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Abstract—The understanding of DNA damage intensity – 
concentration-level is critical for biological and biomedical 
research, such as cellular homeostasis, tumor suppression, 
immunity, and gametogenesis. Therefore, recognizing and 
quantifying DNA damage intensity levels is a substantial issue, 
which requires further robust and effective approaches. DNA 
damage has several intensity levels. These levels of DNA damage 
in malignant cells and in other unhealthy cells are significant in 
the assessment of lesion stages located in normal cells. There is a 
need to get more insight from the available biological data to 
predict, explore and classify DNA damage intensity levels. 
Herein, the development process relied on the available biological 
dataset related to DNA damage signaling pathways, which plays 
a crucial role in DNA damage in the mammalian cell system. The 
biological dataset that was used in the proposed model consists of 
15000 records intensity – concentration-level for a set of five 
proteins which regulate DNA damage. This research paper 
proposes an innovative deep learning model, which consists of an 
attention-based long short term-memory (AT-LSTM) model for 
DNA damage multi class predictions. The proposed model splits 
the prediction procedure into dual stages. For the first stage, we 
adopt the related feature sequences which are inserted as input to 
the LSTM neural network. In the next stage, the attention 
feature is applied efficiently to adopt the related feature 
sequences which are inserted as input to the softmax layer for 
prediction in the following frame. Our developed framework not 
only solves the long-term dependence problem of prediction 
effectively, but also enhances the interpretability of the 
prediction methods that was established on the neural network. 
We conducted a novel proposed model on big and complex 
biological datasets to perform prediction and multi classification 
tasks. Indeed, the (AT-LSTM) model has the ability to predict 
and classify the DNA damage in several classes: No-Damage, 
Low-damage, Medium-damage, High-damage, and Excess-
damage. The experimental results show that our framework for 
DNA damage intensity level can be considered as state of the art 
for the biological DNA damage prediction domain. 

Keywords—Mammalian cell; deep learning techniques; 
attention; LSTM; classification; DNA damage 

I. INTRODUCTION 
Mammalian cells have a complicated organism system. 

Specifically, each cell has a sequence of response procedures 
through a parent cell which is split into binary offspring cells; 
this is termed the cell-sequence-cycle with a total time of 24 
hours. It consists of five phases, as shown in Fig. 1(a), Gap1 

(G1) 8-10 hours, DNA synthesis (S) 6-8 hours, Gap2 (G2) 4-6 
hours, Mitosis (M) around 4 hours and Quiescence (G0) silent 
mode. Furthermore, the mammalian cell has substantial 
impact on living cell dynamics, involving cell proliferation 
with differentiation [1]. However, mammalian cells usually 
stay in the early state or resting state, either Quiescence the G0 
phase or initial G1phase, but the cell cycle developments to S 
phase further than the check point when actual growing 
influences motivate a cell necessarily. After DNA duplication 
through the S phase, the cell cycle developments complete the 
G2 phase to the final phase called the M phase. At the end of 
the cell cycle, specifically through M phase, the cell is 
necessarily separated into two new cells, called daughter cells. 
It signifies the complete progression process in the cell cycle 
as illustrated in Figure 1(a), (b). Also, this progression process 
is controlled by several complex networks. These networks 
enclose several biochemical species such as genes and 
proteins [2]. 

A mammal cell is commonly damaged and harmed by 
different resources like ultraviolet (UV)-irradiation, also 
ionization-radiation (IR), or other toxic chemical elements that 
are able to influence and cause breaks inside double-stranded 
DNA. This leads to DNA damage, and simulates an 
exceptional signal in the cell. Precisely, this DNA damage 
signal fires a DNA damage signaling pathway. The signaling 
pathway cooperates with the cell cycle controlling system to 
tentatively stop the cell cycle evolution in order to repair 
damaged DNA. Naturally, DNA damage is organized through 
a sub-network with five components, as shown in Fig. 2, and 
they cooperate over these steps (1) double significant elements 
at the launch are activated such as Ataxia telangiectasia 
mutated (ATM) and Rad3-related (ATR) protein kinases are 
activated via DNA damage, (2) ATM and ATR prompt p53 
and checkpoint kinase 1 (Chk1), (3) initiated p53 stimulates 
the synthesis of p21, (4) then p21 prompting cell cycle halt. 
Accordingly, the signaling pathway for DNA damage takes 
straight action on the cell cycle arrangement mechanism, 
supporting cellular homeostasis and genetic constancy. 
Besides, any cell that has significant DNA damage might 
prompt apoptosis and perform planned cell death [3], [4]. 

