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Abstract—Deep learning has recently appeared as one of the 

best reliable approaches for forecasting time series. Even though 

there are numerous data-driven models for flood prediction, most 

studies focus on prediction using a single flood variable. The 

creation of various data-driven models may require unfeasible 

computing resources when estimating multiple flood variables. 

Furthermore, the trends of several flood variables can only be 

revealed by analysing long-term historical observations, which 

conventional data-driven models do not adequately support. This 

study proposed a time series model with layer normalization and 

Leaky ReLU activation function in multivariable long-term short 

memory (LSTM), bidirectional long-term short memory (BI-

LSTM) and deep recurrent neural network (DRNN). The 

proposed models were trained and evaluated by using the sensory 

historical data of river water level and rainfall in the east coast 

state of Malaysia. It were then, compared to the other six deep 

learning models. In terms of prediction accuracy, the experimental 

results also demonstrated that the deep recurrent neural network 

model with layer normalization and Leaky ReLU activation 

function performed better than other models. 

Keywords—Deep learning; recurrent neural network; long 

short-term memory; flood prediction; layer normalization 

I. INTRODUCTION 

Due to its impact on daily life, flooding is one of the most 
pressing issues that Malaysia has been dealing with recently. 
Floods are a type of natural geohazard that typically occur 
because of consistently heavy rain. This natural phenomenon 
causes massive damage to the country’s property and Gross 
Domestic Product (GDP). According to Ashizawa et al. [1], the 
entire GDP of Japan impacted by flood damage is at least 1% 
of the overall GDP of the nation. Tiggeloven et al. [2] stated 
that the top 15 countries, such as India, Bangladesh, China, and 
others, are vulnerable to flood occurrence at the present day and 
could be worst if no action is taken. Indeed, floods can cause a 
massive amount of money to repair the damage. Hence, flood 
occurrence can affect every country, including Malaysia. Shaari 
et al., [3] stated that from 2006 to 2010, there was nearly 1 
million USD damage caused by floods which affected the 
nation's economic growth. There are many classifications of 
floods namely coastal floods, flash floods, ponding (or pluvial 
flooding), and river (or fluvial) floods [4]. Floods often occur, 
especially in Southeast Asia, including our country, Malaysia. 
The general types of flooding in Malaysia include riverbank 
overflow, flash floods, high tides [5], and monsoon floods [6]. 

Floods are classified as natural disasters in Malaysia due to 
the monsoon season. In Malaysia, there are two distinct 
monsoon seasons: the Northeast Monsoon, which occurs from 
November to March, and the Southwest Monsoon, which 
occurs from late May to September. The Northeast Monsoon 

can bring heavy rainfall. Due to the extensive network of rivers 
connecting several Malaysian states and the country's poor 
drainage, floods are expected in Malaysia during the monsoon 
season, especially on the West Coast and in Borneo. The 
populous region is flooded as a result of the river level rising 
significantly as a consequence of these strong rains. As a result, 
people are compelled to temporarily relocate to several relief. 
Floods halt economic progress since crops and animals are 
destroyed. Romali et al, [7] stated that Malaysian financial 
losses are estimated at nearly MYR 915 million annually on an 
average due to floods. 

According to Zerara [8], time series is a statistical method 
that can be applied in a broad range of longitudinal research 
designs. Typically, this time series design involves a single 
subject that is measured repeatedly at regular intervals over a 
large number of observations. Time series forecasting aims to 
predict an outcome based on the collection of historical data 
that can be used to build a quantitative model that explains the 
variables under consideration [9]. For many years, time series 
forecasting has been an important research domain in 
meteorology [10], biology [11], and econometrics [12]. 
Generally, time series can have four characteristics: trends, 
seasonality, cycles, and noise [13]. Time series forecasting 
algorithms perform well with data that includes a time 
dimension and one or more properties [14]. 

