
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

950 | P a g e

www.ijacsa.thesai.org

Toward A Holistic, Efficient, Stacking Ensemble

Intrusion Detection System using a Real Cloud-based

Dataset

Ahmed M. Mahfouz1, Abdullah Abuhussein2, Faisal S. Alsubaei3, Sajjan G. Shiva4

Department of Computer Science, University of Memphis, Memphis, TN 38152, USA1, 4

Information Systems Department, St. Cloud State University, St. Cloud, MN 56301, USA2

Department of Cybersecurity, University of Jeddah, Jeddah 23890, Saudi Arabia3

Abstract—Network intrusion detection is a key step in securing

today’s constantly developing networks. Various experiments

have been put forward to propose new methods for resisting

harmful cyber behaviors. Though, as cyber-attacks turn out to be

more complex, the present methodologies fail to adequately solve

the problem. Thus, network intrusion detection is now a

significant decision-making challenge that requires an effective

and intelligent approach. Various machine learning algorithms

such as decision trees, neural networks, K nearest neighbor,

logistic regression, support vector machine, and Naive Bayes have

been utilized to detect anomalies in network traffic. However, such

algorithms require adequate datasets to train and evaluate

anomaly-based network intrusion detection systems. This paper

presents a testbed that could be a model for building real-world

datasets, as well as a newly generated dataset, derived from real

network traffic, for intrusion detection. To utilize this real dataset,

the paper also presents an ensemble intrusion detection model

using a meta-classification approach enabled by stacked

generalization to address the issue of detection accuracy and false

alarm rate in intrusion detection systems.

Keywords—Intrusion detection system; IDS dataset; stacking

ensemble ids; stacking; security; ensemble learning

I. INTRODUCTION

With the exponential growth of network-based applications
globally, there has been a transformation in the business models
of organizations [1]. Cost reduction of both computational
devices and the Internet have led people to become more
technology dependent. As a result of the increasing use of
computer networks, new risks have emerged [2]. Therefore, the
process of enhancing the speed and precision of security
mechanisms has become crucial. Although abundant new
security tools have been developed, the rapid evolution of
malicious actions continues to be a demanding matter, as their
ever-evolving attacks continue to create huge threats to network
security [3]. Classical security techniques—for instance,
firewalls—are used as a first line of defense against security
problems but remain unable to detect internal intrusions or
adequately provide security countermeasures [4]. Thus, network
administrators tend to rely predominantly on Intrusion Detection
Systems (IDSs) to detect such network intrusive actions.

During the past decade, it has become clear that the trend of
using the cloud services model in preference to the old on-
premises model is increasing rapidly for many reasons [5]. For

instance, the unique utilization/charging models offered by the
cloud provider that gives customers the flexibility to adjust their
expenses easily, based on their needs. Scaling processes would
consume much more time, effort, and expense without the cloud
model. With the cloud model, the Capital Expenditure (CapEx)
is reduced to the minimum or removed. These elements are
taken care of by the cloud provider, which reduces the time to
market (TTM) of the services and facilitates hunting market
opportunities. With these merits, and many more, adopting the
cloud model enables the customer to focus on service
development rather than infrastructure management, which
helps in achieving customer satisfaction and maximizing
revenue. However, using the cloud model comes with many
implications and consequences, especially on the security side
of the model. One such implication is the huge increase in the
number of machines exposed to the Internet since the
management of those remote servers, hosted over the cloud, by
legitimate users, entails enabling remote access to the servers,
which increases the number and kind of vulnerabilities that can
be exploited by the attackers.

With the advances in the field of machine learning, studying
the malicious traffic patterns and the attacker`s behavior for the
purpose of developing detection and mitigation/reduction
algorithms has become a hot area of research [6]. A vital
building block of most of the machine learning techniques is the
dataset that is used either in the training phase in case of
unsupervised learning or the training and testing phases in case
of supervised learning. Due to the significance of the dataset (as
shown later), many studies have been devoted to generating such
a dataset using different techniques and setups [7].

Most of the time, the datasets used in different studies
depend on a simulated dataset due to the lack of publicly
available real datasets of the network attacks [8]. This is mainly
attributed to the fact that organizations are usually hesitant to
publicly share technical information with others about their
computing assets, such as applications, network layout, or other
information that can be extracted/guessed from a dataset. Doing
so risks exposing confidential and sensitive data about the
organization's computing assets from security and business
perspectives and costs a lot more than taking the risk of sharing.
Another reason for the scarcity of real datasets is that they would
reveal valuable information about the organization’s Intrusion
Detection System (IDS) if the machine learning algorithm is
trained on the same dataset, and this could help intruders to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

951 | P a g e

www.ijacsa.thesai.org

bypass it. Although resorting to a simulated dataset seems to be
a good solution, it could result in less accurate algorithms when
applied in real-world systems [9]. Aside from being simulated
or real, attack datasets used for machine learning models have a
conceptual problem, which is the imbalance issue since the
attacker would be trying to hide his traffic in the normal user
traffic. Another shortcoming in the existing datasets is that most
of them are a bit outdated, and most of the efforts focus on the
attacks, but not the pre- or post-attack (attacker`s behavior).

