical smart
equipment (capable of identification and analysis of anomalies
to assist in medical diagnosis) [28], [29], and, generally, in use-
cases where anomalous states can appear infrequently enough
in the operating processes to be properly treated, but pose
enough dangers to warrant such a system.

Even in processes that are tied to physical mediums, like,
for example, nuclear radiation detection [30], telemetry data for
spacecraft operations [31], traffic patterns analysis [32], sensor
arrays and IoT systems [33], unmanned ground and aerial
vehicles detection [34], edge computing systems and novel
large-scale IT systems [35] or network quality of service
assurance by using a Greedy algorithm [36] or even genetic

algorithms [37], such ML algorithms can be used for
identification of anomalies. Moreover, similar algorithms are
used in domains like supply chain management, where genetic
rule-based and graph-based detection methods are employed to
verify business transactions regarding their validity [20].

Anomaly detection domain can be classified in three types
[6], based on the approach regarding labelling of the dataset
content: supervised anomaly detection where the training data
and the test data are fully labelled (in practice this is less used
given that labelling the data is not always feasible or even
possible), semi-supervised anomaly detection where the
training is done on non-anomalous datasets (the anomalies
being detected when they deviate from the “correct” model)
and unsupervised anomaly detection that does not require
labels to classify data (most flexible approach), the distinction
being made on the internal properties of the dataset.

As stated in the introduction section, this paper has
considered the evaluation of several unsupervised algorithms
for anomaly detection in the context of traceability. According
to [6], unsupervised anomaly detection algorithms can be
roughly classified into the following main categories as
illustrated in Fig.1 (1) Nearest-neighbor based techniques, (2)
Clustering-based methods, (3) Statistical algorithms, (4)
Subspace techniques, (5) Classifier-based algorithms.

In this paper, the evaluated algorithms are part of the first
three groups.

Fig. 1. Taxonomy of Unsupervised Anomaly Detection Algorithms

(Adapted after [6]).

C. The Evaluated Anomaly Detection Algorithms

In the following, it briefly presents the five anomaly
detection algorithms that were evaluated. The k-nearest
neighbor (k-NN or KNN) algorithm consists of finding the
nearest neighbors and calculating the anomaly score based
either on the distance to the nearest neighbor [38] or the mean
distance to the k nearest neighbors [39]. One of the drawbacks
of this algorithm is that it detects only global anomalies, an
issue that was tackled in the Local Outlier Factor (LOF)
algorithm [40], which was the first algorithm to detect local
anomalies. The Cluster-Based Local Outlier Factors (CBLOF)
algorithm [41] uses the grouping to determine the dense areas
from the data and uses a heuristic to classify the groups,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

934 | P a g e

www.ijacsa.thesai.org

whereas Histogram-based Outlier Score (HBOS) [42] is based
on statistics and assumes that there are no dependencies
between the features of the model. One challenge faced by
clustering algorithms is choosing the number of groups, which
was addressed by Local Correlation Integral (LOCI) [43] that
uses a maximization approach.

The implementation of these algorithms in various software
libraries, such as the PyOD library [10], facilitates their use in
the development of software applications for anomaly
detection.

D. Performance Criteria

In this paper, we have examined the possibility of
employing anomaly detection in a traceability system by
applying five unsupervised anomaly detection algorithms and
compared their performance.

The algorithms evaluated in the considered scenario must
be analyzed from a performance perspective. Given that not
necessarily all algorithms can be implemented in the
traceability platform (for performance reasons), usually the
best algorithm will be employed in the final product, for best
performance/accuracy ratio. Alternatively, two or three
algorithms can be employed in certain circumstances, where
their performance can compensate for their weaknesses in
certain datasets configurations or certain limited cases. Thus, it
is important to establish the performance of the potential
solution in the given circumstances, including when adjusting
the settings in the classifier model.

In this regard, a criterion that is often used to test the
performance of algorithms in machine learning is the ROC
curve (Receiver Operating Characteristics) [44]. ROC metric
will help establish the performance of the model (higher the
value, better the outcome) by plotting the rate of true positives
compared (higher is better) with the rate of false positives
(lower is better) and thus establishing a threshold for the
performance of the model in classifying the input data [44];
this approach is important when deciding between various
algorithms or when adjusting operating parameters of a given
algorithm.

Another important criterion is the accuracy score. In
performance metrics [45], the accuracy score is the measure by
which the classifier will offer correct predictions compared
with the total number of predictions made. Obviously, a greater
accuracy is a highly desirable behavior of the model.

