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Abstract—Brain MRI (Magnetic Resonance Imaging) 

classification is one of the most significant areas of medical 

imaging. Among different types of procedures, MRI is the most 

trusted one to detect brain diseases. Manual and semi-automated 

segmentations need highly experienced radiologists and much 

time to detect the problem. Recently, deep learning methods have 

taken attention due to their automation and self-learning 

techniques. To get a faster result, we have used different 

algorithms of Convolutional Neural Network (CNN) with the 

help of transfer learning for classification to detect diseases. This 

procedure is fully automated, needs less involvement of highly 

experienced radiologists, and does not take much time to provide 

the result. We have implemented six deep learning algorithms, 

which are InceptionV3, ResNet152V2, MobileNetV2, Resnet50, 

EfficientNetB0, and DenseNet201 on two brain tumor datasets 

(both individually and manually combined) and one Alzheimer’s 

dataset. Our first brain tumor dataset (total of 7,023 images-

training 5,712, testing 1,311) has 99-100 percent training 

accuracy and 98-99 percent testing accuracy. Our second tumor 

dataset (total of 3,264 images-training 2,870, testing 394) has 100 

percent training accuracy and 69-81 percent testing accuracy. 

The combined dataset (total of 10,000 images-training 8,000, 

testing 2,000) has 99-100 percent training accuracy and 98-99 

percent testing accuracy. Alzheimer’s dataset (total of 6,400 

images-training 5,121, testing 1,279, 4 classes of images) has 99-

100 percent training accuracy and 71-78 percent testing 

accuracy. CNN models are renowned for showing the best 

accuracy in a limited dataset, which we have observed in our 

models. 

Keywords—Brain MRI; tumor; deep learning; classification; 

transfer learning 

I. INTRODUCTION 

With the advancement of modern science and technology, 
brain diseases are still among the deadliest diseases. Magnetic 
Resonance Imaging (MRI) is a well-known term in the medical 
sector to diagnose cerebral complications. It is used to detect 
brain cells that differ from normal cells. There are some other 
methods such as X-radiation (X-rays), Computed Tomography 
(CT), Positron Emission Tomography (PET), Single-Photon-
Emission Computed Tomography (SPECT), Magnetic 
Resonance Spectroscopy (MRS), etc. are also used for 
diagnosis of diseases. But among all of them, MRI is the most 
popular one to detect problematic cells accurately. MRI is a 
non-invasive and flexible clinical method that investigates the 
conditions of the brain and any other body parts in species [1]. 

It uses magnetic fields and radio waves to generate images. For 
brain MRI, the images are taken from different planes to detect 
the actual area of the problematic cells of both pre-and post-
contrast. Its’ scanned images provide high contrast and high 
spatial resolution images, which helps to understand the 
different characteristics of the soft tissues of a cell. Usually, 
brain abnormalities are easily found by MRI scans. After 
analyzing those images, medical experts can easily identify 
brain disorders such as Alzheimer’s disease, schizophrenia, 
multiple sclerosis, brain tumors, cancer, and degenerative 
diseases [1]. Although, many neurological diseases need 
frequent analysis of the brain, in those cases MRI scan is 
essential. 

In the past, segmentation done by humans was a time-
consuming procedure and could not provide significant results 
[2]. On the other hand, automatic segmentation methods result 
in efficient and precise segmentation. Lately, deep learning 
methods have been given increasing attention due to their 
automation and self-learning techniques. Convolutional Neural 
Network (CNN) is one of the most popular deep learning 
architectures and it has shown outstanding impact on various 
industries, such as medical, electronics, robotics, etc. The main 
advantage of CNN is that it can learn abstract features of the 
image without having preceding acknowledgment compared to 
classical methods. This method is developing daily and has 
achieved numerous appreciations in brain segmentation and 
classification. Precise segmentation of a 2D and 3D image has 
always been a challenging task, and various approaches have 
been proposed for better accuracy in the past. But state-of-the-
art deep learning architectures for image segmentation have 
managed to compute complex 3D models. For these reasons, 
automatic detection and classification are highly demanding 
attributes in the decision-making of medical science. Again, 
CNN models show high accuracy even in limited datasets 
which are also one of the reasons for choosing CNN models. 
As we have used transfer learning, the process has become 
faster. Most of the traditional supervised learning algorithms 
are not supportive of multi-class classifications as well as very 
few experiments have been done on recently developed deep 
learning algorithms for brain MRI classification. Therefore, the 
question remains what is an efficient way to classify brain 
diseases from MR images? Also, a comparison of different 
deep learning algorithms on different types of datasets is 
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missing, which raises the question of how well a model works 
on different types of images. 