The influence of DNA damage in mammalian cells is one 
great cause of human illnesses, and as such has gained much 
interest in research since the mid-1990s. DNA damage and 
oxidative stress are identifying factors for the source, 
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development, aetiology and progression of numerous different 
types of human disorders and diseases, such as cancer. 
Therefore, an abundance of present-day investigation in the 
DNA damage domain is dedicated towards sympathetic 
mechanisms and natural allegations of harmful DNA. This 
harmful DNA can go through alterations, such as mutations on 
its genetics; these types of mutations ultimately prime the 
expansion of tumors. DNA damage is also concerned in the 
growth of further prevalent human illnesses ranging from 
neurodegenerative disorders, such as Alzheimer’s illness, to 
chronic obstructive pulmonary disease (COPD). Further, they 
have also been linked to diverse illnesses, such as pulmonary 
illnesses, brain injury and other chronic inflammation related 
to disorders [5]. 

 
(a) The Main Phases inside Mammalian Cell Cycle System. 

 
(b) Illustration for Mammalian Cell Progression and Division Process 
Fig. 1. Cell Cycle System Stages and Progression for Mammal Cell. 

 
Fig. 2. The Main Elements for DNA Damage Signaling Pathway. 

Essentially, biological discoveries have shown that 
mammalian cells are able to approximate the intensity- 
concentrations of DNA damage and choose a suitable cell fate, 
like applying DNA reparation; otherwise, cell cycle arrest, or 
apoptosis death. Nevertheless, it is uncertain the manner in 
which a cell decides the suitable cell destiny. A confirmation 
of the affiliation among the intensity (proteins concentration) 
for DNA damage and the energetic behavior of the 
biochemical elements implicated in cell cycle controlling 
techniques and the signaling pathway for DNA damage is 
crucial for clarifying the techniques of cell destiny purposes. 

DNA damage has a number of intensity-concentration 
levels; these levels of DNA damage in malignant cells and in 
further diseased cells are significant in the assessment of the 
lesion stages that appear in normal cells. A wealth of 
laboratory research has been concerned with distinguishing 
and comprehending DNA damage levels and DNA repair 
capacity, as well as the techniques employed through mutually 
abnormal and normal cells. In addition, since certain 
significant diseases, such as cancer, are the essential reason of 
premature mortality over the globe, there is a predominance 
and rapid assertiveness of research on illustrative DNA 
damage in cancer cells [6]. Mainly, as mentioned before, 
clarifying the DNA damage level will be helpful for 
treatments and research purposes, even if there is a scarcity in 
the available data. Consequently, this article aims to present a 
novel artificial deep learning model to classify and predict 
DNA damage levels based on available DNA damage 
intensity-concentration levels from a bench mark model. The 
bench mark model delivers a novel dataset for DNA signaling 
network and classifies the DNA damage into several levels. 
We rely on this dataset to train and test the novel proposed 
model to predict the weather of the DNA damage and classify 
them in several classes. 

The research introduces and validates the novel model to 
predict and classify DNA damage levels. To achieve the goals, 
outcomes have been investigated with DNA damage datasets. 
The research objectives and contributions are represented as 
follows: 

1) This research aims to propose a novel deep learning 
model by employing an Attention – Long Short Term 
Memory. 

2) Experiments are to be applied on DNA damage 
datasets. 

3) The ATT-LSTM deep learning classifier for DNA 
damage is to be employed, and the efficiency of the ATT-
LSTM deep learning classifier is to be determined. 

4) The developed framework not only solves the long-
term dependence problem of prediction effectively, but also 
enhances the interpretability of the prediction methods 
established on the neural network. 

