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Abstract—The concentrate process is the most sensitive in 

mineral processing plants (MPP), and the optimization of the 

process based on intelligent computational models (machine 

learning for recovery percentage modelling) can offer significant 

savings for the plant. Recent theoretical developments have 

revealed that many of the parameters commonly assumed as 

constants in gravity concentration modelling have a dynamic 

nature; however, there still lacks a universal way to model these 

factors accurately. This paper aims to understand the model 

effect of operational parameters of a jig (gravimetric 

concentrator) on the recovery percentage of the interest mineral 

(gold) through empirical modeling.  The recovery percentage of 

mineral particles in a vibrated bed of big particles is studied by 

experimental data. The data used for the modelling were from 

experimental test in a pilot-scale jig supplemented by a two-

month field sampling campaign for collecting 151 tests varying 

the most significant parameters (amplitude and frequency of 

pulsation, water flow, height of the artificial porous bed, and 

particle size). It is found the recovery percentage (%R) decreases 

with increasing pulsation amplitude (A) and frequency (F) when 

the size ratio of small to large particles (d/D) is smaller than 

0.148. An empirical model was developed through machine 

learning techniques, specifically an artificial neural network 

(ANN) model was built and trained to predict the jig recovery 

percentage as a function of operation parameters and is then 

used to validate the recovery as a function of vibration 

conditions. The performance of the ANN model was compared 

with a new 65 experimental data of the recovery percentage. 

Results showed that the model (R2 = 0.9172 and RMSE = 0.105) 

was accurate and therefore could be efficiently applied to predict 

the recovery percentage in a jig device. 

Keywords—Empirical modeling; dynamic gravimetric 

concentration model; gravimetric concentration; machine learning 
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I. INTRODUCTION 

Recently more and more attention is paid to the methods of 
increasing the amount (yield) of gold concentrates obtained in 
separation by gravimetric processes that have an undesired 
gangue minerals (commercially worthless minerals) content. 
The purpose of gravity separation processes in jigs is to 
produce maximum amount of concentrate having desired gold 
content. This problem has been discussed during fifty last years 
in many research papers [1]–[32]. 

The mineral concentrate zone is a highly nonlinear process 
that requiring control; its parameters vary with time and 

depend on the mineral feed rate and its size and density 
composition [30]–[34]. 

Although the use of neural network models is well 
established in the literature, it should be noted that such 
models,  that depend on a large amount of data in the mineral 
processing industry is not very frequent, seeing the need to 
require such intelligent systems for further planning of design 
and optimization tasks, with which it is possible to understand, 
explain and test without the need to intervene in the real 
process [24], [35]. Machine learning models in general and 
artificial neural network models in particular, can be used to 
design and optimize control systems of concentrate discharge 
in jigs without the need to require a complex model that 
describes in detail the phenomena involved inside the 
equipment. 

Regretfully, the lack of knowledge about all the phenomena 
that occur in this type of process is a frequent condition in 
practice in the mineral processing industry. Such situation 
occurs due to the low availability of phenomenological studies 
and due to some difficulties in modeling, inherited from past 
experiences; insufficient computational power led to the false 
appreciation that neural network models are complex. In 
addition, future research is needed to implement advanced 
control functions through the use of computer vision and 
multivariate data analysis. Such situations are directly reflected 
in the low availability of accurate models, which causes, for 
example, design problems in mining-metallurgical processes 
that must vary their operating conditions due to the 
heterogeneity of the ore to be processed. Today, it is possible 
to overcome such difficulties and use machine learning models 
such as neural networks to predict and describe the behavior of 
these processes, exploiting the capabilities of the model to 
analyze large amounts of data on the operational variables of 
the process while works with the process itself [32]–[34], [36]. 

Over the years, DEM and CFD models with a more 
detailed description of the gravimetric concentration 
phenomenon are being used more often [16], [29]. However, in 
spite of that progress, some challenges remain. For instance, 
one of the main goals that has not been accomplished so far is 
an agreed mathematical description of the percentage of 
mineral recovery (%R) and the operational parameters of the 
equipment (amplitude and frequency of pulsation, water flow, 
height of the artificial porous bed and size distribution). The 
%R turns out to be of paramount importance since it is directly 
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related to the amount of grams of gold per tons of ore 
concentrated (gpt):  ideally, the gold percentage recovered 
from the concentrate stream should be equal to 100%. 