The main objective of this study is to find an efficient way 
to classify diseases from brain MRI using deep learning models 
and show a comparative study of them for multi-class brain 
MRI classification problems. Six CNN models which are 
commonly used in classification of brain MRI- InceptionV3 
[3], ResNet152V2, MobileNetV2 [4], Resnet50 [5], 
EfficientNetB0 [6] and DenseNet201 
[7][8][9][10][11][12][13][14][15][16][17][18][19]. We have 
implemented these models on three different datasets- one is an 
Alzheimer’s dataset, and the others are brain tumor datasets, all 
of which are open-access datasets. This study contributes to the 
health sector, where it is crucial to act in a short time in case of 
any emergency. Our study can reduce the time to classify a 
disease from an MR image, which can also lower the 
occurrence of human error. Also, it can reduce the cost for the 
patients. As CNN models are getting developed day by day, we 
could improve our health sector services by finding the most 
efficient one. 

The rest of the paper is organized as follows: In Section II, 
we have reviewed the related paper materials and their research 
analogy. A brief overview of publicly available brain MRI 
datasets, followed by a brain MRI analysis and overview of 
CNN architectures are discussed in Section III. We have 
analyzed the performance of our proposed architecture on three 
publicly available datasets and compared their performance 
with other methods in Section IV. In Section V, we conclude 
the paper. 

II. RELATED WORKS 

Deep learning models are very recent but many research 
works have been done for the classification of brain tissues. A 
method for binary classification of brain tumors is proposed, 
where they took only the region of interest from MRI images 
by using Open source Computer Vision (CV) Canny Edge 
Detection technique and trained a CNN model of eight 
convolutional layers [20]. Multiclass classification of brain 
tumors is proposed by selecting features using Densenet201 
Pre-Trained Deep Learning Model, Entropy–Kurtosis-based 
High Feature Values (EKbHFV), and a modified genetic 
algorithm (MGA), where Cubic SVM classifier is used to 
classify the selected features after fusing using a non-
redundancy-based fusion approach [21]. Again, a CNN model 
of 18 layers is used for cropped lesions, uncropped lesions, and 
segmented lesion images for multiclass classification of brain 
tumors [22]. 

Some works have either pre-trained data or implemented a 
single model. MobileNetV2 is used to classify brain tumors 
with the accuracy of 94% [15], applied ResNet152V2 for 
classifying four types of brain tumors by using various pre-
processing steps to achieve an accuracy of 98.9% [11], and 
used 29 different pre-trained models to classify Alzheimer's 
disease, achieved the highest accuracy of 92.98% by 
EfficientNetB0 [19]. 

In some literature, they have used multiple planes and 
multiple layers to detect the problem. A multi-pathway CNN 
architecture is proposed where the input images are processed 

in three spatial scales: sagittal, coronal, and axial views [23] 
and implemented CNN model with small kernels and neuron 
weight to classify between tumor and non-tumor which 
brought 97.5% accuracy with very low complexity [24]. Some 
works have been done by summing up a few models. Using a 
method where pre-trained models are used for feature 
concatenation, it is found that features from the pre-trained 
model of InceptionV3 and DensNet201 can classify three-class 
brain tumor datasets better than existing state-of-the-art deep 
learning methods [8]. Using five CNN models, they used the 
weighted average of those models to get an accuracy of the 
96% in classifying stages of Alzheimer's disease [12]. By 
removing the last five layers of ResNet50 and adding 8 new 
layers, achieved 97.2% accuracy in classifying brain tumors 
and also used Alexnet, Resnet50, Densenet201, InceptionV3, 
and Googlenet models to classify brain tumors [16]. 

