
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 9, 2022 

196 | P a g e  

www.ijacsa.thesai.org 

The Performance Evaluation of Transfer Learning 

VGG16 Algorithm on Various Chest X-ray Imaging 

Datasets for COVID-19 Classification 

Andi Sunyoto1*, Yoga Pristyanto2, Arief Setyanto3 

Fawaz Alarfaj4, Naif Almusallam5, Mohammed Alreshoodi6 

Computer Science Department, Universitas Amikom Yogyakarta, Yogyakarta, Indonesia1, 2, 3 

Computer & Information Sciences Department, Imam Mohammad Ibn Saud Islamic University, Kingdom of Saudi Arabia4, 5 

Department of Natural Applied Science, Applied College, Qassim University, Buraydah, Kingdom of Saudi Arabia6 

 

 
Abstract—Early detection of the coronavirus (COVID-19) 

disease is essential in order to contain the spread of the virus and 

provide effective treatment. Chest X-rays could be used to detect 

COVID-19 at an early stage. However, the pathological features 

of COVID-19 on chest X-rays closely resemble those caused by 

other viruses. The visual geometry group-16 (VGG16) deep 

learning algorithm based on convolutional neural network 

(CNN) architecture is commonly used to detect various 

pathologies on medical images automatically and may have a role 

in the detection of COVID-19 on chest X-rays. Therefore, this 

research is aimed to determine the robustness of the VGG16 

architecture on several chest X-ray databases that vary in terms 

of size and the number of class labels. Nine publicly available 

chest X-ray datasets were used to train and test the algorithm. 

Each dataset had a different number of images, class 

compositions, and interclass proportions. The performance of the 

architecture was tested using several scenarios, including 

datasets above and below 5,000 samples, label class variation, 

and interclass ratio. This study confirmed that the VGG16 

delivers robust performance on various datasets, achieving an 

accuracy of up to 97.99%. However, our findings also suggest 

that the accuracy of the VGG16 algorithm drops drastically in 

highly imbalanced datasets. 

Keywords—Covid-19; Chest X-Ray; CNN; transfer learning; 

VGG-16 

I. INTRODUCTION 

X-ray images are often used to detect changes in the lungs, 
such as pneumonia caused by viral infections. Pneumonia is 
also one of the key indicators of an infection caused by 
coronavirus disease (COVID-19). However, the manual 
evaluation of X-ray images is time-consuming and often 
subjective. Artificial intelligence (AI) could be used to 
automatically distinguish infected and infection-free patients 
by extracting specific shapes and spatial features visible on 
chest X-ray images. Many studies have been carried out using 
X-ray images to detect Middle East Respiratory Syndrome 
Coronavirus (MERS CoV) since there are features on chest X-
rays and CT that resemble pneumonia manifestations [1]. A 
convolutional neural network (CNN) model has been 
developed to identify the nature of the pulmonary modulus on 
CT images and diagnose pneumonia on chest X-ray images [2]. 

COVID-19 symptoms include cough, fever, dyspnea, and 
respiratory problems. In more severe cases, COVID-19 can 
cause pneumonia, acute respiratory distress, septic shock, 
failure of internal organs, or even death [4]. Reverse-
transcription-polymerase chain reaction (RT-PCR) of samples 
obtained from either blood or the respiratory system is often 
used to diagnose COVID-19. Furthermore, due to the highly 
infectious rate of COVID there is a high demand for this 
service which leads to further delays to obtain the test results. 
Therefore, in the emergency department, the initial diagnosis 
of symptomatic patients is more likely to be done through a 
plain chest X-ray or CT scan. The early identification of 
COVID-19 on plain X-rays or CT images is essential to isolate 
patients and hence minimize the spread of the disease as well 
as to treat infected patients more effectively. 

Bilateral pulmonary parenchymal ground-glass and 
consolidative pulmonary opacities, with a rounded shape and a 
peripheral lung distribution, are common chest X-rays in 
COVID-19 patients [3]–[5]. Pneumonia is also an important 
indicator of COVID-19. However, these pathological features 
may closely resemble those caused by other viral infections, 
which makes it difficult for the radiologist to identify the type 
of infection. Deep learning algorithms based on convolutional 
neural network (CNN) architecture could be used to identify 
specific COVID-19 features on X-ray images. 

