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Abstract—Retailers have long sought ways to better 

understand their consumers' behavior in order to deliver a 

smooth and enjoyable shopping experience that draws more 

customers every day and, as a result, optimizes income. By 

combining various visual clues such as activities, gestures, and 

facial expressions, humans may fully grasp the behavior of 

others. However, due to inherent problems as well as extrinsic 

forced issues such as a shortage of publicly available information 

and unique environmental variables, empowering computer 

vision systems to provide it remains an ongoing problem (wild). 

In this paper, the authors focus on identifying human activity 

recognition in computer vision, which is the first and by far the 

most important cue in behavior analysis. To accomplish this, the 

authors present an approach by integrating human position and 

object motion in order to detect and classify tasks in both 

temporal and spatial analysis. On the MERL shopping dataset, 

the authors get state-of-the-art results and demonstrate the 

capabilities of the proposed technique. 

Keywords—Deep convolutional neural networks; computer 

vision; object detection; object localization; temporal analysis; 

human shopping actions component 

I. INTRODUCTION 

For years, the computer vision industry has been working 
on recognizing human actions. Many essential applications 
require the ability to recognize diverse behaviors from video 
data, such as fight identification from surveillance footage, 
human-robot interaction, video streaming analysis for online 
streaming services, and home security surveillance. Action 
recognition's main purpose is to recognize human actions in a 
video frame. For video-sharing services like YouTube and 
Twitch, action recognition is indeed a must-have feature. It can 
decipher a video's content and determine whether or not it 
should be made public. This tool can assist in the filtering of 
potentially harmful videos, such as bomb-making methods, 
choking activities, and the use of hard narcotics [1-3]. 

However, in areas like retail and shopping, the impact has 
been minimal. Using such technology in this context has a 
number of advantages, including efficient monitoring, 
consumer behavioral analysis, targeted marketing, and so on. 
Retailers will benefit from increased efficiency and revenue, as 
well as a more convenient shopping experience for customers 
if these strategies are used. Furthermore, the share of the 
worldwide trade market that these technological solutions 
occupy might be deduced from the rapidly expanding demand 
for them. The actual worth of such Artificial Intelligence (AI) 
based solutions relating to the retail industry is expected to be 
about US$10 billion by 2025, according to research conducted 
by Grand View Research [2]. 

Applying AI, and particularly machine learning 
approaches, to the shopping sector is still difficult, due to the 
insufficiency of data, primarily because of security issues, 
expensive labeling, as well as the need to stay proprietary 
where data is gathered. In spite of the datasets being publicly 
available to the researchers, (e.g., The MERL shopping dataset 
[4]), applying deep learning techniques to those is difficult as 
the external challenges posed by distinctive environmental 
factors like camera view angle, quality of the video, 
interrelations between the goods and the customers, and high 
obstruction. However, success of the existing deep learning 
algorithms can be attributed partially to the utilization of 
largely available public datasets like ImageNet [5], UCF101 
[6], or [4], which allow sophisticated methods with numerous 
variables to be optimally trained. The completed actions are the 
major visual clue in understanding human behavior, which 
when paired with additional indicators like facial expressions 
tracked over time can also provide detailed behavioral 
knowledge [1, 7, 8,]. To describe human actions, the initial 
efforts on action recognition adopted Three-dimensional (3D) 
models [9, 10]. However, creating a 3D model using videos is 
time-consuming and costly. 
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As a consequence, people rather employ global or local 
representations for action recognition. These methods are 
known as representation-based methods. Currently, deep 
networks-based algorithms have indeed been able to attain 
promising results in action detection, because of the fast 
evolution of graphics processing units (GPU). The task of 
activity detection and recognition from shopping surveillance 
footage inputs is used as the primary topic of this paper. The 
current study only focuses on categorizing the clipped video 
into the given activities during recognition, whereas 
categorization is practiced to a continuous video sequence of 
multiple activities during detection; i.e., the temporal location 
at the beginning and length of the actions are also unknown 
and desired [11]. 