The paper is structured as follows. Section II offers a 
literature review. Section III encloses the utilized method and 
model architecture and implementation. Section IV 
encompasses the results and investigation. Section V presents 
the conclusions. 
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II. RELATED WORK 
Declaration and quantification of DNA damage is an 

actual substantial topic in biological and biomedical study 
areas, which requires further influential and active methods. 
Defining the DNA damage level is a significant point to 
decide the fate of the cell, such as if the cell recovers the DNA 
damage, or kills itself, or develops into an abnormal cell and 
forms into a serious diseases such as cancer [7]. Besides, the 
defining level can help to get more insight over drug treatment 
experiments. Several attempts have been made to classify 
DNA damage levels. For instance, numerous classical 
machine-learning methods have been employed in classifying 
the data that were related to gene expression, involving Fisher 
linear discriminant analysis [8], decision tree, k nearest 
neighbor [9], multi-layer perceptron [10], support vector 
machine [11] [12], boosting, and self-organizing map [13]. In 
addition, concerning clustering gene expression data, various 
machine learning techniques have been utilized [14]; they 
include hierarchical clustering [15], graph theoretic 
approaches [16] [17] and self-organizing map [18]. 
Concerning disease and treatment for DNA damage also, 
another attempt is available in the literature based on use of 
the machine learning classifiers on illness datasets, like 
Leukemia disease dataset, Lymphoma malignance data set and 
colon tumor dataset. Researchers have also attempted to 
explore many features by utilizing classical methods, like 
multi-layer perceptron neural network, k-nearest neighbor, 
structure adaptive _SOM- self organizing map and SVM 
(support vector machine); these have been employed for 
classification [19]. In addition, they have joined the classifiers 
to increase the performance of classification. The 
experimental consequences indicate that the ensemble with 
some basic classifiers produces the greatest classification rate 
on the benchmark dataset. 

Other researchers have established an SVM classifier 
exactly for mtDNA missense variants [20]. Therefore, in the 
process which is associated in the training and validation of 
the model, they employed 2,835 mtDNA damaging and 
neutral amino acid replacements. In the abovementioned 
dataset, each instance is well-defined through a fixture of three 
attributes created on evolutionary preservation in Eukaryote 
modified amino acids. Consequently, the proposed classifier 
achieved better than other web-available tested predictors. 
However, lately, a Deep learning model has been offered [21]. 
The model is based on a weak label learning method; they 
used this method to investigate the whole slide images (WSIs) 
of Hematoxylin besides Eosin (H&E). Their occupation was 
Self-supervised pre-training technique and heterogeneity 
aware deep Multiple Instance Learning (DeepSMILE) and 
they engaged it on cancer tissue images. Their model 
improvements recommended the genomic label classification 
performance without collecting larger datasets. There is also a 
deep learn pipeline based open source, called FociNet [22]. It 
is interested in image classification and was established to 
mechanically segment full-field fluorescent images and divide 
DNA damage of each cell. The outcome from the model 
indicated that FociNet reached satisfying performance in 
classification. Since it classifies a solitary cell in a normal, 
injured, or no signaling (no fusion-protein expression) state, 
and it also shows exceptional matching in the assessment of 

DNA damage, contingent on fluorescent foci images from 
different imaging platforms [23]. Evaluation of the 
performance of convolutional Neural Network was done to 
examine the amount of DNA damage by means of comet 
assay images and was matched to further approaches in the 
literature. The novelty of their work was employing 
convolutional Neural Network as a novel scheme to classify 
the comet objects on segmented comet assay inside the 
images. Additionally, numerous deep learning models were 
applied on DNA damage images [24] [25] [26]. However, 
almost all the available deep learning models in the available 
literature are based on image datasets for DNA damage, while 
few available deep learning models are based on DNA 
damage intensity – concentration datasets; this is due to a 
scarcity in experimentally observed data concentration 
datasets. Therefore, while it is challenging to envision these 
complicated relationships using only DNA damage, 
investigators can systematically confirm these associations 
with a mathematical-numerical model that incorporates data 
from experiments toward a kinematic mathematical model 
which includes the cell cycle regulation techniques with the 
DNA damage signaling pathway. Various scientists have 
developed valuable kinetic mathematical models. These 
models are associated with the cell cycle regulation 
mechanism to estimate the exchanges of natural species [1], 
[7], [27], [28], [29], [30], [31]. 