CNN algorithms are easy to model and reliable. As a result, 
they are currently the most widely used artificial intelligence 
(AI) model for the detection of COVID-19 on X-ray images 
[6]–[13]. We reviewed several studies that made use of the 
CNN architecture to diagnose COVID-19 on chest X-rays, as 
shown in Table I. Our findings indicate that the CNN model 
developed by the visual geometry group with 16 depth layers 
(VGG16) has been applied in about 50% of the COVID-19 
studies [6], [8], [9], [13]–[15]. The VGG16 also performed 
very well when compared with other established models. 
However, although studies based on the VGG16 models 
reported high levels of accuracy, research on COVID-19 is still 
evolving. Furthermore, most of the studies were based on a 
single dataset, potentially limiting the generalizability of the 
model. Therefore, the efficacy of the VGG16 model needs to 
be tested further on new emerging datasets. Because of these 
facts, we assessed additionally; we aimed to identify more 
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pathological features on chest X-rays indicative of COVID-19 
and other infectious diseases. This research contributes by 
testing the performance of VGG-16 on large, popular datasets 
and determining its level of accuracy. The results of this study 
will help to detect indications of COVID-19 more accurately in 
x-ray images and obtain alternative diagnoses of symptoms 
similar to those of COVID-19. 

II.  METHODS 

The research framework was divided into four steps: 
identification of publicly available chest X-ray datasets, image 
preprocessing, training and finally testing of the VGG16 
algorithm, as shown in Fig. 1. 

A. Data Collection 

Several publicly available image data repositories were 
searched using the keywords "COVID-19 X-ray". The search 
yielded 28 datasets composed of chest X-ray images used to 
diagnose COVID-19. The files within these datasets were 
reviewed to ensure that they contained chest X-ray imaging 
files that could be read by the COVID-19 detection system. 
Only the data set including big data i.e. containing more than 
1000 images were included in the study. A total of nine 
datasets met the inclusion criteria. The final total datasets 
consisted of a total of 38,181 X-ray images. The images were 
classified into four categories: normal, pneumonia, viral 
pneumonia, and COVID-19, as shown in Fig. 2. However, the 
number of classifiers varied between the different datasets. The 
dataset source, the total number of images, and the number of 
classifiers within each dataset are summarized in Table II. 
Table II shows sample images for each class and the 
percentage number of images per class. 

B. Image Preprocessing 

The VGG16 architecture uses a kernel size of 3x3 with an 
input image of 224x224x3 for the width, height, and channel, 
respectively [29]. In the preprocessing stage, the VGG16 input 

was scaled to 224x224 pixels. The images of the classes were 
randomly extracted, and finally 80% were used to train the 
algorithm, 20% were used for validation, and the final 10% 
were used for testing as shown in Fig. 3. 

 

Fig. 1. Chest X-rays Illustrating the Four Different Classifiers used in the 

Datasets. 

TABLE I. SUMMARY OF RESEARCH STUDIES COMPARING THE 

ROBUSTNESS OF SEVERAL CNN ARCHITECTURES FOR THE DETECTION OF 

COVID-19 ON CHEST X-RAYS 

Author Methods Best Result 

[6] ResNet50, InceptionV3, and VGG16 VGG16 

[7] 
DenseNet-169+SVM, VGG16, RetinaNet + 

Mask RCNN, VGG16 and Xception 
ResNet50 

[8] 
VGG16, VGG19, ResNet, DenseNet, and 
InceptionV3 

VGG16 

[9] 
VGG16, MobileNetV2, Xception, 

NASNetMobile and InceptionResNetV2 
VGG16 

[10] VGG16, ResNet50, and EfficientNetBo EfficientNetBo 

[16] VGG16 VGG16 

[12] VGG16, DenseNet-161, ResNet-18 ResNet-18 

[13] MobileNet-V2 and VGG16 VGG16 

[17] 
AlexNet, VGG16, GoogleNet, MobileNet-
V2, SqueezeNet, ResNet-34, ResNet-50 and 

Inception-V3 

ResNet-34 

 

 

Fig. 2. Research Framework used to Conduct the Study. 
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TABLE II. DATASETS USED TO EVALUATE THE ROBUSTNESS OF THE 

VGG16 MODEL 

Data Name Source Classes Files 

D1 
Chest X-ray Images 

(Pneumonia)  
[18] 

Normal:1583 

Pneumonia : 4273 
5,856 

D2 
CoronaHack -Chest 
X-ray-Dataset  

[19], 
[20] 