Time series have been frequently utilized in flood 
forecasting and have shown excellent results for the global 
community [15]. Furthermore, according to Shen et al. [16], 
modern time series can be combined with deep learning models 
including Recurrent Neural Network (RNN), Artificial Neural 
Network (ANN), Long Short Term Memory (LSTM), and other 
models. However, the existing flood forecasting methods, for 
example, frequency analysis, rational method, and empirical 
formula, are not deemed suitable for a wide area. Those 
methods can only cover a small river flow area [17]. For 
example, Faruq et al. [18] used an LSTM model to predict the 
flood by using a Klang River lever dataset. Another study [19] 
used the ANN model to predict floods by using the Kelantan 
river lever and rainfall dataset in separate models. The LSTM 
model performs exceptionally well when the modelling has a 
large amount of time series data. Furthermore, according to the 
literature, the LSTM model outperforms the RNN in the 
number of previous time steps that can be considered. 
Additionally, Siami-Namini & Namin, [20] demonstrated that 
the LSTM model could predict time series much more accurate 
than the Autoregressive Integrated Moving Average (ARIMA) 
model in some cases. As a result, the LSTM model appears to 
be a likely top performer; although the study employs stock 
time series, it still has parallels to the current study since it 
focuses on time series forecasting. According to Jaiswal & Das 
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[21], the ANN model works best with nonlinear problems 
whereas Šiljić Tomić et [22] stated that the ANN model can 
work with both nonlinear and linear problems. According to 
Y.f. Zhang et al. [23], despite being the most significant 
advantage of time series, long-term dependencies remain a 
considerable challenge. Besides, one of the most common 
drawbacks of the LSTM model and BI-LSTM model is the high 
computational cost during training procedures [24], where 
potential time series forecasting in floods has yet to be 
unfolded. Despite advances in developing models based on 
RNN, these models remain challenging to scale to long data 
sequences. Dhunny et al. [25] have proven that an ANN model 
can predict the flood water level well within 24 hours ahead of 
time by using the data from rainfall and present river level data. 

In this study, the flood was predicted for one day ahead. 

The rest of this paper is structured as follows. Section II 
describes the related work and literature for this study. Section 
III presents the proposed models for flood prediction. Section 
IV covers the experimental procedure for the case study 
whereas the findings are discussed in Section V. Finally, 
Section VI concludes the paper, and a discussion of future 
works is included in Section VII. 

II. RELATED WORK 

Artificial neural networks, often known as deep learning, 
are machine learning algorithms that have been influenced by 
the structure and operation of the human brain. Deep learning 
has dominated many uses and has proven to be superior to 
traditional machine learning algorithms because it can produce 
faster and more accurate results [26]. 

Deep learning enables computational models comprising 
multiple hidden layers of artificial neural networks with 
multiple linear and nonlinear transformations that learn the data 
representations with multiple abstraction levels [27]. In deep 
learning, multiple layers of nonlinear processing units perform 
feature extraction transformation in the deep learning model. 
Every layer in the previous layer input is used as its output and 
it is used in both supervised and unsupervised methods for 
classification problems and pattern analysis problems [28]. The 
characteristic of neural networks can be seen in Fig. 1. 

 

Fig. 1. A Characteristic of Neural Network. 

The human brain structure inspires the neural network 
architecture. Our brains can be trained to recognise patterns and 
classify various types of information. The possibility of 
detecting and displaying the correct answer increases with each 
layer of a neural network, which may be thought of as a kind of 
filter that operates from coarse to fine. 

The neural network can begin to identify trends across the 
many samples it processes and classify data based on their 
similarities by using several layers of functions to decompose 
unstructured data into data points and information that a 
computer can use. 

After processing a large number of structured data training 
samples, the algorithm has created a model of which elements 
in data and their relationships must be taken into account when 
determining whether structured data is present or not. The 
neural network compares new data points to its model based on 
all previous evaluations when evaluating new data. The model 
is then used to determine whether the data contains specific 
data. 

The layers of functions that are present between the input 
and output in this example serve as a representation of deep 
learning. The interaction across layers is marginally enhanced 
in the following Fig. 2, however, the connections between 
nodes or artificial neurons might vary significantly. 

A. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks can be 
considered as recurrent neural networks that are modified to 
improve from the RNN model with memory recall function. 
The LSTM classifier is ideal for processing, classifying, and 
forecasting time series with unknown time lags. 
Backpropagation is applied when training the model. There are 
three gates in the LSTM model as shown in Fig. 3. 

 

Fig. 2. Interaction between Layers. 
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Fig. 3. LSTM Gates [29]. 