This paper produces a new network intrusion dataset based
on real network attacks on up-to-date cloud-based infrastructure.
It also offers an adaptive ensemble classifier model, which
integrates the advantages of different Machine Learning (ML)
classifiers for diverse kinds of attacks and achieves best results
using ensemble learning. The proposed model uses a meta-
classification method based on stacked generalization for
network IDS. The advantage of ensemble learning is combining
the predictions of numerous base estimators to expand
generalizability and strength over that of a single estimator.

II. RELATED WORK

A. Dataset

The effectiveness of any study, or the accuracy of any
algorithm that uses a dataset, greatly depends on the dataset
quality in terms of both being correctly labelled and being up to
date and able to capture the latest attacks [10]. Also, the more
data instances there are in the dataset, the greater the accuracy
of the experiments and the generalizability of the model.
Network attack datasets are constructed by system logs, network
logs, network flows, and memory dumps. A novel technique
called generative adversarial networks is used to train a
generator to create the dataset [11]. The dataset could be built
using real or simulated data. The work of one group of
researchers [12] provides a comprehensive overview of the
existing datasets by analyzing 715 research articles. They focus
on three aspects: the origin of the dataset (e.g., real-world vs.
synthetic), whether datasets were released by the researchers or
not, and the types of datasets that exist. They conclude that
56.4% of the datasets are generated via experiments, while
36.7% are real data. Also, 54.4% of the studies use existing
datasets, while the rest created their own, and only 3.8% of them
released their datasets. In another research project [13], the
authors provide a comprehensive overview of the most used
available datasets. Based on their research, the main limitations
of the current datasets can be summarized as follows:

 Some of the datasets are old, so they do not help with the
recent types of attacks.

 The dataset is not labeled, making it useless for training
supervised machine learning models, unless manually
labeled, which can be cumbersome.

 The dataset is limited to specific types of attacks or
targets specific applications, reducing its generality.

 The dataset is small and does not contain enough data to
generalize the trained model.

 The dataset contains redundant data, which could lead to
biased models.

 The dataset is completely generated in the lab, making it
less representative of the real-world attacks.

 The dataset consists of an imbalanced amount of attack
data and benign traffic.

To address the above limitations, one study [14] proposed a
dataset approach called CIDD (Cloud Intrusion Detection
Dataset) for masquerade attacks. They developed a log analyzer
and correlator system to parse and analyze the data from the
network. These parsed data are fed to the log analyzer and
correlator for processing and marking. The analyzer correlates
the user audits in network and host environments using user IP
and audit time. Then it assigns user audits to a set of VMs
(Virtual Machines) according to their login sessions time and the
characteristic of the user task. Finally, it uses the attack and
masquerade tables provided by the MIT group to mark the
malicious records. The drawback of this dataset is that it lacks
the representation of real network traffic as well as actual attack
simulations. Moreover, it is outdated for the adequate evaluation
of modern IDSs on current networks, regarding types of attacks
and the network infrastructure.

In other research [15], the researchers developed a testbed to
generate their dataset. The testbed is composed of different
machines in a Windows domain and each machine has different
types of agents to collect logs and send them to the logger. These
machines also have scripts to enable the simulation of some
types of attacks, pushed by the logger server, as well as the
generation of the normal traffic. The logger server is equipped
with the necessary applications to play different roles. Examples
of these are an elastic search to collect logs from the whole
system, a Mitre Caldera Server to simulate various types of
attacks using the installed agents on the hosts, an IDS Suricata
for identifying network attack signatures in traffic that is used
for labeling the dataset, and others. Unfortunately, the proposed
testbed also does not represent real-world network traffic and
lacks the actual attacks representation.

B. Stacking Ensemble IDS

Ensemble learning based methods apply collections of ML
procedures to obtain higher predictive performance than could
be obtained from one classifier [16]. The core idea of ensemble
methods is to combine several classifiers to exploit the power of
each single algorithm used to obtain a more powerful classifier.
Ensemble learning methods are mainly helpful if a problem can
be split into subproblems so that each subproblem can be
assigned to one module of the ensemble. Depending on the
structure of the ensemble approach, each module can include
one or more of the ML algorithms. During network attacks,
because the signatures of different attacks are distinct from each
other, having different sets of features as well as different ML
algorithms to detect different types of attacks is preferable. A
single IDS cannot address all types of input data or identify
different types of attacks [17, 18]. Many researchers have shown
that a classification problem can be solved with high accuracy
when using ensemble models instead of single classifiers [19,
20, 21, 22].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

952 | P a g e

www.ijacsa.thesai.org

III. REAL CLOUD-BASED DATASET

A. Dataset Collection Setup

To collect real attack traffic, a testbed was built on AWS
(Amazon Web Services) and was run for 10 days between the
8th and the 18th of March 2021. The system consists of three
main subsystems: the Sensors, which is used as a decoy to lure
the adversaries to try the system, The Collector, which gathers
the data from different sensors, and the Visualizer, which parses,
analyzes, searches, and extracts the collected data.