Normal:1576 
Pneumonia : 4334 

5,910 

D3 
COVID-19 
Radiography 

Database 

[21], 

[22] 

COVID-19:219 

Normal:1341 

Viral Pneumonia : 
1345 

2,905 

D4 

Chest X-ray 

(COVID-19 & 
Pneumonia) 

[23]–

[25] 

COVID-19:576 
Normal:1583 

Viral Pneumonia : 

4273 

6,432 

D5 
COVID-19 Detection 
X-ray Dataset 

[18]–
[20] 

Bacterial 
Pneumonia:650 

COVID-19:60 

Normal:880 

Viral Pneumonia : 412 

2,002 

D6 

Covid-GAN and 

Covid-Net mini Chest 

X-ray 

[18]–

[20], 

[26] 

COVID-19:461 

Normal:1583 

Pneumonia:4489 

6,533 

D7 
COVID-19 X-ray 
Images5 

[27] 
COVID-19:60 
Normal: 880 

940 

D8 

Curated Chest X-ray 

Image Dataset for 
COVID-19 

[25] 

COVID-19:1281 

Normal:3278 
Pneumonia-

Bacterial:3001 

Pneumonia-Viral: 
1656 

6,515 

D9 

COVID-19 X-ray 

Dataset with 

Preprocessed Images 

[19], 
[28] 

COVID-19:361 

Normal:365 

Pneumonia:362 

1,088 

 

Fig. 3. Distribution of the Dataset for Training, Validation, and Testing. 

C. Application of the Convolutional Neural Network 

CNN architectures are commonly used in computer vision 
and involve a convolution operation between the input signal 
and the filter. An important step in the development of the 
CNN algorithm involves the use of data pooling and 
convolution operations. During data pooling, the datasets are 
downsampled by averaging the data (average pooling) or by 
obtaining the maximum value (max pooling). In this case, the 
input signal features were derived from the chest X-ray image, 
which is commonly represented as n*m*c, whereby n and m 
represent the image width and length, respectively, and c 
represents the color channels. For example, in a typical red-
green-blue (RGB) image with a pixel matrix size of 256x100, 
the input matrix would be defined as 256x100x3. Convolution 
and pooling operations reduce the complexity by extracting 
only the important features. For example, an input signal 
consisting of 75,000 features can easily be reduced into 512 
features by applying several convolution layers. 

Several CNN-based architectures have been proposed in 
the last decade. Lenet-5 architecture was the first to propose a 
CNN-based architecture to solve a simple handwritten digit 
recognition problem [30]. The work was based on the older 
concepts of neural networks and back-propagation. The big 
leap of CNN-based algorithms was enabled by the availability 
of a large, labeled image dataset called Imagenet [31]. The 
dataset currently contains around 14 million labeled images, 
and it was initiated in 2009 by an artificial intelligence lab at 
Stanford University. Alexnet is the second most well-known 
CNN architecture that had won the Imagenet Large Scale 
Visual Recognition Challenge in 2014 [32]. 

The VGG16 model was initially proposed by Simonyan et 
al. [29] and it secured first place for object localization and 
second place for object classification in the Imagenet Large-
Scale Visual Recognition Challenge 2014 (ILSVRC 2014). 
Since then, numerous other CNN architectures have been 
proposed including Inception net [33], ResNet [34], Inception- 
v4 and Inception-ResNet [33], Mobilenet [35], MobileNet V2 
[36], EfficientNet [37] and XceptionNet [38]. 

The building block of the CNN architecture consists of two 
fundamental components: a convolution layer and a pooling 
layer. The filter size, padding, stride, activation function, and 
connection between layers can be manipulated to improve the 
performance of the algorithm. In order to improve the 
performance of the algorithm, the raw image signal has to be 
converted into a more straightforward representation before 
applying the classification task. The large number of images 
available on the Imagenet database could be used to train and 
compare the performance of various algorithms. Once an 
architecture has been trained and tested on the Imagenet 
images, researchers can ascertain the performance of their 
architectures and determine the weight parameters. 

Transfer learning is a commonly used method in computer 
vision that applies the knowledge gained from the training of a 
network to solve a specific problem to a new similar scenario. 
This eventually reduces the time required for the training 
process allowing for the development of accurate algorithms in 
a shorter amount of time [29]. For example, if a pre-trained 
network previously developed to classify 1000 classes is now 
used for binary classification, the top layer (last layer) is 
adjusted so that the output is changed from 1000 into two 
classes only. The weight parameters also have to be updated in 
all network layers or for some of the layers. However, the 
learning process does not begin from scratch; instead, it starts 
with the pre-trained weight that has been applied to solve the 
previous problem. 