Forget gate - it analyses the previous state (ht-1) and the 
input content (Xt) and returns the value ranging between 0 to 1 
for each number in the cell state Ct-1 by deciding through the 
sigmoid function. The forget gate equation of [30] can be 
referred to as (1). 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)            (1) 

Input gate - values from the input are applied to adjust the 
memory. The sigmoid function determines the value between 0 
and 1, allowing through. The tanh function gives weightage to 
the values and then passes it, specifying their significant level 
ranging between -1 and 1. The input gate equation of [30] can 
be referred to as (2). 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ⁡(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡⁡– 1 + 𝑖𝑡 × 𝐶´𝑡            (2) 

Output gate – to determine the output, the memory and input 
of the block are applied. The sigmoid function determines the 
value between 0 and 1, allowing through. The tanh function 
gives weightage to the values and then passes it, specifying 
their significant level ranging between -1 to 1 and multiplying 
it by the sigmoid output. The forget gate equation of [30] can 
be referred to as (3). 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh⁡(𝐶𝑡)             (3) 

B. Recurrent Neural Network 

A recurrent neural network (RNN) is a simplified 
feedforward neural network with internal memory as seen in 
Fig. 4. RNN is recurrent because it works with the same 
function for each input data, and the current input as output is 
dependent on the previous computation. The output is 
produced, replicated, and then returned to the recurrent 
network. When making a decision, the current input and output 
might be seen as learned from the past. 

By taking advantage of the internal state (memory) that the 
RNN model has, it can process the input sequence that is 
different from typical feedforward neural networks. As a result, 
the RNN model is suitable for speech recognition, 
unsegmented, or handwriting recognition tasks. However, there 
is one drawback in the RNN model: a vanishing gradient 
problem when dealing with long sequence data. The inputs are 

completely independent of one another for other neural 
networks. On the other hand, all the inputs are connected in 
RNN. 

 

Fig. 4. An Unrolled RNN [29]. 

The X (0) is taken from the input sequence at first, then the 
output h (0), with X (1), as the input for the next step. The h (0) 
and X (1) are the input for the next step. Similarly, h (1) from 
the previous step becomes the input for the next step of X (2). 

The formula equation of [31] can be referred to as (4) and 
this is the current state of the equation. 

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡)              (4) 

Activation Function is applied: 

ℎ𝑡 = tanh⁡(𝑊ℎℎℎ𝑡−1 +𝑊𝑥ℎ𝑋𝑡)            (5) 

The equation of [31] can be referred to as (5), in which W 
is the weight, h is the single hidden vector, Whh is the weight 
at the previous hidden state, Whx is the weight at the current 
input state, and tanh is the activation function that applies a non-
linearity squash of the activations to the range between [-1.1]. 

Output: 

𝑦𝑡 = 𝑊hy ℎ𝑡              (6) 

The equation of [31] can be referred to as (6), in which the 
output state is Yt. The weight in the output state is Why. 

Flood forecasting is a tool that allows flood control 
management to predict when local flooding is likely to occur 
with a high degree of accuracy. The river basin or watershed 
size can indicate the water levels and flow rates for intervals 
ranging from a few hours to days ahead; forecasted streamflow 
and precipitation data are used in the streamflow routing model 
and rainfall runoff. Flood forecasting can also use precipitation 
forecasts to expand the available lead time. 

Flood forecasting is a crucial component of a flood warning 
system. The difference between flood forecasting and a flood 
warning is that flood forecasting produces a set of forecast time 
that profiles the river levels or flows channel at different 
locations. In contrast, "flood warning" refers to using forecasts 
to inform about flood warnings. A popular method applied for 
flood forecasting is hydrological modelling because this model 
is a simplified representation of a real-world system [32]. 
Although this model is good, the downside is that it is a scaling 
problem that faces a scale area parameter [33]. 