The main contributions of this paper are 

• For a less explored camera view angle, we present an 
innovative strategy powered by Generative Adversarial 
Networks (GANs) which uses partial body position in 
the lack of exact joint locations (top view). 

• Using the proposed novel method along with the 
standard transfer learning, we train and test on the 
MERL shopping dataset, which has different challenges 
such as camera angle view, classifications of activity, 
and limited data for training. 

• The authors propose a simple but successful technique 
for using our action-identifying network as an action 
detector that identifies and classifies action locations in 
real-time. This method divides the difficult detection 
task into identification and detection modules and uses 
a two-stream network to combine diverse sources in 
semantic space. 

• The authors successfully combine two independent sets 
of features, one for recognizing or detecting the action, 
namely human body posture (incomplete) and object-
of-interest motion, to direct greater network resources 
and attention to the most significant signals while 
ignoring the less important ones. This is performed 
through the use of self-attention, in which the video's 
relevant spatial regions are connected to other regions 
in adjacent frames for enhanced accuracy and/or 
precision. 

The remaining sections of the paper are organized as 
follows: Section II - consists of the extensive literature survey; 
Section III - is the detailed explanation of the methodology 
used in the study; Section IV - is a detailed presentation of the 
results arrived at along with comparisons. We conclude the 
paper by providing future directions. 

II. LITERATURE SURVEY 

Extraction through feature engineering algorithms that can 
effectively recognize and depict motion in the input pattern of 
image frames is the focus of this research. Many approaches of 
mixing optical flow (OF) and feature matching [12] have been 
introduced since the early phases of the space-time pyramid 
[13] until recent years, with the most current ones attempting to 
replace feature extractors using deep neural networks. 
However, predicting the flow of optical from succeeding video 

frames has proven to be quite efficient. The literature on this 
subject contains a multitude of ways. Recently, there have been 
attempts to integrate these techniques with deep neural 
networks in order to achieve the best-of-both-worlds results, 
Horn et al. [14]. Many indigenous features have been facing 
this situation in recent years. 

Pose estimation from single red, green, and blue (RGB) 
images has made substantial progress recently [6, 11, 15, 16, 
17,], prompting its use as a high-level feature in movies to 
effectively represent diverse sorts of activities [18, 19]. Single 
image estimate is relatively reliable, even the tiniest mistake or 
disturbance in sequential posture estimation in videos is 
detrimental to activity interpretation utilizing existing futuristic 
techniques. With regards to missing joint locations in frames, 
as we will show factually, this occurs rather frequently 
irrespective of regular or low demanding settings. As a result, 
several techniques to utilize this vital information as an 
additional medium of data in combination with other resources 
such as optical flow and raw input frame have been presented. 
There are many alternative ways to take advantage of body 
posture characteristics while disregarding the faults. 
Indigenous approaches to cipher consecutive pose data into 
photos for classifying the actions are defined by some. There 
are numerous approaches to efficiently incorporate posture 
estimation into activity understanding in case of good pose 
prediction (for instance, 3D pose employing motion capture 
skeletal sensors or depth camera) [20]. However, because of a 
crowd, low range depth and occlusion, and costs, the use of 
depth cameras or signal fusion techniques is not viable in the 
shopping environment. 

In computer vision, human-object interaction has long been 
a concern. However, the majority of the considered interactions 
revolve around sports [21], cooking [22], or ordinary activities 
[6, 9], which can sometimes be categorized from single photos 
[21]. Kim et al. [23] present an effective method for 
recognizing object-based activities. For action recognition from 
security cameras, the researchers make use of the graph neural 
networks for merging the object and human pose data. Their 
method, however, is largely dependent on the quality of the 
input posture data. 

Multi-stream Convolutional Neural Networks (CNNs) have 
recently been popular for combining diverse modalities of data 
before generating decisions [4, 16]. It can be seen in most of 
the presented systems that one stream is dedicated to temporal 
understanding (usually utilizing a labeled training data and 
computed algorithm related to flow of optics [17]), whereas 
another is exclusively for diving into spatial features in the 
image. 