1) The sensors subsystem: Sensors are servers that are

intentionally exposed to the public network, pretending to offer

something interesting for the attacker. A lot of effort has been

made to create such technology leading to what is known as a

honeypot [23]. Which is a data framework asset whose esteem

lies in unauthorized or unlawful utilization of that asset, which

means that honeypots derive their values from the threats using

them [24]. Honeypots, as a security approach, differ from

firewalls and intrusion detection systems in the sense that they

are implemented somewhere in the network intentionally with

the hope of attracting hackers. If they are built the right way,

with the right precautions, then the more they are attacked and

the smarter those attacks are, the more valuable the honeypots

are. A honeynet is a collection of high interaction honeypots on

a tightly controlled and highly monitored network. A honeypot

can be one of the three types:

 Low-interaction honeypot - This kind of honeypot gives
the intruders the illusion that the system is running some
services so that it has no risks and requires fewer
resources, but it is easily discovered by the attacker [25].

 Medium interaction honeypot - This kind is a little more
interactive as it simulates some services and enables the
attacker to run commands on the system [25].

 High interaction honeypot - This kind can be a separate
network of real running services for the sole purpose of
deflecting the attacker from the actual services,
collecting his data, and studying his behavior. It requires
more resources and can be risky, but the collected data
can be more valuable [26].

Besides using the honeypots as decoys to capture the
attacker's data, they can also be of great value to trick and deflect
the adversaries from the actual system, giving the administrators
of the attacked system more time to harden the system and apply
the necessary patches. In real enterprise systems, honeynets can
be deployed either before or after the organization`s firewall.
When deployed before the firewall, they allow the most
exposure to as many attacks as possible. On the other hand, they
can be deployed behind the firewall for two reasons: first, to
capture internal attacks originating from inside the organization
by those who are trying to do things they should not be doing.
This is important since internal traffic usually does not go
through the firewall. Second, to give an early alert that the
organization`s firewall or IDS might need to be tuned after it was

successfully evaded by some non-legitimate attacker. In this
experiment, the sensors subsystem is built as a honeynet of six
honeypots to collect data from the attackers. Different honeypots
have different purposes and run/simulate different services. In
this section, a brief description of each honeypot is given.

 Dionaea: a low-interaction honeypot that captures attack
payloads and malware. Dionaea listens on many
different protocols, e.g., blackhole, epmap, ftp, http,
memcache, mirror, mqtt, mssql, mysql, pptp, sip, smb,
tftp, upnp.

 Cowrie: a medium/high-interaction honeypot that
emulates SSH and Telnet services and gives the intruder
the illusion of interacting with a real system and hence
captures his actions against the system, e.g., commands
and downloaded files. It works by running a fake
filesystem with the ability to add/remove files where a
full fake filesystem resembling a Debian 5.0 installation
is included. It allows the addition of fake file contents so
the attacker can “cat” files, such as /etc/passwd. Cowrie
also gives the attacker the ability to download and upload
files using wget/curl or sftp/scp and saves files
downloaded for later inspection.

 Conpot: a low-interaction honeypot that is designed to
work as a server-side industrial control system (ICS).

 AMUN: another low-interaction honeypot designed to
capture malware that exploits server-based
vulnerabilities. AMUN simulates a lot of protocols like
RDP, SMP, telnet, FTP, and more to emulate many
vulnerabilities e.g., Buffer Overflow, Buffer Overrun,
and Stack Overflow.

 Snort: a honeypot, but it is used in this project as a sensor
for the traffic. Snort is an intrusion prevention system
that was developed by Cisco, who opened its source and
made it available to the community.

 P0f: a tool that utilizes an array of sophisticated, purely
passive traffic fingerprinting mechanisms to identify the
players behind any incidental TCP/IP communications
(often as little as a single normal SYN) without
interfering in any way. P0f can recognize the operating
system, measurement of system uptime, distance, and
link type.

2) The collector subsystem: We used Modern Honey

Network (MHN), a central server for the management and data

gathering of honeypots [27]. MHN is the brain of the testbed as

it facilitates the deployment of honeypots by wrapping all the

necessary software for each honeypot in a script, collects data

from sensors, and enables integration with the visualizer, as

well as providing a RESTful API for integration with 3rd

parties.

As shown in Fig. 1, MHN composed of two main
components:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

953 | P a g e

www.ijacsa.thesai.org

Fig. 1. MHN Server Architecture.