Finally, precision @ rank n represents the precision of the
model up to nth prediction from the total number of predictions
[46]. This metric helps usually in choosing a better model for a
given type of problem, given that the goal is to obtain a good
fit for our algorithm.

Precision@k =
truepositives@k

truepositives@k + falsepositives@k
 (1)

Training time is also an important factor in choosing a
certain algorithm. Given that the time spent training the models
can be an expensive proposition (for example in big datasets or
when the datasets change in time, requiring re-training of the
model), choosing an algorithm that is faster on training is
better, as long as the performance metrics are not suffering.

As highlighted in [7], different splits of the training and test
data can be used while comparing the performances of various
algorithms. Thus, decisions have to be made regarding the
splitting of training and test sets. For anomaly detection, it
must additionally be decided whether one of these two sets will
contain normal data, abnormal data, or both. Regardless of the
decision taken, it must be used in a consistent manner when
evaluating different algorithms [7].

In the next section, we present the considered use case.

E. Use Case

In order to perform the proposed comparison of some
anomaly detection algorithms, we have considered the use case
of the traceability of different equipment types in an IT
department Fig. 2 presents the main steps of our process of
evaluation.

Fig. 2. The Workflow of the Experiment.

Next, we describe the data pre-processing and applied
methods.

To perform the proposed anomaly detection comparison,
we were provided with a set of data in the form of an Excel
spreadsheet or a CSV (comma separated values) file that
contained information regarding the management of equipment
in an IT department. The spreadsheet was composed of records
of items that were registered and then assigned to employees.
There were cases when items malfunctioned, so they were sent
back to the IT department for repairs and assigned back to an
employee or had to be scrapped. The file consists of multiple

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

935 | P a g e

www.ijacsa.thesai.org

data columns, such as unique ID, date, equipment name,
equipment type, employee name, status, etc. The dataset
contained a number of 347 transitions for 130 items with 130
records for the acquired status, 177 instances of assigning an
item to an employee for use, 22 cases of sending the item to the
IT department for repairs, and 18 recorded for items being
scrapped. It was considered that the data provided was valid
and could be used for training a machine learning model, and
that artificial anomalies could be added to the set of data for
validation. It should be noted that this process can be applied to
other types of items, regardless of their statuses as this process
is generic and does not require any previous setup.

The first step of the pre-processing phase is extracting the
relevant information, in this case from the Excel or CSV file,
but other sources, such as databases, can be used. The
significant attributes are the item unique identifier, and the date
and status of the item when that record was made. Depending
on how the data is stored, the status of the item may have a
variety of formats, ranging from integers to strings. For
example, we considered the coding of statuses presented in
Table I.

Based on the previous coding of the statuses, Table II,
illustrates the case of a monitor with the ID 132606, which was
purchased (status with unique ID 1) on January 27th and given
in use (status with unique ID 3) to an employee the next day,
on January 28th. On June 25 of the same year, the item
identified with ID 132606 is sent for repairs.

The date, and time if available, must have the same format
and should be converted to a format that would allow for
simple time difference calculations. Since the provided
spreadsheet contained only the registration date, it was
converted to the number of days since January 1st, 1900, in
accordance with the ISO 8601:2000 YYMMDD format.

Secondly, to define the item transitions, all data must be
grouped according to the unique identifier and sorted by date
inside that group. If time is known, it should also be considered
in the ordering, and this would be of greater significance in
situations in which items transition multiple statuses on the
same day. In our case, after going through these steps, the data
for an item should reveal how an item was purchased and then
assigned to employees with some cases where it was sent for
repairs or was scrapped. A transition is represented based on
the time elapsed between the current state and the previous
state in the form of a number of days, or a number of minutes
or milliseconds (depending on the granularity of the data), if
the data contained time. The transition token is composed of
the concatenation of the current and previous status identifier,
which was defined in the previous step. A sample of the data is
shown in Table III.

In this example, if item 132606 was purchased on the 27th
of January and assigned (status with the three unique ID) to an

employee on the 28th of January that same year, then this
transition will be characterized by a one-day time interval,
resulting from the difference between the two dates, and the
“13” token, which represents the concatenation of the unique
identifiers assigned to the status attributes. These will be the
two features that will be used to train the ML model, which
were selected as relevant as a result of an analysis of what
information is critical in a traceability system with the purpose
of creating a trained model that could point out the incorrect
transitions. Therefore, mistakes could be made while changing
the status of an item, for instance, moving a monitor from
acquired to scrapped would be invalid, whereas if, for example,
the monitor is left in the in-repair state for a prolonged period
reveals a different type of issue such as the lack of available
employees to check the monitor. When an item is added to the
system and is assigned its first status, the elapsed time should
be set to zero and the token should consist of the doubling of
the unique identifier status, in our case, the token for the first
transition of item 132606 is “11”. If an item starts with a
different status, then the ML algorithm should be able to signal
it as an anomaly.