Many academics have been attributed to the success of 
Two-dimensional (2D) CNNs in image interpretation to 
investigate the feasibility of doing so in videos. As a result, 
numerous ways to widen the convolution in time have been 
developed [7, 23, 24]. One of the issues with these techniques 
is that most of these are computationally costly, whilst 
moderately outperforming 2D CNN counterparts. 

Several researchers have rethought their application, 
inventing sophisticated combinations of 2D and 3D CNNs to 
achieve the best possible outcomes [25, 26]. Nevertheless, the 
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work of exploiting pose data is still under-explored to our 
knowledge. Many other researchers integrate the two works 
and sort them concurrently [27]. Some techniques solely tackle 
the temporal detection element of the work, whilst others 
integrate both activities and sort them at the same time. Some 
are inspired by object identification techniques and use 
temporal region proposals [10, 18], while others are known as 
segmentation. 

In the natural language processing (NLP) community, 
many unique strategies to replicate human attention in CNNs 
were first proposed on machine translation jobs. Some of them 
are used in sequential tasks to highlight key input frames [28], 
while others are used to simply focus on spatial regions of 
relevance [10, 9, 2]. Wang et al. [29] and combine them into 
one differentiable peripheral module. Moreover, there are 
works defining a representative capable of discovering the 
important areas or frames using sophisticated analytics like 
Reinforcement Learning (RL) [28]. The 3D modeling method 
was utilized extensively in early action recognition studies. The 
walker hierarchical model [9] uses a number of hierarchical 
levels to depict a person. To recognize pedestrians in a video, 
[10] employs linked cylinders and their progression. The kernel 
learned by CNN is visualized and found that the bottom layers 
learn low-level features while the upper layers learn high-level 
representations. This demonstrates that convolutional 
architecture may be utilized to extract features [29, 30]. 

Videos, unlike photographs, have a dynamic nature. 
Directly adding temporal features to a convolutional 
architecture is a typical approach of using deep networks for 
action recognition. To achieve this, Ji et al. [31] postulated the 
3D CNN, which also uses 3D kernels to obtain both spatial and 
temporal information. 

Many researchers have made contributions to the field of 
temporal information integration in CNNs. In the temporal 
domain, Ng et al. [30] discover that maximal pooling 
outperforms average and other pooling approaches. Karpathy 
et al. [32] present the slow fusion model, a new convolutional 
architecture that receives video clips and processes them via an 
identical set of layers (with common parameters) to provide 
outcomes for fully connected layers. The video description will 
then be generated from these completely connected layers. 
Tran et al. [33] combine the concepts of the visual geometry 
group (VGG) [9], Decaf [14], as well as the 3D CNN [29] to 
develop a 3-D graphics technique that can build 3D graphics 
out of 2D images (C3D), a generic video descriptor. They use 
the Sports-1M [32] dataset to train their network and extract 
video attributes from such a fully - connected layer. Learning 
temporal information from uncontrolled input is the purpose of 
a deep generative network [21, 26]. Xing Yan et al. [34] 

present a deep Dyn encoder to capture video dynamics, based 
on the linear dynamic system modeling approach proposed by 
Doretto et al. [16]. The Long Short-Term Memory (LSTM) 
autoencoder model is created using the LSTM [26] cell. 

The encoder LSTM and the decoder LSTM make up this 
model. Goodfellow et al. [35] propose an adversarial network 
to address the training challenges in deep generative networks. 
The competition between a generative and a discriminative 
model is referred to as adversarial. Mathieu et al. [36] use the 
adversarial principle where a multi-scale convolutional 
network is trained and highlight the benefits of pooling in a 
generative model. In this body of work, many databases have 
been added to aid in the development and testing of algorithms 
[28, 6, 24]. Kinetics [8], which is called the ImageNet [13] of 
videos, is among the largest. Only a few of these have 
untrimmed films that can be detected [22, 27]. More crucially, 
as previously said, the exclusive characteristic of statistics 
related to retail is the insufficiency of data on which to test 
frameworks to address the distinctive difficulties. As per our 
knowledge, the MERL [4] dataset is the only one available for 
human shopping actions. All of these aspects are addressed 
using Human Position and Object Motion based spatiotemporal 
analysis and are tested on the Recognition of Human Shopping 
Actions. Further details regarding the same are explained in the 
subsequent sections. 

