
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

239 | P a g e

www.ijacsa.thesai.org

SQrum: An Improved Method of Scrum
Proposed Metamodel for SQrum Method

Najihi Soukaina, Merzouk Soukaina, Marzak Abdelaziz

Department of Mathematics and Computer Sciences, Hassan II University- Casablanca

Faculty of Sciences Ben M’sik, Casablanca, Morocco

Abstract—Software systems are having a major impact on

many aspects of personal and professional life. Safety-critical

applications, such as production line controls, automotive

operations, and process industry controls, rely significantly on

software systems. In these applications, software failure may

result in bodily damage or death. The proper operation of

software is essential to the safety and well-being of individuals

and businesses. Therefore, software quality assurance is of

paramount relevance in the software business today. In recent

years, Agile Project Management and particularly Scrum, have

gained popularity as a method of dealing with "vuca" business

environments, which are characterized by rising Volatility,

Uncertainty, Complexity, and Ambiguity. This paper contributes

to the software development body of knowledge by proposing a

metamodel of Scrum quality assurance, named SQrum (‘SQ’ of

Software Quality and ‘rum’ of Scrum). Our objective is to make

Scrum more efficient and reliable and to assist enterprises in

undertaking quality assurance activities while considering agile

practices and values.

Keywords—Agile project management; IT; OMG; meta-object

facility; MOF; metamodel; scrum; SQrum; quality assurance; QA;

quality management; QM; software development project

I. INTRODUCTION

The capacity to successfully execute Information
Technology (IT) projects has become a crucial and strategic
need for modern organizations. When expenses for field
updates, recalls, repairs, downtime, etc. are included, the
release of a product with problems may be extremely costly.
Damage to a company's reputation is less measurable but
equally significant. In addition, a failed software project might
damage the competitive position of an organization. Value and
quality delivery are essential variables for determining the
success of a software development project; they are crucial
assets for any firm seeking to remain competitive in the
marketplace. Despite extensive efforts to find methods for
maintaining software quality, software projects continue to fail
[1].

There is a growing demand for the deployment of software
development methods that are both flexible enough to keep up
with the rapid rate of change and the competitive market and
rigorous enough to prevent defects and assure product quality.
However, humans are fallible. Even with the most advanced
and conscientious design processes, erroneous outcomes
cannot be avoided beforehand. As a result, software products,
like the outcomes of any engineering effort, must be validated
against their requirements throughout their development. Agile
software development has arisen as an alternative to planning

and managing complicated projects by offering methods to
accommodate frequent project changes.

Agile is a method characterized by continuous iterations
and testing throughout a product's Software Development Life
Cycle. Scrum is the most popular agile approach [2]. Scrum is
a lightweight, agile framework that provides processes for
managing and controlling the software and product
development process. Although Scrum offers a number of
benefits, such as incremental deliverables at the end of each
iteration, stakeholders and product owners can modify
requirements throughout the process, and Scrum can swiftly
adapt to these modifications. Process and product quality
remain Scrum's principal problems.

One of the most significant contrasts between agile and
traditional development is the agile "whole-team" approach [3],
in which quality is the responsibility of the entire team and
quality assurance is incorporated into the process itself, without
an explicit Quality Manager (QM) role. Quality Assurance
(QA) activities are integrated into the team's day-to-day
operations in order to improve product quality through a
smooth process. Large organizations frequently face the issue
of combining the Agile requirements of adaptability,
transparency, and collaboration while also assuring product
quality and adhering to required QA processes. With these
changing issues in this area, businesses struggle to identify the
best method to integrate QA into Agile environments,
particularly Scrum.

Within an Agile team, each team member is responsible for
testing and product quality and participates in test-related
activities. Each member of the team may see quality from a
unique perspective and mindset. All of them are acceptable
contributions to quality, but Scrum projects are still facing
quality challenges due to the lack of defined rules in Scrum.
This necessitates an explicit QM position to incorporate non-
functional requirements (NFR), assure process improvement,
and provide shared ownership of quality. Just as the Product
Owner is responsible for maximizing the value, the QM is
responsible for increasing the quality.

Every member of an agile team is a tester, but a QM is
more than just a tester. A QM on the Agile team is able to give
an overview perspective on all team contributions in order to
establish the product quality strategy. Instead of criticizing,
QM provides proactive ways to improve productivity, promote
software quality within the team, and give software testing and
quality coaching.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

240 | P a g e

www.ijacsa.thesai.org

Quality assurance is like a ship; everyone participates in
making it move forward, but only one person can steer it in the
right direction. A QM is the one who gives the "course" to
follow for the whole team to reach a satisfactory quality level.
He is the one who carries the global vision of the product and
process quality.