Currently, the literature provides different ways to 
determine the %R, depending on the final application. As 
mentioned before, in some DEM and CFD models the authors 
use constant or linear approximations for %R [2], [13], [37]. 
Some other authors use empirical correlations describing the 
%R in terms of parameters mainly related to the geometry of 
the  equipment and granulometric distribution of the mineral 
[31], [32], [38]. In spite of the many available ways to 
determine the %R in gravimetric equipment , the main 
observed concern about the above approaches is that they are 
only useful in the systems from which they were developed [2]. 

The fundamental purpose of this work is to apply and 
promote the use of artificial neural network models (ANN), in 
the analysis of gravimetric concentration processes for the 
design and control of equipment. The motivation for a work 
like this arises from the evident need to include the dynamic 
behavior of this type of process as fundamental elements in the 
design tasks in mineral processing engineering. In this regard, 
there is a large number of computational tools that already 
offer assistance for CAD (Computer Aided Design) without 
having written support that justifies such uses. Therefore, the 
inclusion of the concept of "machine learning" as the 
foundation of intelligent modeling is imperative, leading to the 
best use of the model as an analysis tool and support for 
process design and control tasks [2], [16], [24]. Since the 
existing works on gravimetric concentration equipment such as 
the jig, so far focus directly on a statistical analysis and 
describe the recovery percentages through experimental 
equations, and the mathematical models that currently describe 
the phenomenon are highly computationally demanding, 
making them unattractive for rapid tasks of optimization and 
control of equipment. 

In this work, an accepted methodology for obtaining ANN 
is used in the modeling of the gravimetric concentration stage 
in the mineral processing industry. The efficient design and 
optimization tasks of the jig (which is the main equipment of 
the concentration stage in a mineral processing plant for gold 
extraction) require the process model to be able to study its 
behavior. Therefore, a good effort is dedicated here to the 
deduction and validation of an ANN model for the jig, 
counting on data available from a real pilot jig. This paper aims 
to develop a model to study the %R in a gravimetric pilot plant 
and its interaction with other internal process variables. First, a 
artificial neural network model is obtained to describe the 
dynamic behavior of the pilot plant. Then, the model is tested 
and assessed in terms of their ability to predict %R in the 
studied pilot plant. 

The rest of the work is organized as follows: in Section II, a 
review of modeling in mineral processing is presented. In 
Section III, the ANN model is defined, mentioning the 
procedure for obtaining it, while in Section IV, said procedure 
is applied to the jig. Section V shows the simulation results of 
the obtained model and discusses its qualitative and 
quantitative validation, ending with a Section VI of 
conclusions and future work. 

II. RELATED WORKS 

Jig is a gravimetric concentration equipment where mineral 
particles move in a flow of water pulsating, resulting at the end 
of the process in a stratification of particles of different 
densities and sizes. The stratification of the particles inside the 
jig occurs in a complex multiphase flow field. The particles are 
subjected to different hydrodynamic forces caused by the 
movement of the fluid, giving rise to different trajectories that 
depend on the velocity field of the fluid and particle properties. 
various variables operations affect the motion of particles 
among which can be included the flow of food from water and 
mineral, the amplitude and frequency of pulsation of the fluid, 
among others [2]. 

Over the past decades, considerable efforts have been made 
to design and modify the jigging process to increase gold 
recovery percentages and optimize processes [1]–[32]. Early in 
1970s and late 1990s, mono-size small particles separation 
through a packed bed of mono-size large particles was studied 
by physical experiments [18], [39]–[48]. Later numerical 
models were also employed and the studies were extended to a 
much wider range of controlling variables on particle 
separation [3], [5], [9], [11], [15], [16], [19]–[21], [25]–[27], 
[29], [36], [37]. 

From the percentage recovery point of view, a jig can be 
classified as a complex system with multivariable nonlinear 
dynamics, large uncertainty according to external disturbances 
and both model structure and parameters, and multiple space 
and time scales dynamics [4]. Therefore, controlling recovery 
in jigs is, in general, not a straightforward task. These issues 
motivated the study of recovery behavior of jig by means of 
modeling and simulation tools. As pointed out by Dong et al. 
[4], there are several benefits to modeling jig: plant design and 
optimization, experimental design, testing research hypotheses, 
design and evaluation of control strategies, forecasting, 
analysis of plant-wide performance, and education [4], [28]. 

For design and optimization purposes of jig, the PET 
(potential energy theory) [8], [47] and DEM (discrete element 
method) [25], [38] simulation models are widely used to try 
understand the gravimetric concentration process in jigs. 
However, the above contributions don’t address the recovery to 
the concentration of mineral particles widely distributed in size 
and density. Therefore, the investigations of Ospina and Usuga 
[15] and Ospina et al. [16] were the starting point. In these 
previous works, the authors evaluate the sensitivity of the 
mineral recovery through the variation of the operational 
parameters of the equipment, from a statistical and numerical 
analysis, using descriptive models, in the present investigation 
it is intended to model the jig through predictive intelligent 
systems. 