In some, data are pre-processed in different ways, then 
models are applied to them. An automated brain disease 
classification model is created with four main phases, which 
are preprocessing, exemplar deep feature generator, feature 
selection, and classification using a support vector machine 
(SVM) [13]. By using Discrete Cosine Transform-based image 
fusion, which is combined with a super-resolution and 
classifier framework, a CNN model, ResNet50, achieved a 
98.14% accuracy rate on an open-access dataset [18]. 

The literature demonstrates a handful of models which have 
the potential to be used in the brain disease classification 
sector. However, an in-depth analysis of the most popular and 
most efficient models on different types of datasets is not quite 
present in the explored studies. 

In our experiment, we have implemented six different 
models- InceptionV3, ResNet152V2, MobileNetV2, Resnet50, 
EfficientNetB0, and DenseNet201 on two brain tumor datasets 
(both individually and manually combined) and an Alzheimer’s 
dataset to visualize the difference of each model, compare their 
effectiveness by using four different measurements- Accuracy, 
Precision, Recall, and F1-score, and efficiency. 

III. MATERIALS AND METHODS 

A. Dataset 

There is a total of three datasets from three different 
sources, each containing brain MR images of four kinds. Two 
datasets contain three variants of Brain Tumor, while one 
dataset contains three variants of Alzheimer’s. We have 
combined two datasets of Brain Tumor to expand the size of 
the data and reduce biasness. For simplicity purposes, we have 
named the datasets respectively D1, D2, D3, and D4. D1 
represents the Brain Tumor MRI dataset, D2 as Brain Tumor 
Classification (MRI), D3 as the manual combined dataset, and 
finally D4 as the Alzheimer’s Dataset (4 classes of image). The 
datasets are publicly available and collected from Kaggle. 

In Fig. 1, Fig. 2, and Fig. 3, glioma, meningioma, pituitary, 
and no tumor are the variations of brain tumor datasets and in 
Fig. 4, moderate demented, mild demented, non-demented and 
very mild demented are the four different classes of 
Alzheimer’s dataset. The summary of all datasets is given in 
Table I. 
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Fig. 1. Sample Images from D1. 

 

Fig. 2. Sample Images from D2. 

 

Fig. 3. Sample Images from D3. 

 

Fig. 4. Sample Images from D4. 

TABLE I. SUMMARY OF DATASETS 

Dataset Classes No. of Images Total Images 

Brain Tumor MRI 

Dataset (D1) 

No Tumor 2000 

7023 
Glioma 1621 

Meningioma 1645 

Pituitary 1757 

Brain Tumor 

Classification MRI 

(D2) 

No Tumor 500 

3264 
Glioma 926 

Meningioma 937 

Pituitary 901 

Manually 

Combined Dataset 

(D3) 

No Tumor 2500 

10000 
Glioma 2500 

Meningioma 2500 

Pituitary 2500 

Alzheimer’s 

Dataset (D4) 

Moderate 

Demented 
64 

6400 
Mild Demented 896 

Non-Demented 3200 

Very Mild 

Demented 
2240 

B. Preprocessing 

At first, the images are converted into NumPy arrays, 
where each pixel of an image is assigned to a number, 
generating an array for each image. Image Augmentation is an 
important step in image processing. It creates multiple versions 
of one image to increase the size of the dataset. Each version 
has different properties that give more information and a new 
point of view of the image to train. The images are shifted both 
vertically and horizontally between -20px to 20px, randomly 
zoomed in and out by 20%. Then the categorical values are 
converted to numeric values. As there are four classes for each 
dataset, each class is given a numeric value in the range 0-3. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 9, 2022 

944 | P a g e  

www.ijacsa.thesai.org 

C. Transfer Learning 

Transfer learning is a machine learning technique where a 
deep learning model reuses the weights that have been 
generated from a different dataset. The reason for using this 
method is to use the patterns learned from a similar task to get 
a head start to avoid huge computational time and attain the 
best result possible for that model. 