TABLE I. THE CODING OF THE CONSIDERED STATUSES

Status Code

Purchased 1

Scrapped 2

In use 3

Maintenance 4

TABLE II. SAMPLE OF THE ENCODED DATA RECEIVED FROM IT DEPT.

Unique item ID Status Date

132606 1 January 26, 2021

132606 3 January 28, 2021

132606 4 June 25, 2021

132606 3 July 02, 2021

134338 1 April 29, 2021

134338 3 May 14, 2021

134338 2 July 30, 2021

TABLE III. EXAMPLE OF ITEM TRANSITIONS

Unique item ID Transition token Timelapse (days)

132606 11 0

132606 13 1

132606 34 148

132606 43 7

134338 11 0

134338 13 15

134338 32 77

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

936 | P a g e

www.ijacsa.thesai.org

The third step before training the models is normalizing the
data, which in this case was performed using the preprocessing
scale function from the scikit-learn [9] Python package.
Normalization needs to be applied to each feature, because
having overly broad scales could cause issues when training
the ML model. This is avoided through the fact that the new
values are smaller and at the same time they maintain the
general distribution and data ratios, which means that the
relevant information is preserved. Before applying this step, we
also added a number of four artificial anomalies consisting of
invalid transitions, new statuses, and prolonged periods of
time, which should be signaled by the ML model. The added
artificial anomalies had to be run through the same scaling
process as the valid set of data to avoid inaccuracies. We added
such a small number of anomalies, because, as per their
definition, anomalies are events that occur rarely.

To analyze the performance of the applied algorithms the
data has been formatted and split into a file that contains all the
valid transitions, a file that contains 80% of the data and four
artificial anomalies that can be used for training the model, and
a file that contains the rest of the 20% of the data and other
four artificial anomalies that can be used as the test data, which
will be utilized to validate whether the model is overfitted. The
split between the test and training data is done randomly by
shuffling the item IDs and then selecting 20% of the IDs and
their corresponding transitions for the test data. The rest of the
items are assigned to the training dataset. In addition, when the
data is split, it should be normalized separately to avoid any
data leakage. Given that the IDs are separated randomly, this
means that the data will be split differently when the process is
run again on the same set of data.

III. RESULTS

Next, the results of the training and tests processes for the
ML algorithms having as input the datasets described in the
previous section of this paper are presented. To evaluate and
compare the anomaly detection methods we use the standard
metrics of precision, ROC and accuracy. Also, it was
considered the training time for each algorithm. The
experimental evaluation is conducted on a laptop with i7-
8550U CPU @1.80 GHz x 8, 16 GB of RAM, running Ubuntu
16.04 LTS. The code is written in Python 3.

In the experiments conducted, the split of data was
performed considering normal and anomalous data, both in the
training and in the testing phase. For the first analysis, we used
the training dataset that had 80% of the whole data, and the test
train dataset composed of 20% of the provided information.
Each set contained the same four artificial anomalies that were
used for validation. The first set of data was used to train five
separate anomaly detection algorithms available in the PyOD
Python package [10] by first initializing them and then
applying the fit function that received the training set of data.
This resulted in a list of prediction labels and outlier scores of
the training data, which we used to compute the accuracy of
the model based on the training dataset. To evaluate the model,
the predict and decision_function functions were used, which
received the test dataset as input, whose results were used to
calculate the accuracy of the test predictions. Accuracy was
calculated based on the assumption that the received dataset
contained only valid records and that there were four artificial
anomalies. To calculate the ROC and the Precision @ rank n,
we used the evaluate_print function provided by the PyOD
library. It was also recorded the time needed to train each
model. Table IV contains the results of these metrics for the
analyzed five algorithms. The evaluation results are shown in
Fig. 3.

Given that the provided dataset was small, during the
second analysis the complete dataset was used as the training
data and some predictions were made based on four cases:
normal record for item just being added to the system (N1),
normal record for item being assigned to employee (N2) that
was taken from the initial dataset, anomaly with non-existent
states (A1), and anomaly with item assigned to employee but
with an anomalous time (A2). Before sending these datasets to
the algorithms for predictions they were processed by using the
same normalization parameters used for the training set. Table
V shows the results of training the five algorithms with the full
set of data and using the previously described cases to validate
the predictions. The evaluation results are shown in Fig. 4.