Intelligent systems are in many places, from vehicles to cell 
phones and even in some common household appliances such 
as refrigerators and microwave ovens. This is nothing more 
than a black box that includes input/output. Among the scopes 
that can be achieved with this type of systems are the 
following: System identification techniques applied in real 
processes, investigating the current methodologies that are 
being studied; implement parameter estimates by means of 
neural networks to different systems, taking into account the 
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variables to manipulate and the data collected; validate with 
experimental data in real time the results obtained with the 
neural network model against using a mathematical model to 
confirm if there is a significant decrease in error and general 
improvements in the automatic control of processes, and 
encourage research and learning of neural networks for use in 
different areas of knowledge. 

Artificial neural networks arise within the field of artificial 
intelligence, simulating the behavior of a biological neural 
network, in order to solve complex problems that would be 
very difficult to solve using conventional algorithms [49]–[52]. 
There are different types of artificial neural networks, which 
are used for different applications depending on their 
development. These networks are widely used for tasks such 
as: data classification, pattern detection, obtaining models of 
the retina of the eye and brain function, probability assessment, 
optimization, computer vision, and in the case of this research 
it was used for the prediction of variables in the mining 
industry. 

However, in the field of modeling systems for mineral 
processing (grinding, classifying and concentrating), artificial 
neural networks are relatively recent, but their use is increasing 
in this type of systems due to the efficiency of the results that 
they can generate, avoiding the implementation of complex 
calculations with better performance [16], [24]. Currently, the 
intelligence systems by means of artificial neural networks can 
be summarized into four structures: i) supervised learning: the 
neural network learns a set of inputs and the desired outputs to 
solve the problem [53]–[56], ii) direct inverse learning: the 
neural network learns from the feedback of a system, so that, 
when the signal is obtained, it determines the parameters to be 
performed [52], [57]–[60], iii) utility backpropagation: this 
structure optimizes the mathematical equation that represents 
the system, where its main disadvantage is that it requires a 
model of the system to be analyzed [61]–[65] and iv) adaptive 
critical learning: similar to the utility backpropagation 
structure, but without the need for a model of the plant [66]–
[68]. Although this type of structures are present and well 
accepted in different industrial processes, it is evident that in 
mineral processing applications and especially in the prediction 
of variables of interest such as mineral recovery, the existing 
studies of this type of design are based on simulations, this 
research being a starting point for the implementation of 
intelligent systems in gravimetric concentration equipment 
where experimental data obtained from a pilot scale jig is 
worked on. 

This paper aims to use an ANN model to study the 
recovery percentage (yield) in a pilot jig and its interaction 
with other internal process variables (pulsation amplitude and 
frequency, water flow, particle size distribution and height of 
the artificial porous bed.). First an ANN model is obtained to 
predict recovery percentage by experimental data from the 
pilot jig. Then, the model is tested and assessed in terms of 
their ability to predict recovery with 65 other experimental 
tests different from those used for training the neural network. 

III. METHODOLOGY 

Mineral processing is considered fundamental to the 
mining industry. Classically, the term mineral processing or 

mineralurgy is used to describe the transformation operations 
involved in the upgrading and recovery of minerals [69]. These 
operations are carried out sequentially to obtain a raw material 
useful in subsequent processes or a final product desirable in 
the market. The operations that are grouped under the name 
mineral processing can be divided into four groups: size 
reduction, classification, concentration, and refining. Each 
stands out within a mineralurgical process, according to the 
mineralogical characteristics of the feed and the specifications 
of the final product. In a gravimetric concentration equipment a 
stream called feed is divided into two: a stream called 
concentrate, which has a high content of the species of interest 
and another stream called tails, in which this content is 
substantially decreased [2], [19]–[21]. Different operational 
parameters such as amplitude and frequency of water pulsation, 
bed thickness and feed flow characteristics affect the 
stratification process. In the following, the methodological 
application to obtain an artificial neural network model of a 
pilot-scale jig is shown. 

The following methodology was proposed and followed 
step by step. This methodology attempts to bring together the 
theoretical component, the practical component, and the 
planning of the work. 

1) Approach of an Experimental Design. Development of 

the Experimental Design. Assembly of jig at laboratory scale. 