A mathematical model was proposed as a benchmark 
model of the DNA damage-signaling pathway and mimic cell 
fate selection [30]. The outcome from the novel model was 
that it offers a dataset for the DNA damage signaling pathway. 
This dataset exposes the proteins’ concentration levels and 
activities to deal with DNA damage level. For instance, the 
researchers presented the DNA damage signaling pathway- 
proteins set-concentrations without DNA damage [30]. These 
observations from the delivered dataset qualitatively match 
with biologically appropriate facts. In addition, diverse 
intensities of DNA damage were found, such as Low-damage, 
Medium-damage, High-damage, and Excess-damage. These 
aforementioned DNA damage levels bear a resemblance to 
actual DNA damage, and are triggered by several values such 
as 100, 200, 400, and 800 J/m2 doses of UV-irradiation. 
Further explanation will be clarified in the dataset preparation 
and analysis section and how we utilized this dataset to train 
and test the proposed artificial deep learning model to predict 
the DNA damage level into several classes. 

III. PROPOSED WORK AND OVERVIEW OF SYSTEM 
ARCHITECTURE (ATTENTION – BASED LSTM) – AT-LSTM 

MODEL 
Currently, there is no effective computational model, 

neither a machine learning nor a deep learning model that can 
be utilized to validate the influence of the intensity- 
concentration of DNA damage on cell cycle system 
progression. Consequently, the crucial contributions of this 
paper essentially comprise the following: we employ the 
attention model to effectively extract the features of DNA 
damage big and complex dataset and the LSTM layer in the 
proposed model performs additive interactions, which can 
help improve gradient flow over long sequences in training 
[32]. Matched with classical models, AT-LSTM can 
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competently maintain and work with non-stationary sequences 
and detect the nonlinear relationships [33]. Furthermore, 
compared with deep learning models like RNN, the AT-
LSTM can avert the long-term dependence issues and give 
rise to superior interpretability [34]. The mechanism for the 
attention in the proposed model makes it simple to recognize 
how the information in the input sequence influences the final 
created sequence through the model output process [35]. This 
might assist in discovering the interior operation mechanism 
of the model and debug certain precise inputs and outputs. 
Further, the experimental results on DNA damage datasets 
determine that AT-LSTM accomplishes more enhanced tasks 
than standard models. 

1) The architecture of the AT-LSTM model: The proposed 
attention-based LSTM (AT-LSTM) model for DNA damage 
dataset multiclass prediction comprises two parts: the attention 
model and the LSTM deep learning model. The attention 
mechanism is able to adaptively choose the furthermost 
related input features and provide higher weights to the 
corresponding original feature sequence. Then and there, we 
utilize the outcomes of the LSTM deep learning model as 
input for the attention model to predict the DNA damage level 
and assign it to several classes. 

2) LSTM model: For a stated input raw, 𝑋 =
(𝑥1, 𝑥2, … , 𝑥𝑛)𝑇 = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ 𝑅(𝑛×𝑚) , n represents the 
numeral of feature orders -sequences, m stands for the length 
of the window. 𝑥𝑘 = (𝑥1𝑘 , 𝑥2𝑘, … , 𝑥𝑚𝑘)𝑇 ∈ 𝑅𝑚 is utilized to 
denote a sequence (vector) of length m. For biological DNA 
damage, this sequence can be a protein concentration 
measurement for the sub-network, which represent the DNA 
signaling network. We use  𝑥𝑡 = (𝑥𝑡1, 𝑥𝑡2, … , 𝑥𝑡𝑛)𝑇 ∈
𝑅𝑛 to represent a set-group of vectors of n features at time t. 
Long Short-Term Memory (LSTM) model is declared as 
follows: Let 𝑥𝑡 , ℎ𝑡  𝑎𝑛𝑑 𝐶𝑡 stand for the input, control state, 
and the cell state on time step t. Delivering a sequence of 
inputs (𝑥1, 𝑥2, … , 𝑥𝑚) the LSTM calculates the group of 
sequence (ℎ1, ℎ2, … , ℎ𝑚) and the C-sequence (𝐶1,𝐶2, … ,𝐶𝑚) 
as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓              (1) 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓            (2) 

𝑐𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)             (3) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑡)              (4) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)             (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡)              (6) 

such that each equation has a set of special symbols, and 
identify several functions. For occurrence, 𝜎 represents the 
function of logistic sigmoid, ∗ is a component wise 
multiplication, and 𝐶𝑡 is the weather of the cell that is required 
to be changed. Also, 𝑊𝑓 ,𝑊𝑖 ,𝑊𝐶 ,𝑊𝑜  and 𝑏𝑓 , 𝑏𝑖 , 𝑏𝐶 , 𝑏𝑜 are a set 
of parameters for the model. Besides, these parameters can be 
learned over the processing. Additionally, ft, it and ot are 
likewise christened as a gate for the forgotten, along with an 
input gate and output gate. In actual fact, the architecture for 

the LSTM unit includes a memory cell, this mean that every 
LSTM unit that contains a memory cell has state Ct at time t, 
which is structured by the three overhead gates. 

3) The attention model: A significant part of human 
artificial is that it does not directly contract with all feedbacks 
from the outside world. As a substitute, human’s first attention 
is on the significant sections to acquire the information they 
require. Correspondingly, the significance of several proteins 
concentrations in the biological data set is also different, big, 
and complex, and the other may be critical. It is also essential 
to emphasize key features first and remove repeated features. 
Accordingly, with the operative information inspired through 
the overhead information, we propose an attention model, and 
this model can apply the optimization part for the input feature 
sequence in DNA damage level prediction. An attention 
mechanism [35] can be defined as mapping an enquiry. 
Moreover, a set of key-value couples to an output, and 
similarly, the components in the system such as keys, query, 
values, including output are all defined as vectors. The 
outcome of the model is calculated as a weighted sum for the 
values, where the weight given to every value is calculated 
through a function related to the compatibility for the query 
with the equivalent key, as shown in Fig. 3. 

The method of producing attention weights and the new 
input features established on attention is illustrated in Fig. 3. 
In the first fragment, 𝑥𝑡 maps to ℎ𝑡 through the following. 

ℎ𝑡 = 𝑓1(ℎ𝑡−1, 𝑥𝑡)              (7) 

where the non-linear activation function is represented by 
𝑓1 , while  ℎ𝑡 ∈ 𝑅𝑠 stands for the hidden state on time 𝑡, and 𝑠 
indicates the size of the hidden state. LSTM is implemented as 
𝑓1 . The main aim for this implementation is to evade the long-
term dependence problem, which typically arises in data 
prediction. 

In the second fragment, we generate an attention 
mechanism by using specifically the deterministic feature in 
the attention model. For an exact feature sequence like 
𝑥𝑘 = (𝑥1𝑘, 𝑥2𝑘, … , 𝑥𝑚𝑘 )𝑇 ∈ 𝑅𝑚, by relying to the 
aforementioned hidden state  ℎ𝑡−1 and the cell state  𝐶𝑡−1 in 
the LSTM unit, we express 

𝛼𝑡𝑘 = 𝑣𝑇 tanh(𝑊1 ∙ [ ℎ𝑡−1,  𝐶𝑡−1] + 𝑊2𝑥𝑘)            (8) 

𝛽𝑡𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼𝑡𝑘) =
exp�𝛼𝑡

𝑘�

∑ 𝛼𝑡
𝑘𝑛

𝑖=1
             (9) 

 
Fig. 3. The Architecture of the Proposed Attention-LSTM Model. 
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The vector v and the two matrices 𝑊1,𝑊2 signify the 
learning abled parameters of the proposed model. The vector 
𝑎𝑘 has a length called m and its 𝑖-th item measures the 
significance of the 𝑘-th input feature sequence at time 𝑡. The 
aforementioned items must be normalized through 
softmax. 𝛽𝑘 represents the weight in attention, which encloses 
a score, and the score shows the amount of attention that 
should be put on the k-th feature sequences. We are able to 
likewise acquire the outcome of the attention model at time t, 
i.e., the sequence of the weighted input feature named as 𝑧𝑡 
can be presented as follows: 

𝑧𝑡 = (𝛽𝑡1𝑥𝑡1,𝛽𝑡2𝑥𝑡2, … ,𝛽𝑡𝑛𝑥𝑡𝑛)𝑇           (10) 

 𝑥𝑡 , in the equations from (1) to (7) swapped via a new 
calculated 𝑧𝑡 to keep up the attention model. However, 
classical prediction frameworks that enclose recurrent neural 
networks usually utilized dataset input features as input, 
besides treating all input feature sequences in an equivalent 
fashion. Nevertheless, the recently acquired 𝑧𝑡 can pay further 
attention to the particular input feature sequence, mining the 
key feature sequences efficiently, and based on attention 
weight, we reduced the influence of the redundant feature 
sequences. Hypothetically, there would be an improvement in 
prediction exactness with 𝑧𝑡  as the input to the softmax layer. 