Nevertheless, in a normal setting, the prediction would be
made based on a model that was trained using the full set of
data, which could occur right when there is a request to predict
whether a transition is anomalous or not, if the training is fast
enough, or periodically, in which case it would contain only
the records that were registered until the time of training.

TABLE IV. RESULTS OF ALGORITHM BASED ON TRAINING AND TEST DATASET

Metric/

algorithm

KNN LOF CBLOF HBOS LOCI

Train Test Train Test Train Test Train Test Train Test

ROC 0.9982 0.9786 0.9188 0.5000 0.9657 0.9893 0.9251 0.8429 0.6922 0.9643

Precision @ rank n 0.7500 0.7500 0.5000 0.0000 0.7500 1.0000 0.2500 1.0000 0.0000 0.5000

Accuracy (%) 91.45 72.97 90.74 52.70 91.10 82.43 96.44 98.64 88.61 87.83

Time (seconds) 0.0023 0.0037 0.0699 0.0019 44.8992

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

937 | P a g e

www.ijacsa.thesai.org

Fig. 3. Experiment Results for the First Analysis: (a) ROC Curve; (b)

Precision @ Rank n; (c) Accuracy (Expressed as Percentages).

Fig. 4. Experiment Results for the Second Analysis: (a) ROC Curve; (b)

Precision @ Rank n; (c) Accuracy (Expressed as Percentages); (d) Execution

Time (in Seconds).

TABLE V. RESULTS OF THE ALGORITHMS TRAINED ON THE FULL

DATASET AND VALIDATED BASED ON FOUR PREDICTIONS

Metric/

algorithm
KNN LOF CBLOF HBOS LOCI

ROC 1.0000 0.9366 1.0000 0.9712 0.9323

Precision @

rank n
1.0000 0.0000 1.0000 1.0000 0.0000

Accuracy (%) 91.73 91.45 91.16 91.73 87.74

Time

(seconds)
0.0042 0.0044 2.5900 2.5399 88.51

N1 prediction Correct Correct Correct Correct Correct

N2 prediction Correct Correct Correct Wrong Correct

A1 prediction Correct Correct Correct Correct Wrong

A2 prediction Correct Correct Correct Correct Wrong

IV. DISCUSSION

In this section we discuss and analyze the results of running
the five machine learning algorithms, mainly k-NN (k-nearest-
neighbor) - a nearest-neighbor-based unsupervised algorithm
focused on detection of global anomalies (global relative to the
dataset) with low computational impact [47], LOF (Local
Outlier Factor) - a nearest-neighbor-based algorithm able to
detect local anomalies alongside global ones [40], [48], LOCI
(Local Correlation Integral) - a nearest-neighbor-based local
algorithm with increased precision over k-NN but also with
increased computational complexity [43], [45], CBLOF
(cluster-based local outlier factor) - a clustering-based global
algorithm [49] and HBOS (histogram-based outlier score), a
very fast statistical algorithm almost an order of magnitude
faster than k-NN [50].

By examining the results for the ROC scores from Table
IV, it can be observed that most of the algorithms had good
outcomes for the training values apart from LOCI with 0.6922,
with the best being KNN (0.9982) followed by CBLOF
(0.9657). On the other hand, the ROC values for the test sets
show us that not all the models generalized well, for instance,
the test ROC for LOF was 0.5, whereas HBOS had a lower
score than the other algorithms with 0.8429. The best results
were achieved again by KNN (0.9786) and CBLOF (0.9893),
followed by LOCI (0.9643).

In terms of the precision @ rank n score, overall, CBLOF
had the best results (0.75 for training and 1.0 for test) followed
by KNN (0.75 for both the training and test datasets). Although
HBOS had a low value of 0.25 for the training set, it had an
exceptionally good score of 1.0 for the test set, whereas the
other algorithms had low scores in general with 0.5 and 0.0 for
train and test, respectively, for LOF, and 0.0 and 0.5 for train
and test, respectively, for LOCI.

The accuracy score results revealed that HBOS performed
the best with 96.44% for training and 98.64% for test with
CBLOF being second with 91.10% for training and 82.43% for
test. Even though KNN had a good result for the training
dataset, 91.45%, it scored lower for the test dataset, 72.97%.
Albeit having lower accuracy ratings, LOCI had similar values
for both the train and test sets with 88.61% and 87.83%,
respectively, whereas LOF had a considerable difference

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

938 | P a g e

www.ijacsa.thesai.org

between the test and train scores (90.74% and 52.70%
respectively), which denotes that the model did not generalize.