2) According to the proposed experiment design, the 

procedures to carry out the experimental tests on the laboratory 

scale jig and the data collection are planned. 

3) Conducting tests in the jig at laboratory scale with 

alluvial ore sample suspensions to observe the concentration 

process in jigs, varying the proposed conditions. Sample 

collection and characterization. 

4) Analysis of the results of the tests carried out. 

5) Formulation of the ANN model that better predict the 

recovery percentage in jigs. 

6) Validation of the obtained model with jig data at 

laboratory scale. The model was simulated in 

MATLAB®9.11(R2021b) using own code installed in a 

computer with an 8-core processor and 12GB of RAM. We 

used 216 samples (with sampling time T s = 0.1 s) for model 

identification and validation. 

The aim is to estimate the percentage recovery of high-
density minerals from low-density minerals in a jig according 
to a stratification of the particles present in a feed stream (Fa) 
whose solids load is less than 10% in volume. The stratification 
is produced by the transmission of mechanical energy which is 
generated by the movement of a plunger that exerts pressure on 
the water (Fh2o) in the internal chamber of the jig in a harmonic 
way, generating a movement in pulses (ascent and descent) of 
the particulate system that enters the separation chamber of the 
jig, so that a stratification of the bed formed by the particles is 
obtained, which is later used to produce the separation of the 
minerals. The separation chamber of the jig is open to the 
atmosphere. Inside it there is a screen where a bed of particles 
is deposited with an intermediate density with respect to the 
minerals to be separated. The particle bed has an initial height 
H0 (packed bed) that rises to a height Hmax, (fully fluidized bed) 
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according to the upward and downward movement of Fh2o. The 
Fh2o current contains water at a flow rate greater than or equal 
to the minimum fluidization velocity of the particles to be 
separated. The anharmonic motion of Fh2o generates a 
hydrodynamic interaction between the two phases present in 
the process (solid-solid, solid-liquid interaction). This 
interaction alters the movement of the mineral particles in the 
separation chamber of the jig. The upward movement of water 
and mineral particles is called the fluidization stage. In this 
stage the mineral particles rise from a height H0 to a height 
Hmax, initiating the stratification of the particles. At the 
beginning of stratification, the mineral particles with higher 
density and larger size tend to be deposited in the lower part of 
the bed, while the particles with lower density and smaller size 
are in the upper part of the bed. When the descent stage begins, 
the denser particles have a higher sedimentation velocity than 
the less dense particles, this allows that before the compaction 
of the bed, the heavier mineral particles are deposited quickly 
below the screen, obtaining after several cycles of pulsation, a 
complete separation of the mineral particles in two streams: 
Frejection and Fconcentrated.  The process is carried out under 
ambient temperature conditions and no chemical reaction is 
present. A diagram of the general process is shown in Fig. 1. 
The jig from which actual data were taken to train and validate 
the model has the conditions reported in Table I. 

A full factorial experimental design was developed 
involving the variables that exert the greatest control in the 
operation of the equipment (water flow, pulse amplitude, pulse 
frequency, granulometry, APB height) by means of an 
experimental matrix. This factorial design consists of five 
factors where the frequency, water flow and granulometry each 
have three levels (high, medium, low) and the amplitude and 
APB height each have two levels (high and low) resulting in a 
total of 108 tests plus replicates, a total of 216 tests. Table II 
summarizes the values considered for the different operating 
parameters. The response variable is the main metallurgical 
index (Recovery percentage (%R)). 

Regarding the method of data collection and analysis. 
Primary data were used, which were collected through each of 
the ore samples generated from the experimental design (see 
Table I) by quantifying the gold mineral content in each of the 
151 samples for identification and the 65 samples for 
validation, through two methods known as fire assay and time 
sequence analysis [7]. The effect of the operational parameters 
(see Table 2) on %R could be predicted from a sequential order 
of recovery percentage values (trend at equal time intervals). 

The neural network method was selected because of its 
great capacity to adapt to different types of problems, the 
previous experience with the use of neural networks [70]–[73], 
and the ease of implementation of this type of technique, in 
addition to being a technique with great potential that is 
causing a revolution by proving to be the future of technology. 

An artificial neural network (ANN) is an automatic 
learning and processing paradigm inspired by the functioning 
of the human nervous system [58], [59], [65]–[67], [74]. A 
neural network is composed of a set of neurons interconnected 
by links, where each neuron takes as inputs the outputs of the 
preceding neurons, multiplies each of these inputs by a weight 

and, by means of an activation function, calculates an output. 
This output is in turn the input of the neuron it precedes. The 
union of all these interconnected neurons the artificial neural 
network [50], [51], [54], [55]. 