The existing flood forecasting method cannot be used with 
a traditional database based on a single source as the main data 
[34] and it requires a lot of data. With the current technology, 
flood prediction is more robust, and real-time flood forecasting 
in the provincial area can be accomplished quickly by utilising 
the technology of artificial intelligence (AI) and fourth 
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industrial technology (4IR). An effective real-time flood 
forecasting model may be helpful for disaster prevention, 
offering an advanced alert and mitigating the damage from the 
flood occurrence [35]. Flood forecasting has been improved by 
utilising deep learning models such as LSTM, RNN, and many 
others [18]. Many studies have applied a deep learning model 
in their study to predict flood occurrence and are proven to be 
an informative and accurate model as shown in Table I. Hence, 
for the deep learning model, there is always room for 
improvement with the use of uncertain data like flood data with 
a nonlinear characteristic. However, there are very few studies 
that build a deep learning model for flood prediction using 
multivariate data. In addition, the majority of past research has 
only used one variable or input as their main source of 
information to forecast the flood. In addition, the previous 
research already demonstrates a high level of accuracy. 
However, the majority of these studies utilize basic deep 
learning models without any additional characteristics, which 
can be seen as a discrepancy between the studies. The proposed 
models aim to get a dependable and more accurate prediction 
model while reducing the limitations of the previous study by 
using an additional characteristic as described in Section III. As 
previous studies are concerned with using a single data as 
primary data, this study proposed multivariate data as primary 
data to determine a correlation between several variables 
simultaneously and a deeper understanding of how the 
multivariate data relate to real-world scenarios like flood 
occurrence. 

TABLE I. LITERATURE SUMMARY 

Models 
Title (Author 

and Year) 
Goal Country 

(LSTM) 

and Radial 

basis 
function 

neural 

network 
(RBFNN) 

Deep Learning-

Based Forecast 

and Warning of 

Floods in Klang 
River, Malaysia 

[18] 

Forecasting the river 

water level in the 

Klang River basin, 
Malaysia. 

Malaysia 

LSTM and 

RNN 

Application of 

Long Short-Term 

Memory (LSTM) 

neural network for 
flood forecasting 

[36] 

Proposing an effective 

approach to flood 
forecasting based on 

the data-driven 

method. 

Vietnam 

ANN 

Flood Prediction 

through Artificial 
Neural Networks: 

A case study in 

Goslar [37] 

Establishing, training 

and evaluating a 

neural network for the 

detection of flood 

hazards and concrete 
water levels. 

Germany 

LSTM 

Flood Prediction 

and Uncertainty 
Estimation Using 

Deep Learning 

[38] 

Exploring the deep 

learning model for 

predicting gauge 

height and evaluating 
the associated 

uncertainty 

United 

States of 
America 

LSTM 

Flash flood 

forecasting based 
on long short-term 

memory networks 

[39] 

Forecasting a 

model based on 

(LSTM) for flash 
flood forecasting. 

China 

ARIMA 

and LSTM 
Forecasting 

Economic And 

Investigating which 

forecasting methods 
Not stated 

Financial TIme 

Series: ARIMA 
Vs LSTM [20] 

offer the best 

predictions with the 

lower forecast errors 

and higher accuracy of 

forecasts 

LSTM and 

TCN 

An Empirical 

Evaluation of 
Generic 

Convolutional and 

Recurrent 
Networks for 

Sequence 

Modelling 

[40] 

Raising issues of 

whether these 

successes of 
convolutional 

sequence modelling 

are confined to 
specific application 

domains or whether a 

broader 
reconsideration of the 

association between 

sequence processing 
and recurrent 

networks are in order. 

Not stated 

LSTM and 

TCN 

Temporal 

Convolutional 

Networks Applied 

to Energy-related 
Time Series 

Forecasting 

[41] 

Proposing a TCN-

based deep learning 

model to improve the 
predictive 

performance in energy 

demand forecasting 

Spain 

III. PROPOSED MODELS 

The proposed enhanced models for flood prediction were 
formulated to increase the prediction accuracy. In this study two 
methods in the models were introduced as follows: 

A. Layer Normalization 

Inspired by the results of Batch Normalization, the Layer 
Normalization method is proposed by normalizing activations 
along the feature direction rather than the mini-batch direction. 
Hence, overcoming the disadvantages of batch normalization 
by eliminating the reliance on batches and making it easier to 
apply for RNN. Each activation feature is normalized to zero 
mean and unit variance through Layer Normalization. 

In Batch Normalization, the statistics are computed across 
the batch, as for the spatial dimensions. In contrast, Layer 
Normalization (LN) computes statistics (mean and variance) 
across all channels and spatial dimensions. As a result, the 
statistics are batch independent. This layer was initially 
designed to handle vectors (mainly the RNN outputs). 

Layer Normalization visually comprehends this as shown in 
Fig. 5: 

 

Fig. 5. An Illustration of Layer Normalization [42]. 
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When dealing with vectors with a batch size of NN, the 2D 
tensors of shape R N times K RNK. 