The models used in this experiment have already been 
trained with the ImageNet dataset, which provided us with the 
weights that we can utilize. 

D. Models 

Six deep learning models are used train the datasets, these 
are InceptionV3, ResNet152V2, MobileNetV2, ResNet50, 
EfficientNetB0, and DenseNet201. 

1) InceptionV3: InceptionV3 is the third version of 

Google’s Deep Learning Convolutional Architectures series, 

Inception. It contains 42-48 layers, which include 

convolutions, max pooling, average pooling, dropouts, and 

fully connected layers, and has both symmetric and asymmetric 

building blocks. This model estimates the marginalized effect 

of label dropout during training to regularize the classifier layer 

by changing the label-smoothing regularization (LSR) which is 

defined by, 

𝑞′(k) = (1 − 𝜖)𝛿𝑘,𝑦 + 
𝜖

𝑘
             (1) 

where the uniform distribution 𝑢(𝑘) =  
1

𝑘
 is used in the 

model. 

Also by considering the cross entropy, LSR is 

𝐻(𝑞′, 𝑝) = = (1 − 𝜖)𝐻(𝑞, 𝑝) + 𝜖𝐻(𝑢, 𝑝)           (2) 

LSR prevents the largest logit or unnormalized log 
probabilities from becoming much larger than all others. It 
encourages the model to be less confident as it might cause 
over-fitting and reduce the adapting capability of the model. 
InceptionV3gave more than 78.1% accuracy on the ImageNet 
Dataset [3]. 

2) MobileNetV2: MobileNetV2 has 53 layers, one average 

pool, and around 350 GFLOPs (Floating point operations per 

second). It has two types of convolutional layers: 1x1 

Convolution and 3x3 Depthwise Convolution. It contains two 

main blocks, the Inverted Residual Bottleneck Block and 

Bottleneck Residual Block. 

The inverted residual bottleneck layers are implemented in 
a memory-efficient way to it can be used for mobile 
applications. It builds a directed acyclic compute hypergraph 
G, where the edges are the operations and nodes are tensors of 
intermediate computation. The target is to minimize the total 
number of tensors stored in memory, so it selects the 
computation order Σ(G) which has the minimum memory, 

𝑀(𝐺) =  𝑚𝑖𝑛𝜋∈∑(𝐺)𝑚𝑎𝑥𝑖∈1..𝑛[∑ |𝐴|𝐴∈𝑅(𝑖,𝜋,𝐺) ] + 𝑠𝑖𝑧𝑒(𝜋𝑖)   (3) 

As for graphs with only trivial parallel structure, the 
memory needed to compute graph G is 

𝑚𝑎𝑥𝑜𝑝∈𝐺 [∑ |𝐴| + ∑ |𝐵| + |𝑜𝑝|𝐵∈𝑜𝑝𝑜𝑢𝑡𝐴∈𝑜𝑝𝑖𝑛𝑝
]          (4) 

In the bottleneck residual block, a bottleneck block operator 
𝐹(𝑥)can be represented as𝐹(𝑥) = [𝐴 ◦  N ◦ B]x. As the chain 
of t tensors of size n/t are the inner tensor, the function can be 
written as 

𝐹(𝑥) =  ∑ (𝐴𝑖 ◦  N ◦ 𝐵𝑖)(𝑥)𝑡
𝑖=1             (5) 

When t is a small constant between two and five, this 
method is the most helpful as it can reduce the memory, but 
can still utilize most of the efficiencies of highly optimized 
deep learning frameworks [4]. 