 

Fig. 1. Jig Diagram. 

TABLE I. PILOT SCALE JIG CHARACTERISTICS 

Feature value 

Mineral Feed Flow (Fa) 200 g/min 

Water flow (Fh2o) [1.5-2.5] gal/min 

Mineral size (granulometry) [125-850] µm 

Artificial porous bed height (APB) [2.5-3.75] cm 

Pulse amplitude [5-7] mm 

Pulse frequency [5-9] Hz 

APB particle diameter 3 mm 

TABLE II. OPERATING PARAMETERS AND RESPECTIVE OPERATING 

LEVELS 

Levels High Medium Low 

Frequency (Hz)-F 9 7 5 

Pulse amplitude (mm)-A 7 - 5 

Granulometry (mesh series Tyler)-T +50 (1) -50 +100 (2) -100 (3) 

Water flow (gal/min)-H 2,5 2,0 1,5 

Artificial porous bed height (cm) 3,75 - 2,5 

Separation Chamber 
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The artificial neural network as well as biological networks 
learn by repetition, and the more data you must train and the 
more times you train the network the better results you will get 
[62], [63], [67]. Training an ANN is a process that modifies the 
value of the weights associated with each neuron, so that the 
ANN can generate an output from the data presented in the 
input  [52]. The weights are really the way the neuron learns. 
These weights will be modified in a certain way to adapt the 
value of the output in such a way as to minimize its error with 
respect to the real result that the artificial neuron should 
produce [55], [75]. 

Based on the above arguments, the following questions 
arise for this methodological development: What data are 
relevant for the management of the problem to be addressed?, 
which variables are relevant to address and manage this 
problem?, where can the data be obtained?, how to prepare and 
encode the data?, what type of network should be chosen?, 
how many hidden layers and how many neurons are necessary 
to manage the possible solution to the proposed problem?, 
what learning rule to choose?, and what initialization is given 
to the weights?. These data will be acquired by means of 
experimental tests using the pilot plant of the jig. The data 
obtained from the experimental tests will be organized in a 
spreadsheet to be later entered into the software that will be 
used to code the neural network (Matlab®(R2021b)). The 
network to be designed will be initially selected with a 
configuration of one hidden layer with 13 neurons in each 
layer, five inputs, one output and a learning coefficient of 0.3 
and random weights. However, once implemented, several 
tests will be performed to determine if a change in any of the 
parameters is necessary to obtain better results. The structure 
intended to be implemented for this proposed model is shown 
in Fig. 2. This structure has the possibility of being changed if 
a better alternative is discovered in the future during the 
process of development, research, and implementation. 

As regards the activation functions, several functions were 
tested, among them the logsig, the ReLu, the softplus, the 
hardlim and the tansig, choosing in the end the logsig since it is 
the function that reaches a low margin of error in the shortest 
time for this specific process with the input data obtained. 

Finally, it is possible to observe that the neural network was 
developed with its own code (the Matlab library was not used) 
along with the database with which it would be trained. The 
Matlab program consists of three parts: i) Network 
configuration: This is the main part, where the neural network 
is configured and trained. This was done using arrays of cells, 
so that it was possible to store arrays of different sizes in a 
single variable. Each row of the network variable is a different 
type of data, such as the weights of each layer, biases, errors, 
and so on, ii) Feedforward: In this file the forward propagation 
stage of the network was performed, where all the elements of 
the database are passed through the neural network, obtaining 
an output, and iii) Backpropagation: The backpropagation 
algorithm implemented for this network was gradient descent, 
where the aim is to minimize the error by calculating the partial 
derivatives of the error or cost function (mean squared error in 
this case), in terms of the weights of each neuron, modifying 
them in order to reduce the error in the output. 

 

Fig. 2. Neural Network Configuration for Intelligent System. 

Several tests were performed to verify the learning of this 
network and that the data delivered by it were consistent even 
with parameters that it had not received in the training stage, 
obtaining more than acceptable values, and thus proceeding to 
the implementation stage. 

To assess the performance of ANN model, was followed 
the procedures suggested by Cruz et al.[58]. After visual 
evaluation and tests for fitting the behavior, the two criteria: 
Root Mean Square Error (RMSE), and coefficient of 
determination (R2) were applied [31], [32], [34] (see Eqs. (1) 
and (2)): 

𝑅𝑆𝑀𝐸 = √
∑ (𝑥−𝑥𝑡)

2𝑛
𝑖=1

𝑛
             (1) 

𝑅2 = 1 −
∑ (𝑥−𝑥𝑡)

2𝑛
𝑖=1

∑ (𝑥−�̅�)2𝑛
𝑖=1

             (2) 

where 𝑥 is experimental data of the recovery percentage, 𝑥𝑡  

is ANN output, 𝑛  is the sample size and �̅�  is the mean of 
experimental data for the recovery percentage. 