Although the training time would not be a major factor to
consider if the training is performed daily when there is no
heavy traffic in the system, it can be still noted that LOCI had a
significantly higher training time compared to the other
algorithms. Its training lasted almost 45 seconds even if the
dataset was relatively small while all the other models had
times lower than a second, making LOCI definitively not a
suitable candidate for such a system.

The second round of experiments displayed in Table V,
which are closer to a real scenario, revealed some interesting
results. Firstly, when using the full dataset for training, all
algorithms had high scores for the ROC values with KNN and
CBLOF having 1.0 followed by LOF and LOCI that had
remarkably similar results, 0.9366 and 0.9323, respectively. On
the other hand, the precision @ rank n was either exceptionally
good with 1.0 for KNN, HBOS and CBLOF or bad with 0.0 for
LOF and LOCI.

The accuracy scores were also higher in general, with KNN
and HBOS having the same outcome of 91.73% followed by
LOF at 91.45%, CBLOF at 91.16% and LOCI at 87.74%,
which had a very similar result to the first experiment denoting
a consistent pattern in the ability of this model to predict the
anomalies for this dataset. In terms of the training time, KNN
and LOF had the lowest results with times under a second.
However, CBLOF and HBOS had significantly higher times
(around 2.5 seconds), which can indicate a more rapid increase
in time given that the training from the first experiment was
performed on 80% of the data. LOCI still had the highest time
with 88.51 seconds.

Regarding the four predictions, two normal cases and two
anomalies, KNN, LOF and CBLOF correctly predicted all four
cases, HBOS wrongly detected N2 as an anomaly, whereas
LOCI was not able to detect the two anomalies. Although
HBOS had similar results to KNN and CBLOF for the other
evaluation conditions, it did not perform as well in terms of the
test prediction. Thus, overall, the best results were achieved by
KNN followed closely by CBLOF apart for the training time.

V. LIMITATIONS

The size of the used dataset is a limiting factor in our work,
however, even with such a small size we were able to
demonstrate that anomaly detection can be applied to
traceability with good results. Nonetheless, having a larger
dataset could offer more insight, an analysis that could be
undertaken in future work, where we could also include more
algorithms in the comparison. The difficulty in creating a
database for anomaly detection lies in the fact that the results
will emulate the logic that was used in generating the data,
thus, it is important to have access to a real dataset.

In future research, data splitting will be performed
considering the normal data for training and all anomalous
samples in the test set.

In terms of the discussed logic, adding a new process or
status will automatically result in an anomaly detection. To
solve this problem, the described logic could be adapted to add

a threshold, for example, there must be a minimum number of
products that went through a status in order to send that
transition to the anomaly detection algorithm. Another option
would be to check if a generated group has lower elements than
a set threshold. However, this could also mean that transitions
that could be anomalous are not sent or are not taken into
account by model. Handling this issue could be further
investigated in future work.

In this analysis, only one process was considered. In order
to improve the performance of the model, anomaly detection
should be conducted for each type of process if the company
workflow has various processes with different statuses.
Obviously, for training a model there must be a minimum
number of transitions for each category, which might be
determined by user input or by involving a user in model
validation. Once the model was able to properly detect
anomalies, the threshold could be automatically set for future
categories. Nevertheless, this could open the door to semi-
supervised learning, which will be investigated in future work.

VI. CONCLUSIONS

In recent years, there has been an increase in the number of
artificial intelligence-based solutions for problems in various
fields. Anomaly detection is an issue for which there are
currently several approaches. One of the most widespread
methods involves the use of ML techniques.

In this paper, the performance of five unsupervised
anomaly detection algorithms regarding a traceability dataset
that contains information on the management of devices from
an IT department was analyzed and compared. The models
used with anomaly detection algorithms based on machine
learning do not require labeled data. Given the importance of
reproducibility in research, we presented all the information
regarding the implementation that allow double-checking the
results and verifying whether they are reliable. By analyzing
the precision, accuracy, ROC, and time we determine which
algorithms tend to perform better or worse on the presented use
case. We have demonstrated experimentally that these
algorithms can be successfully applied to determine whether a
new transition is an anomaly with an accuracy of up to 91.73%.

ACKNOWLEDGMENT

This research was funded by the project “119722/Centru
pentru transferul de cunoștințe către întreprinderi din domeniul
ICT—CENTRIC, Contract subsidiar 15568/01.09.2020, Smart
Tracking Platform (STP)”, contract no. 5/AXA
1/1.2.3/G/13.06.2018, cod SMIS 2014+ 119722 (ID
P_40_305).