Normalize with the mean and variance of each vector 
because it does not depend on the batch and its statistics. The 
normalize equation of [43] can be referred to as (7). 

𝜇𝑛 =
1

𝐾
∑  𝐾
𝑘=1 𝑥𝑛𝑘

𝜎𝑛
2 =

1

𝐾

∑  𝐾
𝑘=1 (𝑥𝑛𝑘 − 𝜇𝑛)

2

�̂�𝑛𝑘 =
𝑥𝑛𝑘−𝜇𝑛

√𝜎𝑛
2+𝜖

, �̂�𝑛𝑘 ∈ 𝑅

LN𝛾,𝛽(𝑥𝑛) = 𝛾�̂�𝑛 + 𝛽, 𝑥𝑛 ∈ 𝑅𝐾

            (7) 

When generalizing to 4D feature map tensors, it takes the 
mean across all channels and spatial dimensions, as shown 
below: The equation below based on [43] can be referred to as 
(8). 

𝐿𝑁(𝑥) = 𝛾 (
𝑥−𝜇(𝑥)

𝜎(𝑥)
) + 𝛽

𝜇𝑛(𝑥) =
1

𝐶𝐻𝑊
∑  𝐶
𝑐=1 ∑  𝐻

ℎ=1 ∑  𝑊
𝑤=1 𝑥𝑛𝑐ℎ𝑤

𝜎𝑛(𝑥) = √
1

𝐶𝐻𝑊
∑  𝐶
𝑐=1 ∑  𝐻

ℎ=1 ∑  𝑊
𝑤=1 (𝑥𝑛𝑐ℎ𝑤 − 𝜇𝑛(𝑥))

2

          (8) 

B. Leaky ReLU 

To replace its saturated counterpart of Sigmoid or Tanh, the 
modern deep learning system employs a non-saturated 
activation function such as ReLU and Leaky ReLU. It solves 
the "exploding/vanishing gradient" issue and speeds up 
convergence. 

ReLU reduces the negative component to zero while 
keeping the positive component. It has the desirable property of 
being sparse in activations after passing through ReLU. The 
equation of [44] can be referred to as (9). 

𝑦𝑖 = {
𝑥𝑖  if 𝑥𝑖 ≥ 0
0  if 𝑥𝑖 < 0

             (9) 

The gradient-based optimization algorithm will not change 
the weights of a unit that does not initially activate. Because the 
gradient is 0 when the unit is inactive, ReLU has a disadvantage 
during optimization. 

If the neurons are not activated at the start of the ReLU, it is 
possible to end up with a neural network that never learns. The 
learning rate is slow when training ReLU networks with 
constant 0 gradients. The equation of [44] can be referred to as 
(10). 

𝑦𝑖 = {
𝑥𝑖 ⁡⁡ if 𝑥𝑖 ≥ 0
𝑥𝑖

𝑎𝑖
⁡⁡ if 𝑥𝑖 < 0           (10) 

Leaky ReLU adds a slight negative slope to the ReLU to 
sustain and keep the weight updates alive throughout the 
propagation process. 

The alpha parameter was introduced to address the ReLUs 
dead neuron issues, ensuring that gradients are never zero 
during training. 

The ReLU function and the Leaky ReLU function are nearly 
identical as seen in Fig. 6. During optimization, the Leaky 
ReLU foregoes hard-zero sparsity in exchange for a potentially 
more robust gradient. Alpha is a constant value (float >= 0.). 

 

Fig. 6. ReLU vs Leaky ReLU [45]. 

Unlike the ReLU function, the Leaky ReLU has a non-zero 
gradient across its entire domain. The Leaky ReLU activation 
function is only available in the form of layers, not activations. 

IV. EXPERIMENTAL PROCEDURE 

As shown in Fig. 7, the experiment design started with data 
collection and ended with a model evaluation. 

A. Data Collection 

A dataset of river level and rainfall at Rantau Panjang, Pasir 
Mas in Kelantan from 2013 until 2017 was used, as shown in 
Fig. 8 and Fig. 9. The data of these rivers were recorded every 
year with flood occurrence [46]. The data were provided by the 
Department of Irrigation and Drainage (DID) Malaysia, and the 
features variable is shown in Table II. The river at Pasir Mas 
station collected river level (m) and rainfall (mm) daily. This 
dataset contained one measurement per day. The dependent 
variable was observed as a single daily value; hence, these 
cloud values were summed, accomplished by taking the 
average between 00:00 and 24:00 as each day's value. Because 
there were fewer and more irregular observations, the cloud 
base was summarised by averaging an entire day. 