3) Lightweight authenticated publish-subscribe protocol

(hpfeeds). It has a simple wire-format so that everyone is able

to subscribe to the feeds with their favorite language in very

little time, so it is used as the landing point from all the

honeypots, and as a data source for three other system

components:

a) Honey map, which is a fancy map to show the

geographical location of live attacks from some types of

honeypots like Dionaea.

b) Hpfeeds-logger is a simple utility for logging hpfeeds

events to files compatible with Splunk and ArcSight.

c) Mnemosyne provides immutable persistence for

hpfeeds. It also provides normalization of data to enable sensor

agnostic analysis and exposes this normalized data through a

RESTful API.

4) MongoDB is a general-purpose, document-based,

distributed database used to store all the indexed data feed from

Mnemosyne. The Mongo database is used as the data source for

two other system components:

a) Web app, which is the basic built-in visualization

component of MHN unless a more complex analysis is needed

by a 3rd party like Splunk.

b) 3rd party API, which provides an API interface for 3rd

party integration.

We built a testbed that consists of six sensors running
different honeypots and one server running MHN and Splunk
services. The honeypot servers were running on an AWS free
tier t2-micro instance type, while the MHN & Splunk servers
were running on a t2-medium instance during data collection,
upgraded to t2-large instance type during data analysis and
extraction.

5) The Visualizer: With the large amount of data collected

by the sensors, it was better to use a third-party application to

handle the data instead of the MHN built-in web app. Splunk is

used in this project, but MHN also supports integration with

ArcSight software.

Splunk is a software platform to search, analyze, and
visualize the machine-generated data gathered from the
websites, applications, sensors, and devices that make up the IT
infrastructure and business. Splunk is a great tool when it comes
to the processing of a huge amount of data, as it can provide real-
time processing and accept any data input format, e.g., csv, and
JSON. It can also be configured to give alerts about the
machine’s states and predict if resource scaling is needed. To
make integration with other systems easy, Splunk has the
concept of apps that are an extension/addon of Splunk
functionality. This gives the developers of any applications, e.g.,
MHN, who want to use Splunk the ability to develop their own
application with a customized user interface and visualization
dashboards to serve a specific need. They may then upload it to
the Splunk marketplace (splunkbase) to make it available for the
Splunk community. This makes it easy for the users to integrate
those applications with Splunk by just importing the application
extension into Splunk, and occasionally doing a few setup steps
like licensing and data source configuration. For MHN, there is
an app with the same name that can be downloaded from the
splunkbase.

B. The Dataset Collection Results

After the data was collected from the sensors by the MHN
server and sent to Splunk for analysis and visualization, we used
the Splunk query language, Splunk processing language (SPL),
to extract the datasets. Table I summarizes the total amount of
the collected data using the sensors subsystem, as well as the
data collected per each sensor. In the section below, we present
a sample of the dataset, a distribution of the data across the
collection period, and a summary of the collected data per
sensor.

By implementing a testbed hosted on Amazon’s AWS cloud,
we ran an experiment for 10 days and collected different attacks
on different services. Using the data collected by different
sensors, we created a real network attack dataset comprising

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

954 | P a g e

www.ijacsa.thesai.org

many interesting features that can be used to profile the attacker,
e.g., source/destination IPs, source/destination port numbers
(attacked service), ssh version, operating system name and
version, link type, usernames and password tried by the attacker,
tcp flags, ip ttl, and many more. A full list of the extracted
features is shown in Table II. The dataset obtained can be used,
or can be a seed, for a dataset that solves most of the common
issues in the currently available datasets. It is real-world data by
design, up-to-date, and can be kept up to date easily by running
the testbed during specific periods. It can automate all the post-
processing operations needed to get a ready dataset, thanks to
the use of visualizers and query languages. The dataset
represents different types of attacks and can easily represent
more by deploying more honeypots.

Based on a 10-day experiment, the most attacked service was
server message block (SBM), which might make sense as this
service is used by the WannaCry attacks that have been
spreading and active since 2017. SSH service comes second in
the most attacked services as the attacker tries to exploit the lack
of awareness of some users that use the default or weak
credentials. The common username, “admin,” was the most tried
username and “password” came second as the most tried
passwords, while the less expected, “nproc” (a bash command
to get the total number of cores/threads on the machine) was the
most tried password. The most used operating system by the
attacker was Linux version 3 or later, while Windows came next,
which makes sense as a lot of the hacking tools used are Linux-
based, e.g., Kali. Although most of the attacks originated from
the United States, it might or might not accurately reflect the
actual attacker`s location since a serious attacker might be using
compromised machines to mount his attacks. These could be
located anywhere, or be using any cloud-hosted machines,
which the US has most. The data showed that the top attacking
single IP was in Panama and generated around 34,000 attacks
during the 10 days. The most used command is “uname,” which
is used to get the operating system type, kernel version, and
other information that is necessary to determine the suitable
attacking scripts and tools. The second and the third most used
commands are “echo” which is used to show whatever argument
is used after it and “which ls” to get the full path of the “ls”
command. The two commands might not be meant for actual use
but just to check if this is a real system or a trap. This is good to
know as it can guide the honeypot developers toward which
commands, they need to simulate for a more deceptive
honeypot.