REFERENCES

[1] Y. Wang et al., “Iterative anomaly detection,” in 2017 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS),
Jul. 2017, pp. 586–589. doi: 10.1109/IGARSS.2017.8127021.

[2] “Anomaly detection market by Solution (Network and user behavior
anomaly detection), technology (Big data analytics, data mining and
business intelligence, machine learning and artificial intelligence),
deployment, service, vertical - Global forecast to 2022,”
MarketsandMarkets, Market report. [Online]. Available:
https://www.marketsandmarkets.com/Market-Reports/anomaly-
detection-market-138133262.html.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

939 | P a g e

www.ijacsa.thesai.org

[3] M. Bahri, F. Salutari, A. Putina, and M. Sozio, “AutoML: State of the
art with a focus on anomaly detection, challenges, and research
directions,” Int. J. Data Sci. Anal., vol. 14, no. 2, pp. 113–126, Aug.
2022, doi: 10.1007/s41060-022-00309-0.

[4] I. K. Nti, A. F. Adekoya, B. A. Weyori, and O. Nyarko-Boateng,
“Applications of artificial intelligence in engineering and
manufacturing: a systematic review,” J. Intell. Manuf., vol. 33, no. 6, pp.
1581–1601, Aug. 2022, doi: 10.1007/s10845-021-01771-6.

[5] L. Begic Fazlic et al., “A novel hybrid methodology for anomaly
detection in time series,” Int. J. Comput. Intell. Syst., vol. 15, no. 1, p.
50, Jul. 2022, doi: 10.1007/s44196-022-00100-w.

[6] M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data,” PloS One, vol. 11,
no. 4, 2016, doi: https://doi.org/10.1371/journal.pone.0152173.

[7] M. Alvarez, J.-C. Verdier, D. K. Nkashama, M. Frappier, P.-M. Tardif,
and F. Kabanza, “A revealing large-scale evaluation of unsupervised
anomaly detection algorithms,” ArXiv Prepr. ArXiv220409825, 2022.

[8] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, Jan. 2012.

[9] D. Cournapeau, “scikit-learn,” scikit-learn, 2022. https://scikit-
learn.org/stable/about.html (accessed Jul. 24, 2022).

[10] Y. Zhao, Z. Nasrullah, and Z. Li, “PyOD: A Python toolbox for scalable
outlier detection,” J. Mach. Learn. Res., vol. 20, no. 96, pp. 1–7, 2019,
[Online]. Available: http://jmlr.org/papers/v20/19-011.html.

[11] Y. Zhao and M. K. Hryniewicki, “DCSO: Dynamic combination of
detector scores for outlier ensembles,” ArXiv Prepr. ArXiv191110418,
2019, doi: https://doi.org/10.48550/arXiv.1911.10418.

[12] Y. Zhao, Z. Nasrullah, M. K. Hryniewicki, and Z. Li, “LSCP: Locally
selective combination in parallel outlier ensembles,” in Proceedings of
the 2019 SIAM International Conference on Data Mining, 2019, pp.
585–593.

[13] G. Alfian et al., “Improving efficiency of RFID-based traceability
system for perishable food by utilizing IoT sensors and machine learning
model,” Food Control, vol. 110, p. 107016, Apr. 2020, doi:
10.1016/j.foodcont.2019.107016.

[14] J. Wang, H. Yue, and Z. Zhou, “An improved traceability system for
food quality assurance and evaluation based on fuzzy classification and
neural network,” Food Control, vol. 79, pp. 363–370, Sep. 2017, doi:
10.1016/j.foodcont.2017.04.013.

[15] M. Syafrudin, G. Alfian, N. L. Fitriyani, and J. Rhee, “Performance
analysis of IoT-based sensor, big data processing, and machine learning
model for real-time monitoring system in automotive manufacturing,”
Sensors, vol. 18, no. 9, Art. no. 9, Sep. 2018, doi: 10.3390/s18092946.

[16] E. A. De Nadai Fernandes, G. A. Sarriés, M. A. Bacchi, Y. T. Mazola,
C. L. Gonzaga, and S. R. V. Sarriés, “Trace elements and machine
learning for Brazilian beef traceability,” Food Chem., vol. 333, p.
127462, Dec. 2020, doi: 10.1016/j.foodchem.2020.127462.

[17] Z. Shahbazi and Y.-C. Byun, “A procedure for tracing supply chains for
perishable food based on blockchain, machine learning and fuzzy logic,”
Electronics, vol. 10, no. 1, Art. no. 1, Jan. 2021, doi:
10.3390/electronics10010041.