III. METHODOLOGY 

A GAN consists of two approaches: a generic model that is 
trained to comprehend the probability distribution of the input 
data and a discriminative model that seeks to distinguish real 
input samples from false ones [37]. Backpropagation is used to 
simultaneously train both models. GANs' success has been 
seen in their wide range of applications, which range from 
creative picture generation and super-resolution to semi-
supervised classification. Using input pictures and noisy and 
imprecise joint heat maps, the authors propose a conditional 
GAN-based technique for regressing the precise location of six 
body joints. In the retail environment, we commonly encounter 
top-view (or near-top-view) recorded surveillance cameras, 
which exacerbate the difficulty of deciphering human activity 
by imposing extra occlusions of various body parts and 
components. Because of this distinct and demanding 
perspective, many deep learning professionals have avoided 
training on these sorts of input images. The posture estimator 
system that we implemented in our challenge suffers from the 
same problem, despite producing state-of-the-art results of 
different distinct activities that support traditional camera view 
aangles Fig. 1 depicts the challenges encountered by the given 
strategy in the present working dataset. 
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Fig. 1. Illustration of the Issues Faced due to the Camera Angles. 

To improve posture estimate accuracy, we present the GAN 
structure. It also ensures that the positions of the joints of 
interest in the dataset are predicted more accurately. The 
generator is in charge of learning the conditional probability of 
the joint locations given to the current noisy heat map that is 
extracted and the input frame, which is a CNN with an 
architecture similar to Inception-v4 followed by a multi-layer 
perceptron (stacked). The same has been summarized in Fig. 2. 

In our scenario, only six joints are considered essential in 
the current shopping environment scenario, which are both the 
left and right shoulders, elbows, and wrists. To begin, consider 
human posture as a probabilistic heat map indicating the areas 
of joints that require better attention. Next, treating it as a high-
level feature of the object which is moving in the scene, rather 
than treating pose data as a separate source of information for 
defining an action, instead of general features extracted with a 
massive proportion of unnecessary background data to acquire 
motion data without considering any other specific motion 
representation, forcing the deep learning architecture for 
feature extraction with a greater focus on these spots in each 
frame of the input images. Then, by implementing the GAN 
fine-tuning step, we reduce even more noise from the heat 
maps obtained from the input related to the six key joints and 
obtain its precise location, which is given to our pose stream 
network as a replacement for the pose heat map channel. The 
working of the same has been described in Fig. 3. 

Refer to (1) 

𝑦𝑖 =  
1

𝑐(𝑥)
∑ 𝑓(𝑥𝑖 , 𝑥𝑗)𝑔(𝑥𝑗)∀𝑗             () 

where, i and j are indices of the locations in frames over the 
entire sequence (space-time), f refers to embedded Gaussian 
mapping of the input pattern, and g is a linear mapping 
function. Here xi refers to weight for a single location in space-
time input, and j is the set of all other potential places. The 
Embedded Gaussian Function is the function we're using here. 
The number of modules inserted into the network for optimal 
performance has been empirically determined to be two. The 
LSTM's hidden state vectors are subjected to the second 
attention mechanism. It actually assigns a scalar weight to 
every input frame based on the network's learned relevance. 
These weights were adopted to the LSTM's hidden feature 
vector as in practice. At every time the first step (relating to the 
feature vector of the frame is multiplied by the weight value 
supplied by the temporal attention), the LSTM has a hidden 
state. This is done in practice where a single fully-connected 
layer on the LSTM's hidden states is trained. The first of the 
two modules, in particular, has played a key role in advising us 
on how to strengthen our approach. The placement of joints is 
connected with a higher weight, notably the six joints that 
make up a part of the posture model, as shown in the 
representations provided in Fig. 3. By substituting the exact 
heat map of joint locations with the ones from our generator 
network, there was even more attention forced which improved 
our outcomes. In this case, by reducing the noisy heat, we were 
able to stimulate the concentration of network re- sources with 
more assurance maps. 