IV. RESULTS AND DISCUSSIONS 

A. Data Analysis and Simulation 
This section explores how we apply experiential research 

on data sets with an aim to elucidate the validity of our DNA 
damage level prediction framework. First, we will introduce 
the dataset that was utilized in training and testing of the 
proposed model. We relied on available biological datasets 
related to DNA damage signaling pathways, which plays a 
crucial role in DNA damage in mammalian cell systems [30]. 
This Biological dataset consists of 15000 records intensity – 
concentration-level for a five-proteins set which control DNA 
damage. The DNA damage signaling pathway- proteins set-
concentrations without DNA damage was previously 
presented [30]. These obseravtions from the delivered dataset 
were qualitatively analyzed with biologically appropriate 
facts. In addition, diverse intensities of DNA damage were 
performed, such as Low-damage level, Medium-damage level, 
High-damage level, and Excess damage level. Herein, we 
studied and analyzed the aforementioned dataset and proposed 
a novel model which consists of an attention based on long 
short term memory- Neural Network named as LSTM (AT-
LSTM) model for DNA damage multi-classification 
prediction. 

B. Dataset Analysis 
Researchers have assembled a new kinetic based 

mathematical – ordinary differential equations (ODE’s)- 
model that assimilates the G1/S in cell cycle system models, 
and they measured compatibility to the biological credibility 
of the suggested model by confirming numerous mathematical 
mimicry time progression courses of the intensities of 
individual biochemical elements [30]. Furthermore, they as 
well quantitatively recognized the intensity – concentration 
level of DNA damage and provide experimentally observed 
data. 

Certainly, when DNA damage has occured, numerous 
protein kinases are involved at the location of damage and 
launch a special signaling pathway that forces cell-cycle to be 
arrested. The chief kinase at the damage location is 
ATM/ATR, which is activated and established on the type of 
damage and another protein of the gene regulatory protein p53 
is also triggered. Mdm2 usually connects to p53 and 
stimulates its ubiquitylation and destroys the proteasomes. 
Phosphorylation of p53 stops its binding to Mdm2; 
consequently, p53 becomes accumulated to maximium levels 
and inspires transcription of the gene that encrypts the protein 
p21 and arresting of the cell in G1 [30]. 

Mainly, in the evolution process for the model, first, we 
extracted the observation from a base model deprived of DNA 
damage (DDS = 0) to get the time course for selected cell 
cycle regulators. Second, we extracted from an expermintal 
dataset of the benchmark model the required obseravtion with 
four diverse levels of DNA damage: (Low-damage) with DDS 
= 0.002, (Medium-damage) with DDS = 0.004, (High-
damage) with DDS = 0.008, and (Excess-damage) with DDS 
= 0.016. If DNA damage has certainly not arisen, the p21 with 
p53 stop over instead, and with a low level, as illustrated in 
Fig. 5 and 6. DNA damage drives p53 activation which 
prompts p21 [2].The character of p21 is to prevent the activity 
through inhibition of phosphorylation of Rb [1]. 

With the elimination of DNA-damage, [2]p53 and Mdm2 
have a negative feedback loop which is completely reinstated, 
and p53 returns back to a low-slung level. The reduction in 
p53 decreases the scale of p21, as shown in Fig. 4 and 5 when 
DDS=0.004. Likewise, Figure 4 shows all the protein tensity 
for the protien P21 response in all DNA damage states. For 
instance, it shows the values for the P21 tensity in the case 
without DNA damage occurrence as a light-blue line. It 
provides roughly 3000 instances. On the other hand, it shows 
the concentration values for the P21 when DNA damage 
occurrs,; for instance, in case of Low DNA damage, the P21 
can be presented in an orange line, medium damage with a 
gray line, and a high DNA damage level P21 values and 
behaves to recover the DNA damage represented in a yellow 
line, while the P21 response in extreme DNA damage is 
represnted in a dark blue line. We have to be aware about the 
values for each figure, specifically that each element in each 
DNA damage state has roughly 3000 different instances in 
response to DNA damage recovery. 