[18] R. Sharma, S. S. Kamble, A. Gunasekaran, V. Kumar, and A. Kumar,
“A systematic literature review on machine learning applications for
sustainable agriculture supply chain performance,” Comput. Oper. Res.,
vol. 119, p. 104926, Jul. 2020, doi: 10.1016/j.cor.2020.104926.

[19] C. Mills and S. Haiduc, “A machine learning approach for determining
the validity of traceability links,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering Companion (ICSE-C), May 2017,
pp. 121–123. doi: 10.1109/ICSE-C.2017.86.

[20] B. Oh, T. J. Jun, W. Yoon, Y. Lee, S. Kim, and D. Kim, “Enhancing
trust of supply chain using blockchain platform with robust data model
and verification mechanisms,” in 2019 IEEE International Conference
on Systems, Man and Cybernetics (SMC), Oct. 2019, pp. 3504–3511.
doi: 10.1109/SMC.2019.8913871.

[21] M. Khalfaoui, R. Molva, and L. Gomez, “Secure alert tracking in supply
chain,” in 2013 International Conference on Security and Cryptography
(SECRYPT), Jul. 2013, pp. 1–11.

[22] S. B. Wankhede, “Anomaly detection using machine learning
techniques,” in 2019 IEEE 5th International Conference for
Convergence in Technology (I2CT), Mar. 2019, pp. 1–3. doi:
10.1109/I2CT45611.2019.9033532.

[23] L. Kratz and K. Nishino, “Anomaly detection in extremely crowded
scenes using spatio-temporal motion pattern models,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp.
1446–1453. doi: 10.1109/CVPR.2009.5206771.

[24] P. Khaire and P. Kumar, “A semi-supervised deep learning based video
anomaly detection framework using RGB-D for surveillance of real-
world critical environments,” Forensic Sci. Int. Digit. Investig., vol. 40,
p. 301346, Mar. 2022, doi: 10.1016/j.fsidi.2022.301346.

[25] V. Chang, L. M. T. Doan, A. Di Stefano, Z. Sun, and G. Fortino,
“Digital payment fraud detection methods in digital ages and Industry
4.0,” Comput. Electr. Eng., vol. 100, p. 107734, May 2022, doi:
10.1016/j.compeleceng.2022.107734.

[26] J. Vanhoeyveld, D. Martens, and B. Peeters, “Value-added tax fraud
detection with scalable anomaly detection techniques,” Appl. Soft
Comput., vol. 86, p. 105895, Jan. 2020, doi:
10.1016/j.asoc.2019.105895.

[27] Y. Himeur, K. Ghanem, A. Alsalemi, F. Bensaali, and A. Amira,
“Artificial intelligence based anomaly detection of energy consumption
in buildings: A review, current trends and new perspectives,” Appl.
Energy, vol. 287, p. 116601, Apr. 2021, doi:
10.1016/j.apenergy.2021.116601.

[28] N. Melnykova, R. Kulievych, Y. Vycluk, K. Melnykova, and V.
Melnykov, “Anomalies detecting in medical metrics using machine
learning tools,” Procedia Comput. Sci., vol. 198, pp. 718–723, Jan.
2022, doi: 10.1016/j.procs.2021.12.312.

[29] J. Lin, E. Keogh, A. Fu, and H. Van Herle, “Approximations to magic:
finding unusual medical time series,” in 18th IEEE Symposium on
Computer-Based Medical Systems (CBMS’05), Jun. 2005, pp. 329–334.
doi: 10.1109/CBMS.2005.34.

[30] P. Zhou and S. Abbaszadeh, “Towards real-time machine learning for
anomaly detection,” in 2020 IEEE Nuclear Science Symposium and
Medical Imaging Conference (NSS/MIC), Oct. 2020, pp. 1–3. doi:
10.1109/NSS/MIC42677.2020.9507937.

[31] M. M. Fernández, Y. Yue, and R. Weber, “Telemetry anomaly detection
system using machine learning to streamline mission operations,” in
2017 6th International Conference on Space Mission Challenges for
Information Technology (SMC-IT), Sep. 2017, pp. 70–75. doi:
10.1109/SMC-IT.2017.19.

[32] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A
survey,” ACM Comput. Surv., vol. 41, no. 3, p. 15:1-15:58, Jul. 2009,
doi: 10.1145/1541880.1541882.

[33] L. Erhan et al., “Smart anomaly detection in sensor systems: A multi-
perspective review,” Inf. Fusion, vol. 67, pp. 64–79, Mar. 2021, doi:
10.1016/j.inffus.2020.10.001.