IV. RESULTS 

This section presents the results obtained in this research, 
which includes the description of the intelligent 
implementation. The neural network was trained from plant 
experimental data, using the database “JigRNA.xlsx”, which 
have 151 rows of data, the first column being the pulsation 
frequency value, the second the pulse amplitude value, the 
third the ore size, the fourth the water flow value, the fifth the 
APB value, and the sixth to the mineral recovery percentage 
value (output). Table III shows a portion of the recorded data. 

Once the results of the experimental tests were obtained, 
the variables values were normalized in the interval 0 to 1, this 
in order to work with less uncertainty the data that would be 
entered into the neural network and have a free response of 
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engineering units. Eq (3) shows how the data were normalized 
and Table IV shows a portion of the normalized data. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑣𝑎𝑙𝑢𝑒 =
(𝑉𝑎𝑙𝑢𝑒𝑟𝑒𝑎𝑙−𝑉𝑎𝑙𝑢𝑒𝑚𝑖𝑚)

(𝑉𝑎𝑙𝑢𝑒𝑚𝑎𝑥−𝑉𝑎𝑙𝑢𝑒𝑚𝑖𝑛)
           (3) 

After normalization, a multilayer perceptron ANN with five 
inputs (corresponding to the five parameters used in Table IV) 
was created using proprietary code in a Matlab® script. The 
program identifies the five input and the output (%R). From the 
simulations performed, errors of less than 2% were obtained 
with 13 neurons in the hidden layer and starting the training 
process for 200 epochs. The results of the network without 
training and the training performance are shown in Fig. 3 and 4 
respectively. 

Fig. 3 shows the unsorted distribution of the data for the 
untrained neural network, once the training algorithm is started, 
it converges in only 40 epochs (see Fig. 4), making the network 
follow the input patterns that have been provided. 

The performance of the ANN model was compared in two 
stages. In the first stage (Fig. 5), the identification data are 
shown with the absolute errors (maximum, average and 
minimum) that are reported in Table V. 

TABLE III. RANDOM DATABASE USED TO TRAIN THE ANN 

F A T H APB %R 

5 7 1 2 3,75 68,69 

7 5 3 2,5 3,75 6,8 

5 7 2 2,5 2,5 13,7 

9 7 2 2 3,75 31,1 

7 5 3 1,5 2,5 93,5 

5 5 2 2 3,75 14,64 

5 7 3 1,5 3,75 50,08 

TABLE IV. NORMALIZED DATABASE USED TO TRAIN THE ANN 

F A T H APB %R 

0 1 0 0,5 0 0,6905 

0,5 0 1 1 1 0,0683 

0 1 0,5 1 0,5451 0,1376 

1 1 0,5 0,5 1 0,3126 

0,5 0 1 0 0,545 0,9399 

0 0 0,5 0,5 1 0,1471 

0 1 1 0 1 0,5034 

TABLE V. ERRORS IN IDENTIFICATION 

Model Max. Error  Mean Error  Min. Error 

ANN 0,4449 0,0630 3,4382e-06 

 

Fig. 3. ANN Response without Learning. 

 

Fig. 4. Training Performance. 

 

Fig. 5. ANN Performance. 

In the second stage the model is compared by means of the 
validation data (Fig. 6) with their respective R2 and RSME 
presented in Table VI. Additionally, Fig. 7 shows the 
histogram of the errors made by the Neural Network for the 
validation data. 
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Fig. 6. Relationship of the Validation Data with the ANN Output. 

TABLE VI. ERRORS IN VALIDATION 

Model R2  RSME  

ANN 0,9172 0,105 

 

Fig. 7. Histogram of ANN Errors with Validation Data. 

It can be seen from Fig. 5 to 7 and Tables V and VI that the 
performance of ANN model may be suitable for prediction of 
recovery percentage in gravimetric concentration equipment in 
the mineral processing industry, both in identification and 
validation, yielding errors of less than 2%, which is adequate 
for engineering purposes, especially to implement an 
optimization strategy for the jig concentration process. 