Most model architectures such as VGG16, InceptionNet, 
mobilenet, and XceptionNet were trained on a large dataset 
such as Imagenet. As a result of the high computational cost 
incurred during training, an improved model was developed. 
Canziani et al. [39] conducted a comprehensive analysis of the 
performance of pre-trained models on computer vision 
challenges using data from the Imagenet [31] database. In 
computer vision, the transfer approach is popular because it 
enables the generation of accurate models in a shorter amount 
of time [40]. 

 
Dataset (n) 100% 

  

Class(1) 
Training  
(80%) 

Validation 
(10%) 

Test 
(10%) 

…    

Class(n) 
Training  
(80%) 

Validation 
(10%) 

Test 
(10%) 
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A typical CNN classification task has a feature generator 
and a classifier. The feature map generator input are the raw 
images, followed by a stack convolution and pooling layers. 
The main goal of the feature generator is to produce an array 
representing the input image in a smaller amount of data. On 
the other hand, the classifier's task is to categorize the feature 
into certain target classes. This task can be performed by 
classic classifiers such as support vector machines and decision 
trees. Another option is to place the fully connected layers on 
top of the feature generator. A fully connected layer is one 
whose neurons fully connect to all activations in the previous 
layer. The number of layers in the fully connected layer is 
significant and could be optimized by the researcher manually. 
The depth of the fully connected layers should be taken into 
account as it relates to the overfitting problem of the entire 
network. The deep learning approach independently computes 
the important input features during the learning process. Unlike 
the classical AI algorithm whereby the features extracted by 
the algorithm are based on the objective of the classification 
task and the image input, deep learning models learn 
hierarchical features by adjusting weight parameters on the 
CNN-based feature generator. The pattern of the input is then 
captured by the network and is then used as the input of the 
classifier. The pattern for a specific problem domain is 
accurately recorded as the weight parameter value. In transfer 
learning, the set of values can be applied to another specific 
problem domain. 

Transfer learning involves two key steps. The first step 
involves selecting a pre-trained model, such as VGG16 [29], 
InceptionV3 [41], and ResNet5 [34], to fit the target problem. 
The second step involves the identification of features based on 
the size of the dataset and the similarities between the pre-
trained dataset and the dataset we used. The comparison 
between the pre-trained dataset and our characteristics dataset 
could result in one of the following four transfer learning 
problems whereby the new problem dataset are: 

1) large but dissimilar from the pre-trained dataset 

2) large and highly similar to the pre-trained dataset 

3) small and highly similar to the pre-trained dataset 

4) small and dissimilar from the pre-trained dataset 

In deep learning, a dataset consisting of 1000 labeled 
images per class is considered to be small. Dataset similarity 
refers to the availability of the same problem subset in the pre-
trained dataset. For example, if the task is to recognize dogs 
and birds using a pre-trained network that has been trained on 
an Imagenet dataset since the dataset contains dog and bird 
classes, we can consider that the dataset is highly similar. 
However, in this paper, we classified the visual pathological 
features of COVID-19 patients through visible X-ray images 
which were not available in the Imagenet dataset. Hence, our 
transfer learning problem was due to a small dataset dissimilar 
from the pre-trained dataset. 

This study employed the VGG16 [41], a pre-trained CNN-
based architecture that consists of 16 CNN layers. The VGG 
architecture has already been applied in many medical image 
classification tasks [42]. This research provides an evaluation 
and comparison of the performance of various architectures in 
detecting COVID-19 on various chest X-ray datasets. 

The comprehensive evaluation was made based on the 
accuracy achieved by the VGG16 architecture when applied to 
different datasets. Since the number of classes within the 
dataset varied, the multiclass confusion matrix was used to 
determine the robustness of the VGG16. Table III illustrates a 
confusion matrix with n classes, including the experimental 
results obtained for each scenario. 