 

Fig. 2. An Overview of the Proposed GAN Structure. 
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Fig. 3. A Summary of our GAN-Based Pose Fine-Tuning Method. 

IV. RESULTS AND ANALYSIS 

A. Experimental Setup 

The authors used PyTorch for the implementation as it is 
open source. The fine-tuned network is then used with the 
remainder of the network, with no further training, to retrieve 
earlier data regarding item placements. To construct the 
weights for the generator in GAN architecture, we manually 
annotated additional thousand frames which are sampled 
uniformly with six joint-f-interest (e.g., wrists, elbows, and 
shoulders) positions. After that, the generator is supervised, 
and they are pre-trained using the Mean Square Error loss 
function across the ground-truth joint locations. On the other 
hand, the discriminator was built up at random using the 
Xavier approach. 

After the GAN training has converged, the generator is 
used individually along the remainder of the network without 

any more fine-tuning, as previously indicated. The pose and 
object mappings are created using binary maps in the following 
manner. The map has values of one in a circle of constant 
radius (here 10 pixels) around each joint center and 0 
somewhere else for joint locations, and one in a rectangle area 
of fixed size (here 40 pixels) around the center of each 
identified item and zero otherwise for object locations. To 
reduce the Cross-Entropy loss over the Softmax class 
probability outputs, the entire recognition network is trained 
using gradient descent. 

Adam is the optimizer that has been proven to perform 
better in terms of fast convergence in large-scale models like 
ours. This is achieved by making dynamic (or adaptive, as the 
authors call it) changes to the learning rate for each weight 
based on the gradient's higher and lower coefficients so far. 
The default hyper-parameter settings specified by the authors 
are = 0.001, 1 = 0.9, 2 = 0.999, and 1008. 
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It's difficult to train the spatiotemporal attention 
components in the intermediary layers of the two streams. 
These modules were given a contribution weight gamma 
(constant across the network) that was initially set to 0. The 
authors restart the training for a few epochs (9 to 11) once the 
main network has converged, starting with 0.1 and gradually 
increasing it to 1. Finally, because each stream has a similar 
design to the Inception v4 network, the authors initialize both 
streams using transfer learning from networks trained on 
COCO classification tasks. This allows us to drastically 
minimize training time; the full network training takes only 17-
21 epochs to complete. 

The detection sliding window and stride parameters must 
be fine-tuned in the final stage. A Brute Force search in two 
sets of values is used to accomplish this. As mentioned in the 
assessment section, the overall performance of each pair of 
window-stride size values is examined, and the top overall 
values are picked. Finally, because each stream has a similar 
architecture to the Inception v4 network, we initialize both 
streams using transfer learning from networks trained on 
COCO classification tasks. 

This allows us to cut the training time in half; the total 
network training takes around 17-21 epochs. The detection 
sliding window and stride parameters must be fine-tuned in the 
final stage. A Brute Force search in two sets of values is used 
to accomplish this. As noted in the assessment section, the 
overall performance of each pair of window-stride size values 
is evaluated, and the top overall values are picked. Sliding 
windows range in length from 3 to 45 frames, with a stride of 
one to the length of the window. The PyTorch deep learning 
library is used to implement the entire training and inference 
process in Python. 