TABLE I. TOTAL COLLECTED DATA

Sensor
Total

Collected

Distinct

SRC

Distinct SRC

DEST_Port

Distinct SRC

DEST Port

SRC_Port

Dionaea 177,000 10,000 72,000 158,000

P0f 369,000 24,000 108,000 212,000

AMUN 245,000 9,000 10,000 228,000

Cowrie 58,000 1,243 1,243 45,000

Snort 108,000 6,200 53,000 67,000

Conpot 3,780 444 444 544

Total 960,780 50,887 244,687 755,544

TABLE II. THE FULL LIST OF EXTRACTED FEATURES

Feature Name Description

1 _time time of traffic capturing

2 app honeypot captured the traffic

3 dest dest ip

4 dest_port dest port

5 dionaea_action
either Dionaea honeypot accept or reject the

connection

6 direction
the direction of the captured traffic either in
or out

7 eth_dst the dest mac address

8 eth_src the source mac address

9 host Splunk server ip or hostname

10 ids_type the type of the used ids

11 ip_id the packet id

12 ip_len packet length

13 ip_tos packet type of service

14 ip_ttl packet time to live

15 linecount the number of lines of the captured traffic

16 p0f_app protocol used by P0f for fingerprinting

17 p0f_link
the connection type at the attacker side like

modem or dsl

18 p0f_os
the operating system of the machine

generating the attack

19 p0f_uptime how long since the attacking machine is up

20 protocol tcp or udp

21 sensor id assigned by MHN per honeypot

22 severity severity rank of the attack

23 signature the signature of the attack as matched by snort

24 snort_classification a number given by snort to classify the traffic

25 snort_header the rule header

26 snort_priority assigns a severity level to rules

27 source input data source (needed by Splunk)

28 sourcetype input data type (needed by Splunk)

29 splunk_server Splunk ip or hostname

30 src attack src ip

31 src_port attack source port

32 ssh_password
password used by the attacker trying to get

ssh access

33 ssh_username
username used by the attacker trying to get
ssh access

34 ssh_version attacker ssh client version

35 tcp_flags
indicate a particular connection state or
provide additional information

36 tcp_len packet length

37 timeendpos
at which byte into the event the timestamp
ends

38 timestartpos at which byte the timestamp starts

39 transport transport protocol type tcp or udp

40 type honeypot event type

41 udp_len packet length

42 vendor_product name of the honeypot that captures the traffic

43 _raw raw (not parsed) event

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

955 | P a g e

www.ijacsa.thesai.org

Analysis of the collected data showed some interesting
findings for each sensor. Dionaea not only listens on the opened
ports but also allows the attacker to download and upload files.
Fig. 2 shows a list of the top downloaded binaries expressed as
their MD5. It is worth noticing that the same files came from
different sources. Splunk`s MHN application also adds a fast
method to scan those files against different antiviruses via Total
Hash and Virus Total websites. By clicking on the link, a web
page will open automatically, search for the file, and show the
scanning results, as shown below in Fig. 3. Fig. 4 to 8 show the
most often attacked ports in different sensors. Fig. 9 shows the
top link types, and Fig. 10 shows the operating systems. Fig. 11
shows the top URLs that were used by the attackers to download
scripts, and binaries used to mount their attacks. Fig. 12 shows
the top SSH versions, Fig. 13 shows the most used
user/password pairs, and Fig. 14 shows the most often used
attack commands. Fig. 15 shows the top attack types captured
by Conpot.

IV. STACKING ENSEMBLE IDS

This section presents an ensemble learning model using a
meta-classification method enabled by stacked generalization. A
newly generated dataset that was captured from real network
traffic was used for experimentation. Observed results indicate
that the proposed stacking ensemble can generate superior
predictions having 95% accuracy.

A. Methodology

As illustrated in Fig. 16, the stacking model comprises base
and metaclassifiers—namely, Neural Networks (NN), k nearest
neighbor (KNN), Decision Tree (DT), and Support Vector
Machine (SVM), respectively.