TABLE III. MULTICLASS CONFUSION MATRIX 

 
Predicted Number 

Class 1 Class 2 … Class n 

A
c
tu

a
l 

N
u

m
b

er
 

Class 1 𝑥11 𝑥12 … 𝑥1𝑛 

Class 2 𝑥21 𝑥22 … 𝑥2𝑛 

… … … … … 

Class n 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑛 

Furthermore, the performance of the VGG16 model was 
quantified by calculating the total numbers of false-negative 
(TFN), false positive (TFP), true negative (TTN), total true 
positive (TTP) for each class i based on the general equations 1 
to 4. 

𝑇𝐹𝑁𝑖 = ∑ 𝑥𝑖𝑗
𝑛
𝑗=1
𝑗≠𝑖

              (1) 

𝑇𝐹𝑃𝑖 = ∑ 𝑥𝑗𝑖
𝑛
𝑗=1
𝑗≠𝑖

              (2) 

𝑇𝑇𝑁𝑖 = ∑ ∑ 𝑥𝑗𝑘
𝑛
𝑘=1
𝑘≠𝑖

𝑛
𝑗=1
𝑗≠𝑖

             (3) 

𝑇𝑇𝑃𝑖 = ∑ 𝑥𝑖𝑗
𝑛
𝑗=1               (4) 

In addition, the precision (P), recall (R), and specificity (S) 
for each class i were also calculated as shown in equations 5, 6 
and 7. The total accuracy and F1-Score were calculated as 
shown in equations 8 and 9, respectively. 

𝑃𝑖 =
𝑇𝑇𝑃𝑎𝑙𝑙

𝑇𝑇𝑃𝑎𝑙𝑙+𝑇𝐹𝑃𝑖
                (5) 

𝑅𝑖 =
𝑇𝑇𝑃𝑎𝑙𝑙

𝑇𝑇𝑃𝑎𝑙𝑙+𝑇𝐹𝑁𝑖
              (6) 

𝑆𝑖 =
𝑇𝑇𝑁𝑎𝑙𝑙

𝑇𝑇𝑁𝑎𝑙𝑙+𝑇𝐹𝑃𝑖
              (7) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑇𝑃𝑎𝑙𝑙

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔
            (8) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑇𝑃𝑎𝑙𝑙

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑒𝑠𝑡𝑖𝑛𝑔
           (9) 

III. RESULT AND DISCUSSION 

In this study, we made use of nine open databases to 
measure the performance of the CCN transfer learning model, 
VGG16, to detect pneumonia and COVID-19 cases. Each 
database contained more than 1000 images and a total of 
38,181 images were evaluated. The datasets were divided 
according to the number of images and classifiers. The 
robustness of the VGG16 model was then tested on datasets 
that were. 

1) with more than 5000 images. 

2) with less than 5000 images. 
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3) with a different number of classes. 

 

Fig. 4. Relationship between the Number of Classes in the Dataset and the 

Accuracy of the Algorithm. 

Fig. 4 shows the relationship between the number of classes 
in the dataset and the resulting performance of the algorithm in 
terms of accuracy. The accuracy of the algorithm ranged from 
80.10% to 97.99%. The algorithm performed better in datasets 
with three classifiers when compared with datasets with two 
classifiers. The algorithm had the worst performance in 
datasets with four classifiers. 

The performance of the VGG16 algorithm was validated by 
splitting the dataset into three categories; training (80%), 
validation (10%), and test (10%). Fig. 5 illustrates the results of 
the confusion matrix from data test, while Table IV compares 
the accuracy, precision, recall, and F1-score of the VGG16 
model in all of the nine databases evaluated in this study. 

The testing accuracy analysis of the VGG16 algorithm in 
datasets containing more than 5,000 images is illustrated in 
Fig. 6. For this evaluation, we compared the accuracy of the 
VGG16 algorithm in D1, D2, D4, D6, and D8 datasets, which 
contained 5,856, 5,910, 6,432, 6,533, and 6,515 images, 
respectively. Following testing, the VGG16 algorithm in 
datasets with more than 5,000 images ranged from 97.99% to 
88.22%. The findings of this analysis indicate that for both the 
validation and testing the detection accuracy of the algorithm 
decreased as the number of images increased. 

The accuracy of the VGG16 algorithm on datasets 
containing less than 5000 images is illustrated in Fig. 7. For 
this analysis, the D7, D9, D5, and D3 datasets were used, 
which consisted of 940, 1,088, 2,002, and 2,905 images, 
respectively. For the testing data, the mean accuracy of the 
VGG16 algorithm was 94.31% with a range of 80.10-93.84%. 
As shown in Fig. 7, the difference in accuracy within each 
dataset was relatively small except for the D5 dataset, which 
showed an accuracy of 80.10%. However, further analysis 
showed that the low level of accuracy in the D5 dataset was 
caused by the very high-class difference ratio within this 
dataset. 