The ANN model result in its matrix form can be expressed 
according to Eqs. (4) to (9). In the hidden layer Eq. (6) the 
inputs to the network 𝑋5×1were shown one by one (see Table 
4). These result in an output 𝑌13×1

1  (Eq. (7)) for each neuron 
from applying the activation function 𝑓1(𝑎13×1

1 )  (logsig). 
Subsequently, the outputs of the neurons of the hidden layer 
are fed to the neuron of the output layer (Eq (8)) to obtain the 
output of the whole network or each input supplied (Eq. (9)). 

𝑎𝑛×1
𝑘 = 𝑊𝑛×𝑝

𝑘 ⋅ 𝑌𝑝×1
𝑘−1 + 𝑏𝑛×1

𝑘             (4) 

𝑌𝑛×1
𝑘 = 𝑓𝑘(𝑎𝑛×1

𝑘 )              (5) 

𝑎13×1
1 = 𝑊13×5

1 ⋅ 𝑋13×1 + 𝑏13×1
1             (6) 

𝑌13×1
1 = 𝑓1(𝑎13×1

1 )             (7) 

𝑎1×13
2 = 𝑊1×13

2 ⋅ 𝑌13×1
1 + 𝑏1×1

2             (8) 

𝑌1×1
2 = 𝑓2(𝑎1×1

2 )              (9) 

In Eq. (4) to (9), the 𝑊𝑘  are the weights of each of the 
connections of the neurons with the upstream and downstream 
layers and the 𝑏𝑘are the biases of each of the neurons. These 
two parameters are trained for each input supplied to the 
network and are updated epoch by epoch until the neuron 
output is as close as possible to the experimental data. The 
values of these parameters after training and validation are 
shown in Tables VII to IX. 

TABLE VII. INPUT-NEURON WEIGHT MATRIX HIDDEN LAYER (𝑊13×5
1 ) 

Neuron F A T H APB 

1 13,169 -8,118 9,593 -14,15 -7,127 

2 13,338 23,438 14,351 6,829 -39,237 

3 -2,497 -8,079 2,932 -1,547 -8,782 

4 25,019 2,770 -40,937 3,161 2,032 

5 2,287 5,335  1,892 3,824 3,860 

6 -21,545 7,757 -12,758 -5,941 -14,059 

7 -12,903 11,024 -9,002 0,628 8,4 

8 9,771 -0,809 -20,987 -0,855 -1,302 

9 13,742 -8,853 -6,582 -6,028 19,347 

10 0,271 3,452 1,864 3,541 0,165 

11 -7,925 5,39 2,966 7,421 -1,126 

12 41,617 24,659 -23,697 -48,221 71,691 

13 13,914 8,624 3,308 7,510 13,214 

TABLE VIII. WEIGHT MATRIX NEURONS HIDDEN LAYER-NEURON OUTPUT 

LAYER (𝑊1×13
2 ) 

Neuron Hidden Layer Output Neuron 

1 6,5676 

2 -4,5756 

3 -6,4016 

4 -12,4363 

5 -20,2859 

6 6,5559 

7 -5,5759 

8 15,4027 

9 -10,4933 

10 18,7184 

11 -6,7827 

12 5,4746 

13 4,9074 
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In Table VII, each row represents a neuron of the hidden 
layer, and each column represents the connection to each of the 
inputs (corresponding to the five operational variables of the 
jig). Similarly in Table VIII, each row corresponds to an output 
of the hidden layer neurons, and each column is the connection 
from the hidden layer to the output neuron of the network. 
Finally, Table IX can be interpreted as follows: each row 
corresponds to the bias of each of the hidden layer neurons. 
The bias value for the output layer neuron was 𝑏1×1

2 =6,4373. 

TABLE IX. BIAS MATRIX NEURONS HIDDEN LAYER 

Neuron Hidden Layer Bias (𝒃𝟏𝟑×𝟏
𝟏 ) 

1 -11,6266 

2 -4,9026 

3 11,9266 

4 -0,1623 

5 -7,4530 

6 23,4868 

7 -4,3211 

8 4,6968 

9 0,7725 

10 -3,1677 

11 -6,9047 

12 -16,4843 

13 -20,1379 

V. DISCUSSION OF RESULTS 

In this paper we proposed as a contribution an ANN model 
for the estimation of the recovery percentage in a gold 
gravimetric concentration equipment known as a jig, which 
was based on the development of its own code in Matlab®, 
based on experimental data from a laboratory-scale jig (see 
Figure 1). With respect to traditional empirical and DEM-CFD 
modelling [15], [16], [20], [25], [26], artificial intelligence 
applications can become more efficient than the conventional 
techniques still used in the mineral processing industry as the 
ones proposed in this research and supported by [24] where is 
emphasized that in the ANN model, the input variables can 
include other controlling variables, such as other particle 
properties and system dimensions, feature that is very similar 
to phenomenologically based models. 