Authors in [28] illustrated that the integration of a set of
single algorithms leads to optimum predictions. Stacking or
stacked generalization is a concept proposed by Wolpert [29].
Several ML algorithms define their subjective biases on a
learning set, ultimately filtering out biases. The implementation
of a stacked model involves two kinds of sub-models, base (level
0 classifiers) and metamodels (level 1 or meta). The main logic
of a stacking model lies in using the metaclassifier to predict the
samples by studying the level 0 classifiers. Yan and Han [30]
illustrated the great advantage of using the stacking models.
They have stated that stacking can enhance prediction accuracy
while working with unbalanced datasets. A study [31] was
conducted to emphasize the application of AI-based classifiers.
The researchers in that study explained that ensembles were able
to adapt to the robust behaviors of malicious and normal traffic
effectively. Algorithm 1 shows the entire classification process
implemented in the classification framework involving multiple
classifiers.

B. Data Pre-processing and Feature Selection

Pre-processing was utilized to handle different data found in
the dataset. To eliminate noise, and fix inconsistencies found in
the data, a statistical transformation tool is needed. In our
proposed work, missing data and outliers were compensated for
by making the distribution normal. However, lost values rely on
singular features. While some features can be assigned zero as a
missing value, others are assigned zero as an actual value where
binary data are considered. To maintain such predicaments,
consideration of relevant features that guarantee ideal
expectations is essential. Thus, an integration of hashing and
information gain (IG) was applied to extract the maximum
desirable features. Feature scaling was also utilized to assure that
those features possessing a greater numeric range did not
dominate the ones in smaller numeric ranges. The dataset has
many features but not all appear to be important. Consequently,
only 11 features were chosen from the dataset. The fundamental
features were assigned weights to prioritize them, and only the
best features were extracted. The dimensionality of the features
was reduced using a hashing approach. The chosen features are
direction, eth_src, host, protocol, src, src_port, ssh_version,
tcp_flags, tcp_len, type, and udp_len.

C. Classification

The methodology to actualize the classification system
included the application of different classifiers to resolve the
basic complexities of information found in both packet-based
and flow-based datasets.

Fundamentally, KNN count on a distance function that
calculates the similarity or variance between two network
occurrences found in the datasets under consideration.

The Euclidean distance d(x, y) can be calculated by via the
following equation:

𝑑(𝑥, 𝑦) = √∑ (𝑥𝑖 – 𝑦𝑖)2𝑛
𝑖=1 (1)

where xi is the ith feature of the instance x, while yi is the ith
feature of the instance y, and “n” is the whole number of features
found in the dataset. Let C = C1, C2, C3, . . . C p. There are “p”
labels in the dataset. Let “x” be the new sample to be predicted.
The objective of KNN classifier is to determine “k” vectors that
are close to x. If most of the vectors belong to class Cm, then x
will be assigned the class label Cm.

The radial basis function (RBF) is a preferred kernel function
for many classification problems in ML. The following equation
defines the RBF:

 (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

956 | P a g e

www.ijacsa.thesai.org

Fig. 2. Dionaea Top Captured MD5Binaries.

Fig. 3. Scanning Results for a Malware File.

Fig. 4. Dionaea Top Attacked Ports.

Fig. 5. P0f Top Attacked Ports.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

957 | P a g e

www.ijacsa.thesai.org

Fig. 6. AMUN Top Attacked Ports.

Fig. 7. Snort Top Attacked Ports.

Fig. 8. Most Attacked Ports.

Fig. 9. P0f Top Link Types.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

958 | P a g e

www.ijacsa.thesai.org

Fig. 10. P0f Top Operating Systems.

Fig. 11. Cowrie Top URLs.

Fig. 12. Cowrie Top SSH Versions.

Fig. 13. Cowrie Top Users/Passwords.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

959 | P a g e

www.ijacsa.thesai.org

Fig. 14. Cowrie Top Attack Commands.

Fig. 15. Conpot Captured Top Attack Types.

Fig. 16. Stacking Ensemble Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

960 | P a g e

www.ijacsa.thesai.org

Algorithm 1: Stacking Ensemble Strategy.

Algorithm 1 shows the whole classification process

implemented in the classification framework involving multiple
classifiers.

D. Results and Discussion

The quality of any IDS can be measured by four performance
metrics: true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN).

To accurately value the performance of the proposed
approach and assure the results acquired from the stacked
ensemble model, both binary and multiclass classification
results are given in this section. Table III depicts the results
acquired upon classifying the network instances of the dataset
into either attack or normal. Moreover, to test the predictions and
to assure that the models do not overfit, mean training accuracy
(MTA), mean training precision (MTP), and mean training
recall (MTR) values are also mentioned in Table IV.

The NetFlow traces found in the dataset contain genuine
background network traffic for a substantial duration of ten days.
As per the confusion matrix presented in Table V, all seven
attack types found in the dataset were distinguished perfectly
aptly by the stacking classifier.

The proposed ensemble model could identify the occurrence
of SSH scan attack in the foremost effective way. In order to
show reliable results, performance metrics like precision and
recall were also considered in addition to accuracy. Recall is the
ability of the intrusion detection model to correctly locate the
positive instances, where precision is the model's capability to
locate the percentage of positive instances that were identified
correctly.