3) ResNet50: ResNet50 is a variant of the Residual 

Network model. It contains 48 convolutional layers, 1 Max 

Pool, and 1 Average Pool layer with 3.8 x 10^9 floating point 

operations per second (FLOPs). 

The convolutional layers have 3×3 filters. The layers have 
the same amount of filters when the output feature map size is 
the same. However, the layers have the double amount of 
filters when the feature map size is half. By following these 
two rules, it performs downsampling. The final layer contains 
an average pool with a fully-connected layer of 1000 nodes 
with a softmax function. The total number of weighted layers is 
34. Based on this network, shortcut connections are inserted 
which turn this network into its counterpart residual version. 
The identity shortcut is defined by 

𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥               (6) 

Equation (6) can be directly used when the dimension of x 
and F are equal. But if the dimensions change, either identity 
mapping is still performed by the shortcut, or the projection 
shortcut is used to match dimensions, defined by 

  𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑊𝑠𝑥                (7) 

For both options, when the shortcuts go across feature maps 
of two sizes, they are performed with a stride of two. By 
replacing each two-layer block in the 34-layer net with a three-
layer bottleneck block, it results in a 50-layer ResNet [5]. 

4) EfficientNetB0: EfficientNetB0 is the base model of 

EfficientNet family. It uses Model Scaling, where the existing 

model is scaled based on model width, depth, and resolution. 

This model introduces a new compound scaling method that 

uniformly scales the width, depth, and resolution to achieve 

better accuracy using a compound coefficient  ∅ . By 

considering depth, 𝑑 = 𝛼∅ , width, 𝑤 = 𝛽∅  , and resolution, 

𝑟 = 𝛾∅, this method is defined as 

𝛼 ∙  𝛽2 ∙ 𝛾2 ≈ 2, where 𝛼 ≥ 1, 𝛽 ≥ 1, 𝛾 ≥ 1            (8) 

For this principle in (8), for any new∅, the total FLOPS 

will increase by 2∅ approximately. EfficientNetB0 is scaled up 
by using the compound scaling method where ∅ is fixed at 1, 
and after doing a small grid search of𝛼 ,𝛽 , and 𝛾 , the best 
values are found to be 1.2, 1.1, and 1.15 respectively under the 
constraint of (8). 
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The model has a total of 237 layers. It consists of five 
different modules which are used in a certain way to create 
each block of the model [6]. 

5) DenseNet201: DenseNet201 is one of the models of the 

DenseNet group. It contains 201 layers, and it is divided into 

Dense Blocks with different filters and the same dimensions 

for each block. The network includes L(L+1)/2 direct 

connections. The output of the previous layer becomes the 

input of the next layer by using composite function operations. 

The transition layer is added between the Dense Blocks, where 

it applies batch normalization using downsampling. The 

growth rate 𝑘 controls how much information should be added 

to the next layer. At layer 𝑙 the growth rate is defined by [7]: 

𝑘[𝑙] = (𝑘[0] + 𝑘(𝑙 − 1))             (9) 

The models are compiled for training by using the compile 
method of Keras Model Training API. The training data is fit 
into the model with 10% validation data, 15 epochs, and a 
batch size of 32. The categorical accuracy of each epoch is 
monitored to find the highest categorical accuracy by following 
(10). 

𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
      (10) 

IV. RESULTS AND DISCUSSION 

A. Result Analysis 

We have implemented six algorithms on four different 
datasets and secured significant results. The maximum 
accuracy for each dataset was obtained by different models. As 
we have used various datasets, so the percentage of the 
accuracy was not consistent in every dataset. 

Our models were trained by using 80 percent of the data for 
training, 10 percent of the training data for validation, and 20 
percent for testing. We have used ImageNet as a pre-trained 
weight in every model and SoftMax for the pre-training 
classifier. We also included some hyper-parameters as well. 