Comparing both the identification and validation errors. It 
can be said that the performance of the ANN model adequately 
predicts the response variable (RSME=0.105), despite the great 
dependence and sensitivity of the recovery percentage with 
respect to variability. Of the five main operational parameters 
of the equipment (frequency and amplitude of pulsation, water 
flow, height of the artificial porous bed, and size of the mineral 
to be separated). The error in the ANN model could be 
decreased by two orders of magnitude if more delve into the 
number of neurons and hidden layers in the network that give a 
better fit with respect to the data provided. The above was 
evidenced in [58] where it is ratified that the use of different 
neural networks, whether they use the gradient method or the 

convolutional ones, converges to a global minimum of the 
error. 

The prediction performance of the model is compared by 
experimental data (see Fig. 5 and 6). Note that, since the 
validation data were recorded from laboratory-scale jig, It is 
necessary to be able to validate the model taking into account 
more ore samples and on a full-scale jig, as there could be a 
significant lag between the result of the pilot plant and the data 
recorded on an industrial-scale jig [3]. This type of 
inconvenience can be easily compensated with the application 
of scaling techniques, integrating the total plant and control 
design [3], [32]. 

The average prediction errors that were estimated using the 
validation data sequence for the model, are shown in Tables V 
and VI. We see that the ANN model fits well, but one of the 
limitations of these prediction errors is that a significant 
number of dynamics (Particle-particle interaction and particle-
fluid interaction) remains unmodeled. This may be since when 
employed models that depend heavily on data (empirical), built 
through experimentation and observation, the interpretability of 
many other phenomena that occur in this type of process is 
limited to the little knowledge that this type of structures 
present, in addition to other effects that can only be adequately 
modeled in a phenomenological mathematical structure. 

This paper has shown that the modeling framework based 
on ANN models may give models that are as useful, accurate, 
and reliable as with phenomenological modeling, even if the 
system is well understood. Such models may serve as an 
alternative that may be attractive especially for systems that are 
not well understood, as in the case of jig. Moreover, we believe 
ANN model developed in this framework has significant 
advantages over many other non-linear empirical modeling 
frameworks. The reason is that it admits interpretability of the 
model through the intuitive and easily understandable 
operating regime concept, and the fact that the machine 
learning models can be interpreted independently. 

VI. CONCLUSIONS 

In this work, ANN model was developed, and their 
performance was evaluated by means of absolute errors. It can 
be said that the application of this type of model in real mineral 
processes can guarantee an adequate optimization of highly 
dynamic processes, since the expected results can be obtained 
in a shorter time without the need to use complex mathematical 
models, which are often difficult to obtain, or the phenomena 
involved in most of them cannot be understood in depth. 

ANN models have a wide use in present day engineering. 
In this contribution, special attention is paid to control oriented 
models. As is well known, chemical, biochemical, and mining-
metallurgical models are complex and nonlinear due to the 
multiple interacting phenomena, making them hard to 
implement in process control tasks. Although an ANN model 
(a type of black-box model) is not able to capture and predict 
the essential phenomena (mass, energy, and momentum 
transfer), gives significant rapid response with respect to the 
variables that are intended to intervene, thus providing 
strategies to rationally optimize and to control industrial scale 
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jigs since in this type of process a large amount of data can be 
obtained from both input and output variables. 

With the implementation of this type of advanced modeling 
strategy, there was a significant reduction in the error when 
comparing the conventional empirical data against the 
experimental data using neural networks and, in turn, a better 
response to the operational variability of the processes was 
evidenced. Considering the results obtained, it can be affirmed 
that neural networks can be the pillar of the so-called fourth 
industrial revolution, proving to be useful in multiple fields, 
offering high efficiency and reliability in the optimization of 
industrial processes. 

It is concluded from the identification and validation 
performed that the ANN model is very sensitive to the data 
provided. Further simulations on the ANN model, changing the 
number of neurons in the hidden layer could show very 
significant changes in the errors of both the identification and 
validation data. 

As a future work derived from the present research, it is 
intended to complement the architecture of the proposed 
system by including other artificial intelligence models for the 
analysis of recovery percentage, using, for example, fuzzy 
logic, in order to enable the implementation of early warning 
systems and  particle-particle interaction and particle-fluid 
interaction for monitoring recovery percentage. 
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