B. MERL Dataset Results 

The MERL dataset was produced in response to a lack of 
relevant datasets in retail settings. The six activities are "reach 
the shelf," "retract from the shelf," "hand in the shelf," "inspect 
the object," "inspect the shelf," and the backdrop (or no action) 
class. It was photographed using a roof camera to look like a 
real retail mall, but not in any detail. There are 42 people in 
this dataset who work as shoppers. One of the dataset's 
challenges is that participants must complete a sequence of 
tasks, which can be easily exploited as a well-behaved 
transition probability matrix to produce good results on this 
dataset at the cost of simplifying it as a well-behaved transition 
probability matrix. Table I is an example of this challenge. This 
supplies the network with useful prior knowledge that may be 
used during inference to improve recognition accuracy. 

TABLE I.  MERL DATASET, ACTIONS, AND ITS CORRESPONDING 

DISTRIBUTIONS 

Actions Reach Retract 
 Hand 

in 

Inp. 

Product 

Insp. 

Shelf 

Reach  0.0 63.8 34.1 0.7 1.4 

Retract  21.2 0.0 0.8 49.53 28.47 

Hand in  0.12 85.7 0.0 6.32 7.86 

Inp. 

Product 

61.08 3.1 0.84 0.0 34.98 

Insp. Shelf 98.9 0.094 0.67 0.34 0.0 

Nonetheless, one of the key benefits of our technique is that 
we may get cutting-edge findings without relying on this 
extensive historical knowledge. This makes sense since, in 
real-world solutions, powerful priors are difficult to come by 
and impractical, therefore they can't be used. As a result, the 
authors eliminated these biases by ensuring that the participants 
do not follow a straightforward sequence of activities during 
the testing. 

Unlike prior approaches that reported on the MERL 
dataset, we present results for both recognition and detection. 
The former believes that the input films only include single 
action, but the latter receives an untrimmed video with 
numerous actions as input. Table II displays our MERL 
recognition results, and Table III compares our detection 
results to those previously published because the recognition 
results for this dataset haven't been disclosed before by any 
other method, this presents a new challenge for future research, 
allowing other algorithms to compare their detection accuracy. 
As we've seen and as our results show, the accuracy of 
detection should be near to the precision of recognition for a 
decently good detection approach. As compared to other 
approaches, we significantly have higher Intersection over 
Union (IoU) (average 0.77 compared to 0.5 as the maximum 
reported) over previous methods while attaining better 
detection results, too. 

TABLE II.  RESULTS OF PROPOSED METHOD ON MERL DATASET 

Details In Percentage 

Overall recognition Accuracy 71.14 

F1 @ 50 67.11 

Frame wise accuracy 71.41 

TABLE III.  COMPARISON OF RESULTS WITH PROPOSED METHOD (MERL 

DATASET) 

Methodology F1 {IoU = 0.5} 

Accuracy in 

Percentage 

(Frame-Wise) 

Multi-stream bi-

directional RNN [4]  65.4 76.3 

Temporal Convolutional 

Networks 72.9 79.0 

Two stream CNN 
74.8 77.1 

Proposed methodology 
77.46 75.13 

V. CONCLUSIONS 

The authors have developed a framework for fine-grained 
activity recognition and detection in retail environments. Due 
to the short time between each action, considerable intra-class 
variance, and low inter-class variation, fine-grained detection is 
difficult; these difficulties contribute to the task's intrinsic 
complexity. Furthermore, the work is made more difficult by 
the extrinsic difficulty of a rare and unusual camera viewing 
angle. We developed a semi-supervised technique employing 
GAN to fine-tune posture estimate results when there is a 
discrepancy in the images present at different angles during 
training and prediction. We gave detailed experimental data to 
demonstrate the method's applicability in real-world scenarios, 
particularly in shopping contexts, which have their own set of 
characteristics and obstacles. 
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When direct estimation fails, we speculate that combining 
pose estimation with image sequences is one way to use the 
associated range of motion as background information for 
forecasting joint location in the next time step (e.g., occlusion). 
Furthermore, we believe that describing the attention process 
as a salient region localization job for an expert system might 
lower the computation cost of its training and prediction, given 
the recent success of deep reinforcement learning 
methodologies. Further attempts at face expression recognition 
and/or eye gaze prediction provide more data for deep 
customer behavior analysis. 
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