The dataset was imported into pandas by using the read 
csv() function and saved in the Data Frame named "df.". 
Because the dataset was in tabular form, it was automatically 
converted into a Data Frame when working with tabular data in 
Pandas. In Python, a Data Frame is a two-dimensional, mutable 
data structure. It is made up of rows and columns, much like an 
excel sheet. 

B. Data Cleaning 

Data cleaning or filtering's main function was to correct (or 
remove) and detect inaccurate data in the dataset. The task 
involves identifying inaccurate, incomplete, incorrect or 
irrelevant parts of the data and then deleting the noise data, and 
replacing or modifying them [48]. 
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Fig. 7. Experiment Design. 

 

Fig. 8. Kelantan River Map [47].  

Fig. 9. Average Rainfall in Pasir Mas [46]. 
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TABLE II. SUMMARY OF VARIABLE DATA COLLECTION 

Variable Unit Description 

Date Date/ dd/mm/yyyy 
Describe the current 

date 

River Stage Meter/m 
Describe the river 

level during the day 

Rainfall Millimetres/mm 
Describe the rain 
during the day 

Data cleaning is the most crucial task because having 
incorrect or poor-quality data can harm processes and analysis. 
Clean data boosts overall productivity and allows for the 
utilization of the highest quality data when making predictions. 

First, the river of Pasir Mas dataset needed to be checked to 
determine whether the dataset had missing or null values. After 
reviewing the dataset, a missing or null value in this situation 
needed to be dealt with through two options: a) removed a row 
with a missing value; b) replaced the missing value by using 
one of the most fundamental methods namely linear 
interpolation method. The formula is as follows: 

𝑦 = 𝑦𝑎 + (𝑦𝑏 − 𝑦𝑎)
𝑥−𝑥𝑎

𝑥𝑏−𝑥𝑎
 at the point (𝑥, 𝑦)

𝑦−𝑦𝑎

𝑦𝑏−𝑦𝑎
=

𝑥−𝑥𝑎

𝑥𝑏−𝑥𝑎
𝑦−𝑦𝑎

𝑥−𝑥𝑎
=

𝑦𝑏−𝑦𝑎

𝑥𝑏−𝑥𝑎

         (11) 

The equation of [49] can be referred to as (11), the new line 
slope between (xa, ya) and (x,y) is the same as the slope of the 
line between (xa,yb) and (xb,yb). The advantage of linear 
interpolation is that it is easy and fast to be applied, but its 
accuracy is doubtful. 

The river of Rantau Panjang Pasir Mas station had ten 
missing values in the river level variable because of the 
existence of the same reading of recording on certain days. 
Handling missing values was done by the python pandas. 

The interpolate () function fills NA values or missing 
values in the series or data frame. Rather than hard-coding the 
missing value, various interpolation, and convenient techniques 
could be used to fill the missing value. 

C. Dataset Splitting 

The dataset needed to be divided into training and testing 
sets to avoid any phenomenon such as overfitting. Besides, the 
size of the datasets as well as the train/test split ratios can 
significantly impact the model output, thus, affecting 
classification performance [50]. For example, if there are 
patterns in the training and testing set that do not exist in real-
world data, the model performs poorly even though it cannot be 
seen in the performance evaluation. Dataset splitting is a 
practice considered indispensable and highly necessary to 
eliminate or reduce bias in training data for prediction models 
[51]. 

Based on the Rantau Panjang river dataset, 80% were 
training data, and the remaining 20% were testing data that 
would be optimally splitting the training and testing the dataset. 

D. Data Transformation 

Normalization is a scaling, mapping technique, or pre-
processing stage. For prediction or forecasting purposes, it can 
be useful when it distinguishes a new range from an existing 
one. 

Normalization is a transformation process that utilises a 
standard scale to produce numerically and comparably input 
data. After collecting input data, the data should perform some 
pre-processing to make it worthwhile for decision modelling 
[52]. As previously stated, this pre-processing should take three 
critical factors into account: 1) removed missing values from 
the data; 2) converted all non-numeric data to numerical data to 
allow for normalization (standardisation); 3) Determined how 
to select a suitable normalization technique to ensure a standard 
scale, appropriate modelling representation (benefit or cost 
criteria), and aggregation comparability to obtain alternative 
ratings. 