Table VI shows that the false alarm rate is extremely least
regarding all attack classes, which is a signal that the general
effectiveness of the proposed ensemble model is very good. The
ROC curve also is shown in Fig. 17.

TABLE III. BINARY CLASSIFICATION RESULTS

Accuracy Precision Recall F1 score AUC FAR (%)

0.94 0.96 0.93 0.95 0.99 5.2

TABLE IV. TRAINING RESULTS OBTAINED BY 10-FOLD CROSS

VALIDATION

Fold

Number

Training

Accuracy

Training

Recall

Training

Precision

1 0.9289 0.9142 0.9488

2 0.9299 0.9129 0.9520

3 0.9239 0.9101 0.9469

4 0.9278 0.9102 0.9500

5 0.9301 0.9109 0.9531

6 0.9319 0.9129 0.9480

7 0.9430 0.9040 0.9481

8 0.9258 0.9089 0.9519

9 0.9290 0.9140 0.9479

10 0.9260 0.9110 0.9509

 MTA: 0.9285 MTR:0.9115 MTP: 0.9497

TABLE V. CONFUSION MATRIX OF ALL THE 7 ATTACK TYPES

 0 1

SSHscan
0 0943204 05809

1 07824 091829

UDPscan
0 0891295 016466

1 018477 0121338

Spam
0 0932187 09632

1 013268 093589

DOS
0 0936949 013311

1 09348 089968

Scan
0 0927854 011710

1 010253 099759

Blacklist
0 0940476 09738

1 08962 089420

DDOS
0 0927785 014583

1 060303 046915

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

961 | P a g e

www.ijacsa.thesai.org

TABLE VI. CLASS-WISE PERFORMANCE

Metri

c

Blac

klist

Spa

m

Sca

n

SSH

scan

UDPs

can

DO

S

DD

OS

Ove

rall

Recal

l

0.99

18

0.98

597

0.98

907

0.990

56

0.979

7128

0.99

012

0.93

897

0.98

09

Preci

sion

0.99

40

0.98

988

0.98

859

0.989

76

0.981

8808

0.98

703

0.98

557

0.98

81

FAR
0.00
54

0.00
62

0.01
02

0.009
3

0.014
7

0.01
17

0.01
30

0.01
01

Accu

racy

0.98

71

0.97

826

0.98

001

0.982

18

0.966

6758

0.97

934

0.92

954

97.1

9%

Fig. 17. ROC Curve.

V. CONCLUSION AND FUTURE WORK

This paper has presented an ensemble methodology based on
a newly generated dataset that was extracted from real network
traffic. The extensive dataset that has been created provides
valuable benefits for training ML models to detect current attack
types efficiently and accurately. This is because it overcomes
most deficiencies of the present available datasets and covers
most of the essential standards with common updated attacks.
Moreover, the produced dataset is fully labeled and includes
different network traffic features that are extracted and
calculated for all normal and intrusion flows.

To utilize the created dataset, we presented an adaptive
stacking ensemble learning model that integrates the advantages
of different ML algorithms for diverse kinds of attacks and
achieves optimal results through ensemble learning. This
combines the predictions of several base estimators (i.e., NN,
KNN, DT, and SVM) to accelerate the processing speed and
improve scalability with a larger amount of network traffic data.
The experimental results have shown that the ensemble model
was able to enhance the classification accuracy, increase the true
positive rate, and decrease the false positive rate. The real
dataset provided can help cybersecurity researchers and firms to
better understand the recent networking environment traffic, and
traits of recent attacks, in order to better detect and prevent them.
It can also help law enforcement and digital forensics teams in
investigating cyberattacks. The proposed ensemble model can
also be utilized with the provided dataset as a training dataset to
detect and classify potential network attacks. This can help
service providers, like cloud service providers, to monitor and
improve their infrastructure.

This work can be expanded in the future to cover more
and/or new attacks by collecting more networking traffic in
different environments such as the Internet of Things networks,
fog, etc. In addition, we can investigate the effectiveness of the
ensemble model against such new networking traffic and
suggest different features and tuning for every type of
environment. More experimental analysis and a complete
comparison with literature would be considered as well.

VI. DATA AVAILABILITY

The dataset generated in this work is publicly available and
can be accessed from this link. https://www.researchgate.net/
publication/356809493_Towards_A_Holistic_Efficient_Stacki
ng_Ensemble_Intrusion_Detection_System_Using_Real_Clou
d-based_Dataset.

REFERENCES

[1] Libert, B., M. Beck, and J. Wind, The network imperative: How to survive
and grow in the age of digital business models. 2016: Harvard Business
Review Press.

[2] Neumann, P.G., Computer-related risks. 1994: Addison-Wesley
Professional.

[3] Demestichas, K., N. Peppes, and T.J.S. Alexakis, Survey on security
threats in agricultural IoT and smart farming. 2020. 20(22): p. 6458.