The following figures show how the training and validation 
accuracy/loss fluctuated per epoch in four different datasets for 
the models which gave the best results. The red line represents 
the validation accuracy/loss and the green one is for training 
accuracy/loss. Also, the final results of each of the models from 
different datasets are given in Tables II, III, IV, and V. The 
model with the best accuracy is highlighted in the tables. 

TABLE II. ACCURACY SUMMERY OF D1 

Model 
Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 

InceptionV3 100% 97.90% 99.54% 

ResNet152V2 100% 96.50% 98.63% 

MobileNetV2 99.98% 94.58% 98.09% 

ResNet50 100% 98.78% 98.63% 

EfficientNetB0 99.98% 99.65% 99.47% 

DenseNet201 100% 96.85% 99% 

TABLE III. ACCURACY SUMMERY OF D2 

Model 
Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 

InceptionV3 100% 98.26% 76.65% 

ResNet152V2 100% 100% 76.90% 

MobileNetV2 100% 92.68% 69.04% 

ResNet50 100% 99.30% 77.16% 

EfficientNetB0 100% 96.17% 81.47% 

DenseNet201 100% 97.56% 78.43% 

TABLE IV. ACCURACY SUMMERY OF D3 

Model 
Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 

InceptionV3 100% 98.50% 93.45% 

ResNet152V2 100% 98.38% 93.10% 

MobileNetV2 99.94% 98.75% 94.50% 

ResNet50 100% 98.13% 93.45% 

EfficientNetB0 100% 99.38% 94.35% 

DenseNet201 100% 98.75% 94.10% 

TABLE V. ACCURACY SUMMERY OF D4 

Model 
Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy 

InceptionV3 100% 99.42% 77.25% 

ResNet152V2 100% 98.64% 71.07% 

MobileNetV2 100% 100% 76.15% 

ResNet50 100% 99.42% 73.50% 

EfficientNetB0 99.98% 99.03% 78.34% 

DenseNet201 100% 99.61% 75.45% 

As we can see different model provides different accuracy 
based on different datasets. In the dataset D1 shown in Table 
II, we have achieved 99.54 percent testing accuracy using the 
InceptionV3 model and the minimum was 98.09 percent using 
MobileNetV2. In the D2 dataset shown in Table III, we have 
secured 81.47 percent testing accuracy using the 
EfficientNetB0 model and 69.04 percent was the minimum by 
MobileNetV2. After analyzing the second dataset we noticed 
that there was no equal distribution among the classes, which is 
why the accuracy might not meet its target. Therefore, we have 
combined D1 and D2 by maintaining the equal distribution of 
the four classes and have generated D3. D3 has received 
improved testing accuracy which is 94.50 percent using 
MobileNetV2 and ResNet152V2 provided its minimal 93.10 
percent shown in Table IV. We have also implemented these 
models on a different dataset which consisted of the images of 
Alzheimer’s disease and the maximum accuracy has been 
received at 78.34 percent by EfficientNetB0 shown in Table V. 
So, we can conclude that InceptionV3, EfficientNetB0, and 
MobileNetV2 these three models are working best CNN 
models so far according to our observation. 
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ResNet models are found to perform comparatively worse 
than other models. It focuses mainly on creating a deep neural 
network model without hampering the accuracy. As a result, it 
takes longer as it has a relatively deep architecture, i.e. more 
parameters to train. Furthermore, having a deep architecture 
can also be the reason for its consistent validation loss. In 
contrast, as we can see in Fig. 5 and Fig. 7 that InceptionV3 
and MobileNetV2 take significantly less time for performance. 
They have divided the convolution layer into two distinct parts. 
Firstly, instead of separately applying the kernel to all the 
channels, they have applied depthwise convolution. It mainly 
applies the kernel to each of the channels individually. 
Secondly, they applied a convolution with one kernel size to 
combine the features of the newly generated channel, which 
directly contributes to the shorter training period. However, as 
it is apparent from our results, it also sacrifices the overall 
accuracy. In contrast to MobileNetV2 and InceptionV3, 
EfficientNet evaluates the scaling part of the neural network. 
Using a compound coefficient, they uniformly scale the width, 
resolution, and depth of the network simultaneously to find the 
best gains. As it is apparent from our results shown in Fig. 6 
and Fig. 8, EfficientNetB0 provides significantly better 
accuracy while taking comparatively less training time. Table 
VI shows the training and prediction time taken by each model. 