After the data cleaning process, river stage and rainfall data 
underwent a min-max scaler to get normalized data. Min-max 
scaler scaled the data between the minimum and maximum 
value of the data that ended up ranging between 0 and 1. 
Another function for normalizing the data was to speed up the 
learning time and performance of the model. The data were 
scaled down to a range between [0, 1] or [-1, 1]. The method's 
equation of [14] can be referred to as (12): 

𝑎norm =
( high − low )∗(𝑎−𝑚𝑖𝑛𝐴)

𝑚𝑎𝑥𝐴−𝑚𝑖𝑛𝐴
          (12) 

min A is the smallest value, and max A is the largest value 
of attribute A. 

E. Model Evaluation 

1) MAE stands for Mean Absolute Error, which is 

1

𝑛
∑  𝑛
1 |𝑦𝑖 − �̂�𝑖|            (13) 

Outliers are given less weight in this method, which is not 
sensitive to outliers. The equation of [53] can be referred to as 
(13). 

2) MAPE stands for Mean Absolute Percentage Error, 

which is 

1

𝑛
∑  𝑛
1 |𝑦𝑖 − �̂�𝑖|            (14) 

MAE is similar, but true observation is used to normalise it. 
The disadvantage is that this metric becomes problematic when 
true observation is zero. The equation of [53] can be referred to 
as (14). 

3) MSE stands for Mean Squared Error, which is 

1

𝑛
∑  𝜋
𝑖=1 (𝑌𝑖 − �̂�𝑖)

2
            (15) 

MSE is a combination of variance of the prediction and 
measurement of bias, i.e., MSE = Bias² + variance. The 
equation of [53] can be referred to as (15). 

4) RMSE stands for Root Mean Squared Error, which is 

√
1

𝑛
∑  𝑛
𝑖=1 (𝑌𝑖 − �̂�𝑖)

2
            (16) 
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It measures the standard deviation of residuals. The 
equation of [53] can be referred to as (16). 

5) R2 stands for coefficient of determination, which is 

1 −
∑  𝑛
𝑖=1 (�̂�𝑖−𝑦𝑖)

2

∑  𝑛
𝑖=1 (𝑦𝑖−�̅�𝑖)

2            (17) 

Representing the coefficient indicates how well the values 
fit in comparison to the original values. The equation of [54] 
can be referred to as (17). 

V. RESULTS AND DISCUSSIONS 

The results between the proposed models and original 
models that share the same hyperparameter setting were 
compared as shown in Table III. 

In the present study, the proposed models were evaluated 
and compared with the original RNN model proposed by 
Hochreiter and Schmidhuber [55], the LSTM model proposed 
by Rumelhart & McClelland [56] and the BI-LSTM model 
proposed by Graves & Schmidhuber [57] to get a better 
understanding of whether the proposed models could produce 
better results [58][59][60]. The proposed models had an extra 
layer called layer normalization and one activation function is 
known as Leaky ReLU. In contrast, the original models had a 
standard layer and used a sigmoid as its activation function. 
Each deep learning model needs to be compared to the proposed 
and original models to ascertain which deep learning models 
perform better [61][62]. 

TABLE III. COMPARISON RESULT 

Models MSE  MAE  RSME 
MAPE 

(%)  R2 

Training 

Time 

DRNN 

+ LN + 

Leaky 

ReLU 

0.107 0.233 0.327 4.293 
0.946 

1.08 

minute 

DRNN 0.118 0.242 0.343 4.344 
0.94 

0.38 

second 

LSTM 

+ LN + 

Leaky 

ReLU 

0.125 0.231 0.353 4.117 
0.936 

1.33 

minute 

LSTM 0.122 0.236 0.349 4.296 
0.931 

1.32 

minute 

BI-

LSTM 

+ LN + 

Leaky 

ReLU 

0.131 0.258 0.362 4.751 
0.933 

3.33 

minute 

BI-

LSTM 
0.123 0.243 0.351 4.432 

0.937 

2.39 

minute 

Table III shows that the proposed models produced a better 
accuracy result: for example, the Deep Recurrent Neural 
Network (DRNN) + LN + Leaky ReLU model produced the 
lowest MSE among other models whereas the BI-LSTM + LN 
+ Leaky ReLU model produced the highest MSE. For MAE, 