Fig. 8 illustrates the performance of the VGG16 algorithm 
on datasets with two, three, and four classes. As evident in Fig. 
8, the datasets with two and three classes did not differ much in 
terms of accuracy, but when a dataset has four classes, the 
accuracy decreases by 9.57%. 

Based on the results of this study, we can conclude that the 
performance of the VGG16 algorithm is affected by the 
number of images and the number of classes within the dataset: 
For datasets with more than 5000 images, the accuracy of the 
algorithm decreased as the number of images in the dataset 
increased. The VGG16 model achieved a mean accuracy of 
93.7%. Compared with previous studies, the VGG16 algorithm 
performed well despite its relatively simple architecture. 

For datasets containing less than 5000 images, the number 
of images did not impact the algorithm's accuracy except for 
the D5 dataset. However, the lower performance of the 
algorithm in D5 was attributed to the larger class ratio within 
this dataset. The number of classes within a dataset affected the 
accuracy of the algorithm, whereby the VGG16 model 
performed worse in datasets with four classes. However, 
further research is recommended to test the efficacy of the 
transfer learning VGG16 model on the detection accuracy of 
COVID-19. 

Compared to other popular transfer learning, the advantage 
of the VGG16 architecture is that it has only six layers in 
depth. The small layer makes the identification process fast. 
This fast time allows it to be applied to devices that have low 
specifications and are mobile. In real conditions, the dataset is 
not ideal, with different numbers and ratios between different 
classes. Based on the experiment, VGG16 solved cases of 
COVID-19 data with the characteristics of having a small class 
due to imbalanced data conditions. The limitation of VGG16 
occurs in the unbalanced condition dataset, which has a large 
gap ratio (database D5 in Table II), and the number of classes 
is greater than four this show in Fig. 8. 

TABLE IV. PERFORMANCE OF THE VGG16 ALGORITHM FOR ALL THE 

NINE DATABASES EVALUATED IN THE STUDY 

Data Name Acc. Prec. Rec. 
F1-

Score 

D1 
Chest X-ray Images 

(Pneumonia) [18] 
94.87 94.92 94.72 94.82 

D2 
CoronaHack -Chest X-ray-
Dataset [19], [20] 

97.99 97.65 97.29 97.47 

D3 
COVID-19 Radiography 

Database [21], [22] 
93.84 90.48 88.68 89.57 

D4 
Chest X-ray (COVID-19 & 

Pneumonia) [23]–[25] 
94.73 95.17 89.81 92.41 

D5 
COVID-19 Detection X-ray 
Dataset [18]–[20] 

80.10 80.78 79.91 80.34 

D6 

Covid-GAN and Covid-Net 

mini Chest X-ray [18]–[20], 
[26] 

92.67 89.43 85.75 87.55 

D7 
COVID-19 X-ray Images 

[27] 
88.30 85.98 66.03 74.7 

D8 
Curated Chest X-ray Image 

Dataset for COVID-19 [25] 
88.22 88.68 86.45 87.55 

D9 
COVID-19 X-ray Dataset 
With Preprocessed Images 

[19], [28] 

93.69 93.69 94.03 93.86 
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Fig. 5. Confusion Matrix Illustrating the Robustness of the VGG16 Algorithm in Different Datasets. 

 

Fig. 6. Accuracy from Data Test of the VGG16 Algorithm in Datasets 

Containing more than 5,000 Images. 

 

Fig. 7. Accuracy from Data Test of the VGG16 Algorithm in Datasets 

Containing Less than 5,000 Images. 

 

Fig. 8. Performance of the VGG16 Algorithm based on the Number of 

Classes. 

IV. CONCLUSION 

The aim of this study was to assess the performance of the 
VGG16 algorithm on different datasets. The experimental 
results confirmed the high accuracy of the VGG16 algorithm in 
detecting COVID-19. The study also confirmed the robustness 
of the VGG16 architecture when applied to datasets with 
various image numbers, classes, and class ratios on chest X-
rays. However, in this study, we did not evaluate the impact of 
high-class ratios on the performance of the VGG16 algorithm. 
However, the class imbalance problem can easily be resolved 
via the application of data augmentation and class balancing 
techniques. 
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