 

Fig. 5. Epochs vs. Training and Validation Accuracy/Loss of D2 

(EfficientNetB0). 

 

Fig. 6. Epochs vs. Training and Validation Accuracy/Loss of D1 

(InceptionV3). 

 

Fig. 7. Epochs vs. Training And Validation Accuracy/Loss of D3 

(MobileNetV2). 

 

Fig. 8. Epochs vs. Training and Validation Accuracy/Loss of D4 

(EfficientNetB0). 

TABLE VI. TRAINING AND PREDICTION TIME COMPARISONS 

Dataset Model Training Time (sec) 
Prediction 

Time (sec) 

D1 

InceptionV3 ~ 1480 ~ 8.5 

ResNet152V2 ~ 4033 (Worst Case) ~ 12.8 

MobileNetV2 ~ 895 ~ 4.9 

ResNet50 ~ 1706 ~ 8.8 

EfficientNetB0 ~ 764 (Best Case) ~ 4.2 

DenseNet201 ~ 1387 ~ 5.6 

D2 

InceptionV3 ~ 778 ~ 2.8 

ResNet152V2 ~ 925 (Worst Case) ~ 3.6 

MobileNetV2 ~ 264 (Best Case) ~ 1.4 

ResNet50 ~ 428 ~ 4.7 

EfficientNetB0 ~ 388 ~ 3.1 

DenseNet201 ~ 748 ~ 2.6 

D3 

InceptionV3 ~ 2573 ~ 13.3 

ResNet152V2 ~ 5426 ~ 15.1 

MobileNetV2 ~ 17, 282 (Worst Case) ~ 23.2 

ResNet50 ~ 2275 ~ 9.8 

EfficientNetB0 ~ 1812 (Best Case) ~ 9.4 

DenseNet201 ~ 4020 ~ 15.7 

D4 

InceptionV3 ~ 591 ~ 5.3 

ResNet152V2 ~ 1670 (Worst Case) ~ 10.6 

MobileNetV2 ~ 457 (Best Case) ~ 2.6 

ResNet50 ~ 703 ~ 4.6 

EfficientNetB0 ~ 670 ~ 3.8 

DenseNet201 ~ 1276 ~ 6.3 
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As we know validation of these models is very important to 
prove our performance for this research purpose, we have used 
some metrics to do so- precision, recall, f1 score, and 
confusion matrix. The mathematical notations of these terms 
are given below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
         (11) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
          (12) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
          (13) 

The confusion matrices in Fig. 9 to 12, and the evaluation 
results calculated by (11), (12), and (13) in Tables VII, VIII, 
IX, and X of the models with the best results from each dataset 
are shown below: 

 

Fig. 9. Confusion Matrix of D1. 

TABLE VII. EVALUATION RESULT OF D1 (INCEPTIONV3) 

Class Precision Recall F1-Score Accuracy 

Glioma 0.99 1.00 1.00 

1.00 
Meningioma 1.00 1.00 1,00 

Pituitary 0.99 0.99 0.99 

No Tumor 1.00 0.99 0.99 

 

Fig. 10. Confusion Matrix of D2. 

TABLE VIII. EVALUATION RESULT OF D2 (EFFICIENTNETB0) 

Class Precision Recall F1-Score Accuracy 

Glioma 0.78 1.00 0.88 

0.81 
Meningioma 1.00 0.42 0.59 

Pituitary 1.00 0.82 0.90 

No Tumor 0.72 0.98 0.83 

 

Fig. 11. Confusion Matrix of D3. 