[34] S. Khan, C. F. Liew, T. Yairi, and R. McWilliam, “Unsupervised
anomaly detection in unmanned aerial vehicles,” Appl. Soft Comput.,
vol. 83, p. 105650, Oct. 2019, doi: 10.1016/j.asoc.2019.105650.

[35] O. M. Ezeme, Q. H. Mahmoud, and A. Azim, “A deep learning
approach to distributed anomaly detection for edge computing,” in 2019
18th IEEE International Conference On Machine Learning And
Applications (ICMLA), Dec. 2019, pp. 992–999. doi:
10.1109/ICMLA.2019.00169.

[36] Ç. Ateş, S. Özdel, M. Yıldırım, and E. Anarım, “Network anomaly
detection using header information with greedy algorithm,” in 2019 27th
Signal Processing and Communications Applications Conference (SIU),
Apr. 2019, pp. 1–4. doi: 10.1109/SIU.2019.8806451.

[37] Q. Su and J. Liu, “A network anomaly detection method based on
genetic algorithm,” in 2017 4th International Conference on Systems
and Informatics (ICSAI), Nov. 2017, pp. 1029–1034. doi:
10.1109/ICSAI.2017.8248437.

[38] M. Hassan, H. Maher and K. Gouda, “A Fast and Efficient Algorithm
for Outlier Detection Over Data Streams,” International Journal of
Advanced Computer Science and Applications, vol. 12, no. 11, 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

940 | P a g e

www.ijacsa.thesai.org

[39] F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional
spaces,” in Principles of Data Mining and Knowledge Discovery, Berlin,
Heidelberg, 2002, pp. 15–27. doi: 10.1007/3-540-45681-3_2.

[40] M. U. Rehman and D. M. Khan, "Local Neighborhood-based Outlier
Detection of High Dimensional Data using different Proximity
Functions," International Journal of Advanced Computer Science and
Applications, vol. 11, no. 4, 2020.

[41] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,”
Pattern Recognit. Lett., vol. 24, no. 9, pp. 1641–1650, Jun. 2003, doi:
10.1016/S0167-8655(03)00003-5.

[42] M. Goldstein and A. Dengel, “Histogram-based Outlier Score (HBOS):
A fast unsupervised anomaly detection algorithm.”, KI-2012: Poster and
Demo Track, 2012.

[43] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos, “LOCI:
Fast outlier detection using the local correlation integral,” in
Proceedings 19th International Conference on Data Engineering (Cat.
No.03CH37405), Mar. 2003, pp. 315–326. doi:
10.1109/ICDE.2003.1260802.

[44] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett.,
vol. 27, no. 8, pp. 861–874, Jun. 2006, doi:
10.1016/j.patrec.2005.10.010.

[45] M. E. Villa-Pérez, M. Á. Álvarez-Carmona, O. Loyola-González, M. A.
Medina-Pérez, J. C. Velazco-Rossell, and K.-K. R. Choo, “Semi-

supervised anomaly detection algorithms: A comparative summary and
future research directions,” Knowl.-Based Syst., vol. 218, p. 106878,
Apr. 2021, doi: 10.1016/j.knosys.2021.106878.

[46] N. Craswell, “Precision at n,” in Encyclopedia of Database Systems, L.
Liu and M. T. Özsu, Eds. New York, NY: Springer, 2016, pp. 1–1. doi:
10.1007/978-1-4899-7993-3_484-2.

[47] A. E. Ezugwu et al., “A comprehensive survey of clustering algorithms:
State-of-the-art machine learning applications, taxonomy, challenges,
and future research prospects,” Eng. Appl. Artif. Intell., vol. 110, p.
104743, Apr. 2022, doi: 10.1016/j.engappai.2022.104743.

[48] E. H. Budiarto, A. Erna Permanasari, and S. Fauziati, “Unsupervised
anomaly detection using K-Means, local outlier factor and one class
SVM,” in 2019 5th International Conference on Science and Technology
(ICST), Jul. 2019, vol. 1, pp. 1–5. doi:
10.1109/ICST47872.2019.9166366.

[49] H. Alimohammadi and S. Nancy Chen, “Performance evaluation of
outlier detection techniques in production timeseries: A systematic
review and meta-analysis,” Expert Syst. Appl., vol. 191, p. 116371, Apr.
2022, doi: 10.1016/j.eswa.2021.116371.

[50] M. Goldstein, “Anomaly detection in large datasets,” Phd thesis
(published), Technische Universität Kaiserslautern, Germany, 2014.
Accessed: Jul. 24, 2022. [Online]. Available:
https://www.goldiges.de/phd/.