 
Fig. 4. Time Courses of P21 responses with and without DNA Damage over 

the Simulation of Mammalian Cell. 
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With respect to High DNA damage with a rate of 
DDS=0.008, the time progressions of p21 and p53 are 
revealed in Fig. 5 and 6. The p53 is activated and presented in 
oscillation behavior, which were in settlement by means of 
those previously experimentally detected [30, 6, 29]. 
Furthermore, when DNA damage is presented, the DNA-
damage signal in the sequence triggers p53 instead of Mdm2. 
The triggered p53 similarly can stimulate the synthesis of p21 
which acts as an inhibitor. Meanwhile, p21 stops the 
phosphorylation of Rb. Fig. 6 indicates all the protein tensity 
for the protein P53 response in all DNA damage states. For 
example, it explores the values for the P53 tensity in the case 
without DNA damage incidence, the light blue line. On the 
other hand, it displays the concentration values for the P53 
when DNA occurred, such as in the Low DNA damage, in 
which case the P53 is presented with an orange line, and the 
medium damage is represented with a gray line. In the case of 
high DNA damage levels, P53 values and behaves to recover 
the DNA damage that is represented in a yellow line, while the 
P53 responds in extreme DNA damage cases, represented in a 
dark blue line. 

 
Fig. 5. Time Courses of P53 with and without DNA Damage over the 

Simulation of Mammalian Cell. 

Fig. 6- 8 ilustrate the responses of Mdm2, ATM/ATR and 
lm respectively in cooprating to handle the DNA damage 
cases. Each figure, as explained before, shows how the values 
in protiens tensity of each element will change during the 
DNA damage, whether it occured or not. As demonstraed 
before, we have to be alert that the values for each figure of 
each elelment in each DNA damage state has around 3000 
different instances in response to DNA damage recovery. 

 
Fig. 6. Time Courses of Mdm2 with and without DNA Damage over the 

Simulation of Mammalian Cell. 

 
Fig. 7. Time Courses of ATM/ATR with and without DNA Damage over 

the Simulation of Mammalian Cell. 

 
Fig. 8. Time Courses of lm with and without DNA Damage over the 

Simulation of Mammalian Cell. 

Herein, we revealed a brief examination of biological 
background, specifically cell cycle, with more deliberate focus 
on DNA damage pathways as a complicated system. As 
demonstrated before, the novel proposed deep learning 
Attention based LSTM model is trained and tested depended 
on the obtained dataset delivered by [30]. 

C. Experiments 

We performed several experiments on the proposed 
attention-based LSTM model for DNA damage classification. 
The proposed model was trained on 12000 samples and was 
tested on 3000 samples. The dataset is in-of-domain for DNA 
damage classification and the tested dataset that was used is 
also from the same dataset. There are three cross-validation 
methods which are often employed to evaluate the success rate 
of the predictor; namely, the K-fold cross validation, sub-
sampling and jackknife test. The Jackknife test is the least 
arbitrary and most objective, and it has been mostly assumed 
by researchers to inspect the quality of diverse predictors. This 
method is source and time consuming. Therefore, in this paper 
we utlized an early stopping choice to elude a model’s 
overfitting through setting the patience option to three epochs, 
and we utlized k-fold cross validation where K was set to 1, 
such that a single train/test split is generated to evaluate the 
attention-based LSTM model for DNA damage classification. 

D. Training 
The framework developed by Keras and Python was used 

to train the attention-based LSTM model for DNA damage 
classification. For the classification task, SGD optimization 
algorithm was used with learning rate values set to 0.01 and 
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momentum set to 0.0, and the model’s batch size set to 6. The 
model initially incorporated 331,525 parameters. The model 
used 256 LSTM units and the attention dimension was set to 
255. Also, the proposed model size proved to require 1.7 
seconds per epoch for the classification task. The training data 
was randomly shuffled at each epoch for the classification 
task. The proposed attention-based LSTM model for DNA 
damage classification task was trained to minimize the 
categorical-crossentropy validation loss for the DNA damage 
classification task while maximizing validation accuracy for 
the same classification task. 