[4] Cheminod, M., L. Durante, and A.J.I.t.o.i.i. Valenzano, Review of
security issues in industrial networks. 2012. 9(1): p. 277-293.

[5] Gorelik, E., Cloud computing models. 2013, Massachusetts Institute of
Technology.

[6] Haq, N.F., et al., Application of machine learning approaches in intrusion
detection system: a survey. 2015. 4(3): p. 9-18.

[7] Moustafa, N. and J. Slay. The significant features of the UNSW-NB15
and the KDD99 data sets for network intrusion detection systems. in 2015
4th international workshop on building analysis datasets and gathering
experience returns for security (BADGERS). 2015. IEEE.

[8] Shiravi, A., et al., Toward developing a systematic approach to generate
benchmark datasets for intrusion detection. 2012. 31(3): p. 357-374.

[9] Li, Y.-F., et al., A systematic comparison of metamodeling techniques for
simulation optimization in decision support systems. 2010. 10(4): p.
1257-1273.

[10] Khraisat, A., et al., Survey of intrusion detection systems: techniques,
datasets and challenges. 2019. 2(1): p. 1-22.

[11] Xie, H., K. Lv, and C. Hu. An effective method to generate simulated
attack data based on generative adversarial nets. in 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). 2018. IEEE.

[12] Grajeda, C., F. Breitinger, and I.J.D.I. Baggili, Availability of datasets for
digital forensics–and what is missing. 2017. 22: p. S94-S105.

[13] Devi, M.G. and M.J. Nene. Scarce Attack Datasets and Experimental
Dataset Generation. in 2018 Second International Conference on
Electronics, Communication and Aerospace Technology (ICECA). 2018.
IEEE.

[14] Kholidy, H.A. and F. Baiardi. Cidd: A cloud intrusion detection dataset
for cloud computing and masquerade attacks. in 2012 Ninth International
Conference on Information Technology-New Generations. 2012. IEEE.

[15] Nazarov, A., A. Sychev, and I. Voronkov. The Role of Datasets when
Building Next Generation Intrusion Detection Systems. in 2019 Wave
Electronics and its Application in Information and Telecommunication
Systems (WECONF). 2019. IEEE.

[16] Dasgupta, D., et al., Machine learning in cybersecurity: a comprehensive
survey. 2020: p. 1548512920951275.

[17] Shalev-Shwartz, S. and S. Ben-David, Understanding machine learning:
From theory to algorithms. 2014: Cambridge university press.

[18] Jordan, M.I. and T.M.J.S. Mitchell, Machine learning: Trends,
perspectives, and prospects. 2015. 349(6245): p. 255-260.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

962 | P a g e

www.ijacsa.thesai.org

[19] Fayyad, U.M. and K.B.J.M.l. Irani, On the handling of continuous-valued
attributes in decision tree generation. 1992. 8(1): p. 87-102.

[20] Diplaris, S., et al. Protein classification with multiple algorithms. in
Panhellenic Conference on Informatics. 2005. Springer.

[21] Oza, N.C. and K.J.I.f. Tumer, Classifier ensembles: Select real-world
applications. 2008. 9(1): p. 4-20.

[22] Chand, N., et al. A comparative analysis of SVM and its stacking with
other classification algorithm for intrusion detection. in 2016
International Conference on Advances in Computing, Communication, &
Automation (ICACCA)(Spring). 2016. IEEE.

[23] Perkins, R.C. and C.J. Howell, Honeypots for Cybercrime Research, in
Researching Cybercrimes. 2021, Springer. p. 233-261.

[24] Spitzner, L. Honeypots: Catching the insider threat. in 19th Annual
Computer Security Applications Conference, 2003. Proceedings. 2003.
IEEE.

[25] Almotairi, S., et al. A technique for detecting new attacks in low-
interaction honeypot traffic. in 2009 Fourth International Conference on
Internet Monitoring and Protection. 2009. IEEE.

[26] Nicomette, V., et al., Set-up and deployment of a high-interaction
honeypot: experiment and lessons learned. 2011. 7(2): p. 143-157.

[27] Wafi, H., et al. Implementation of a modern security systems honeypot
honey network on wireless networks. in 2017 International Young
Engineers Forum (YEF-ECE). 2017. IEEE.

[28] Van der Laan, M.J., et al., Super learner. 2007. 6(1).

[29] Wolpert, D.H.J.N.n., Stacked generalization. 1992. 5(2): p. 241-259.

[30] Yan, J. and S.J.M.P.i.E. Han, Classifying imbalanced data sets by a novel
re-sample and cost-sensitive stacked generalization method. 2018. 2018.

[31] Kumar, G., K.J.A.C.I. Kumar, and S. Computing, The use of artificial-
intelligence-based ensembles for intrusion detection: a review. 2012.
2012.