TABLE IX. EVALUATION RESULT OF D3 (MOBILENETV2) 

Class Precision Recall F1-Score Accuracy 

Glioma 0.98 0.85 0.91 

0.94 
Meningioma 0.88 0.99 0.93 

Pituitary 0.94 0.98 0.96 

No Tumor 1.00 0.95 0.97 

 

Fig. 12. Confusion Matrix of D4. 

TABLE X. EVALUATION RESULT OF D4 (EFFICIENTNETB0) 

Class Precision Recall F1-Score Accuracy 

Moderate 

Demented 
1.00 0.42 0.59 

0.78 
Mild Demented 0.87 0.51 0.65 

Non Demented 0.81 0.88 0.84 

Very Mild 

Demented 
0.72 0.77 0.74 
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B. Performance 

For comparison purposes, we have mentioned different 
types of models and their accuracy percentages in the relevant 
sector. 

TABLE XI. COMPARISON TABLE WITH OTHER MODELS 

Serial Model Dataset Size Accuracy (%) 

1. DCT-CNN-ResNet50 [18] 70,220 98.14% 

2. ELM-LRF [25] 220,875 97.18% 

3. 
Multiscale Convolutional 

Neural Network [23] 
3,264 97.30% 

4. 
Multiclass SVM cubic 

classifier [21] 
335 99.8% 

5. InceptionV3 [10] 411 85% 

6. ResNet152V2 [11] 7,023 98.90% 

7. MobileNetV2 [15] 2,475 94% 

8. EfficientNetB0 [19] 6,400 92.98% 

9. InceptionV3 (Our model) 7,023 99.54% 

10.  EfficientNetB0 (Our model) 3,264 81.47% 

11. MobileNetV2 (Our model) 10,000 94.50% 

12. EfficientNetB0 (Our model) 6,400 78.34% 

From Table XI, we can see many other studies have used 
CNN models as well. In [11], the author found the highest 
accuracy of 98.90% by the ResNet152V2 model, where we 
have managed to use IncpetionV3 to achieve 99.54% using the 
same dataset. However, our EfficientNetB0 model did not 
outperform the model used in [23] and [19], where both 
datasets were identical. Although for other models all of us did 
not use the same dataset, we cannot compare the accuracy for 
every model (e.g., [26]) entirely. 

C. Challenges 

The study uses deep learning models, which is a very time-
consuming procedure even with the help of transfer learning. 
The amount of data was not enough, generating some 
difficulties while getting a better result. Also, the use of 
medical datasets introduced its’ own challenges, because this 
sector has an extreme restriction on the time limit and the 
results have to be monitored as accurately as possible, as the 
application of these models in actual medical settings is 
expected in the future. 

V. CONCLUSION 

Our goal was to find which CNN model or models can 
provide the maximum result. That is why we have 
implemented six models in four datasets of different types. Our 
datasets were not large enough to study in this field and not all 
datasets are suitable for every algorithm, which resulted in 
different accuracy in different datasets with the same 
algorithm. As we are using medical data, it is challenging to 
predict exact results, yet we have secured a remarkable 
accuracy of 99.54 percent. In medical science, time is one of 
the most crucial factors for any emergency. Therefore, by 
implementing the most promising CNN models, we can be able 
to analyze brain MRI images straight away. Mostly in our 

country, doctors try to identify the types of tumors manually as 
well as any other brain diseases, so the risk of the occurrence 
of human error is high. Sometimes patients would have to use 
high-priced diagnostical methods to find the types of the 
disease. Health-related issues are way too sensitive, hence any 
type of mistake is unacceptable. Therefore, this study could 
save time and cost, and most importantly could save lives. 

By using the most prominent model, we can develop 
software that can be used to detect a tumor or any other disease 
in an instant. We have only worked with brain MRI images, in 
the future, we would like to work with different types of MRI 
images as well. 
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