the LSTM + LN + Leaky ReLU model produced the lowest 
error and the BI-LSTM + LN + Leaky ReLU model produced 
the highest error among other models. For RSME, the DRNN + 
LN + Leaky ReLU model produced the lowest error whereas 
the BI-LSTM + LN + Leaky ReLU model produced the highest 
error. For MAPE, the interpretation was in percentage mode 
and the lower is better, where the LSTM + LN + Leaky ReLU 
model produced the lowest MAPE, and the BI-LSTM + LN + 
Leaky ReLU model produced the highest MAPE. For R2, the 
higher the interpretation is better, in which the DRNN + LN + 
Leaky ReLU model produced the highest R2 whereas the 
LSTM model produced the lowest R2. 

Comparing the proposed models with the original models, 
the DRNN + LN + Leaky ReLU model produced a low error in 
terms of MSE, MAE, RSME, MAPE and R2 which indicated 
that the proposed models were good in making a prediction, but 
the drawback was that it took longer time to train the data. For 
the LSTM model, the LSTM + LN + Leaky ReLU model 
produced the lowest error in terms of MAE, MAPE and R2 
which was slightly better than the LSTM model. For the BI-
LSTM model, the BI-LSTM produced better results compared 
to the BI-LSTM + LN + Leaky ReLU model in terms of MSE, 
MAE, RSME, MAPE, R2 and training time. The proposed 
model could not work well with the BI-LSTM model. 

Additionally, the BI-LSTM model required more training 
time compared to the other models. In addition to performance 
evaluation, training time must also be taken into account. For 
instance, it is clear that the proposed models needed more 
training time than the original model because it had an 
additional layer called the normalization layer. 

In literature, the LSTM model is regarded as the best 
performer compared to other models developed with dependent 
variables. However, in this case, the DRNN model performance 
is better compared to other models. This result can be seen in 
Table III, in which the DRNN + LN + Leaky ReLU model 
outperform other models in terms of the MSE, RSME, R2 and 
training time. The LSTM model shows the second best among 
other deep learning models with the lowest MAE and MAPE 
with the LSTM + LN + Leaky ReLU model. The BI-LSTM 
model shows the lowest accuracy among other models, one 
thing needs to be highlighted the result has also shown that the 
accuracy among the models is about the same, the differences 
are just slight, and there is a considerable gap between them. 
The DRNN model is the first place in accuracy, followed by the 
LSTM model and the lowest is the BI-LSTM model. Because 
the LSTM framework uses backpropagation and a gate to train 
the model, it takes more time to train than the DRNN model, 
which uses sequential while training the data and has no 
backpropagation and gate in the architecture. The DRNN model 
ranks lowest in terms of training time, while the LSTM model 
comes in second. Contrarily, the BI-LSTM model necessitates 
that the training data move in both past and forward directions 
to train the data, which is why the BI-LSTM model takes longer 
to train the data. 

Based on the result in Table III, only the proposed models 
with layer normalization and Leaky ReLU are deemed suitable 
for flood prediction with minimal missing value in the data 
usage which results in the lowest minimum error and good 
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accuracy. The missing value in the data can be filled by using 
the linear interpolation method to get the best possible clean 
data. The authorities may use these models as an alternative to 
anticipate flooding and make enough preparations prior to its 
occurrence. 

VI. CONCLUSION 

In conclusion, the DRNN model performs relatively well 
compared to the LSTM and BI-LSTM models with the used 
dataset. From the literature, the LSTM architecture needs 
requirements for backpropagation and a gate to train the model. 
Therefore, the LSTM model is marginally more complicated 
than the DRNN model. Meanwhile, the BI-LSTM model 
performs with somewhat lower accuracy but is still able to 
deliver a good outcome. Additionally, the BI-LSTM model 
requires the training data to move backwards and forward in 
both directions which increases the training time needed. Even 
though the performance of proposed models performs well, 
there are still many improvements that can be made using deep 
learning approaches. 

VII. FUTURE WORK 

For future work, it is suggested that additional experiments 
be conducted by combining a statistic model with the pre-
processing models to ascertain how the combined model 
performs. Currently, these models produce a good accuracy for 
one day ahead but for future work these models need to be tuned 
to produce a good accuracy for multi-days ahead. 
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