E. Results Investigation 
On performing experiments, it can be assured that the 

researchers have done extensive experiments on the attention-
based LSTM model by testing different hyper-parameters. The 
proposed model was also experimented using three different 
configurations, such as BiLSTM with Attention layer, LSTM 
with Attention Layer and LSTM with Attention and Dropout 
layers. The classification performances measured will be listed 
in an accuracy score automatic metric evaluation. The results 
in Table I show the efficiency of the proposed Attention-
Based LSTM model for DNA damage classification. It can be 
noticed from Table I that the proposed model obtained an 
excellent result when we used LSTM with the attentional 
approach, such that the model obtained an accuracy of 93.43. 
In comparison to other configurations listed in Table I, the 
proposed model (LSTM with Attention) obtained a better 
accuracy than the other configurations. These results suggest 
that the proposed model is effective and accurate in 
classifying DNA damage in a validation dataset. Also, as seen 
from Table I, the BiLSTM with attention configurations has 
obtained a competitive result, such that it obtained an accuracy 
of 93.13, which indicates that the BiLSTM performs very well 
in classification tasks. Adding a dropout layer to the model’s 
design negatively impacts the model’s performance and 
quality, such that the model obtained an accuracy of 75.43, as 
illustrated in Table I. Therefore, it can be summarized that the 
proposed model outperforms the models that used BiLSTM 
and Dropout layer. More importantly, results presented in 
Table I and Fig. 9 show the performance of the model that 
exploited the attention approach, and LSTM is higher than the 
other models. In addition, as shown in Fig. 10, it can be seen 
that the error on the training data decreases as the learning 
continues, and at the same time, the error of actual valdiation 
data decreases as the training continues, and this pattern 
proves that the proposed AT-LSTM model is not facing the 
problem of overfitting. 

Moreover, as shown in Fig. 11, plot of accuracy, we found 
that the model is trained very well, as the trend for accuracy 
on both training and test datasets were still rising from epoch 
100 till epoch 213, and this is an indication of the proposed 
model’s performance and accurate classification. 

Fig. 12. (a,b,c,d,e) illustrates how the AT-LSTM model 
classifies the responses of P21, P53, Mdm2, ATM/ATR and 
lm, respectively in cooperating to handle the DNA damage. 
Each figure shows how the values in protein tensity of each 
element changes during DNA damage, and how it occurred in 
each class. The x-axis represents the diverse classes for the 

DNA damage level while the y-axis represents the amount of 
each protein concentration during the DNA damage. 

TABLE I. EXPERIMENTAL RESULTS 

Model Configuration  Accuracy Number of epochs 
BiLSTM +Attention  93.13 228 
The proposed model  
( LSTM with Attention ) 93.43 213 

LSTM + Attention + Dropout 75.43 71 

 
Fig. 9. Model Accuracy within Number of Epochs. 

 
Fig. 10. Model Loss. 

 
Fig. 11. Model Accuracy. 

97 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 9, 2022 

 
(a) P21 Response Appearance in each Class 

 
(b) P53 Response Appearance in each Class 

 
(c) MDM2 Response Appearance in each Class 

 
(d) ATM/ATR Response Appearance in each Class 

 
(e) Im Response Appearance in each Class 

Fig. 12. AT-LSTM Model Classification for each Protein in Response to 
DNA Damage Level. 

V. CONCLUSION 
DNA damage in mammalian cells causes genetic illnesses 

and a diversity of cancers. Therefore, more investigation and 
analysis can help the therapeutic process. Almost all 
classification prediction models that are used to explore DNA 
damage are based on DNA damage images, while few studies 
and models are based on DNA damage intensity. In this paper, 
we developed a novel deep learning model; in essence an 
Attention-based LSTM model to perform classification tasks 
of DNA Damage Levels. The proposed model was able to 
overcome other models and obtained an accuracy of 93.43%. 
These results confirm that the proposed model is effective and 
accurate in predicting and classifying DNA damage on a 
validation dataset. The attention approach was able to extract 
the complex features from the dataset and enhanced the 
proposed model quality and performance. The proposed model 
is considered as a novel work since AT-LSTM has never been 
applied in the DNA damage field, and can be employed to 
assist the investigation and studies of DNA damage since it 
provided a promising prediction of results. 
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