The aim of this paper is to propose a new agile approach
called "SQrum", whose central concept is the addition of a new
quality role and all of the artifacts it will require. We will build
a metamodel using the OMG Meta-Object Facility (MOF) that
provides an abstract view of the new agile development
process. The Meta Object Facility (MOF [4]) standard was
created by the Object Management Group (OMG) to facilitate
the development of modeling formalisms in the form of
metamodels. This consists of a set of meta-classes connected
by meta-association [11]. The rest of this paper is organized as
follows: Section II details the related work of this study.
Section III provides an overview of Scrum. Section IV
describes the disadvantages of Scrum. SQrum is presented in
Section V. Finally, Section VI concludes the study.

II. RELATED WORK

Hanssen et al. [5] found that Quality Assurance processes
in Scrum are becoming inadequate. Consequently, they
suggested a new method called SafeScrum, which is a Scrum
variant with some supplementary XP methods that can be used
to develop safety-critical software and IEC 61508 certified
software. They evaluated the standard, sought out an impartial
evaluator, and collaborated with the Scrum team to identify the
required additional tasks to be included in the Safe Scrum
process for an internal quality assurance component. They did
not cover all aspects of quality in a scrum project with the
proposed role.

Jeon et al. [6] explain that Scrum does not place enough
focus on non-functional requirements, whereas the key success
factor of software projects is not only the satisfaction of
functionalities, but also of quality attributes; therefor, they
propose the ACRUM method for the analysis and
incorporation of quality attributes into software projects. Jan
Bosch concurs with Jeon et al. and suggests an approach that
explicitly takes nonfunctional criteria into account during
design.

Timperi [7] explains the weakness of scrum is the lack of
concrete guidance and instructions about quality assurance
activities and that the focus has been on the development
activities while quality assurance practices of different agile
methodologies have received less attention and an overall
picture is missing. The author recommends combining quality
assurance practices of different methodologies, like Scrum and
XP, in order to get good enough software delivered to the
customer.

Aamir et al. [8] assert that due to the rapid delivery process
of sprints, quality is not considered in the scrum framework,
and the majority of Quality Control (QC) operations are
overlooked. To address this issue, the authors offer an
enhanced scrum model for implementing QC activities and
evaluating the product's quality. They also provide a new

concept of "test backlog" for documenting test cases within the
scrum.

Bajnaid et al. [9] addressed the limitations of agile practices
that do not include quality assurance in their process to
guarantee that the quality assurance procedure has been
followed and quality assurance criteria have been satisfied. To
overcome the drawbacks, they suggested a process-driven e-
learning system that senses developers' activities and guides
them through necessary software quality assurance methods
during software development.

III. SCRUM OVERVIEW

Scrum is a management process that was initially
mentioned in 1986 by Takeuchi and Nonaka in their paper
"The New New Product Development Game," in which they
describe a flexible, fast, and self-organizing product
development process .Sutherland and Schwaber [10] used these
discoveries and the word "Scrum" to create the currently
known framework, which was initially introduced in 1995.

Scrum is a lightweight development methodology that
allows IT organizations to handle complicated adaptive
challenges while delivering solutions of the highest possible
quality. Scrum was developed based on the premise that
software development is too complicated and unpredictable to
be meticulously planned at the start of a project [11].
Therefore, a progressive, iterative method is used to maximize
predictability and limit risk. Given that change cannot be
avoided, it must be managed. Scrum handles change by
developing software in iterations as opposed to a one-shot
method.

Scrum is based around three roles (Product Owner, Scrum
Master, and Development Team), four meetings (Sprint
Planning, Daily Scrum, Sprint Review and Sprint
Retrospective) and three artifacts (Product Backlog, Sprint
Backlog, Product Increment) [10] (see Fig. 1.)

Fig. 1. Roles, Artifacts, and Activities in Scrum [12].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

241 | P a g e

www.ijacsa.thesai.org

Each project has a Product Backlog, which is a list of a
product's requirements ordered by business value. It is a
constantly evolving document based on changing requirements,
changing problem understanding, and changing contexts. Each
Product Backlog Item (PBI) is estimated using an abstract
effort measure based on "Story Points" and has a set of
acceptance criteria.

Scrum teams are self-organized, multi-skilled, and capable
of producing products iteratively and incrementally, thus
increasing opportunities for ongoing feedback. A Scrum team
consists of a product owner, who acts on behalf of the client
and is charged with maximizing the value of the developed
product, and a development team, which is responsible for
creating the product. The development team is made up of
developers and a Scrum master. The Scrum master is a
facilitator who ensures that the development team is supplied
with an appropriate environment to finish the project
effectively, removes impediments for the team, and guarantees
adherence to Scrum practices.

The Scrum development process is carried out by cross-
functional teams of individuals with diverse skill sets[10]. The
teams often possess a variety of specializations, including
programming, testing, analysis, database administration, user
experience, and infrastructure. All of these skills are required
to provide the product, and Agile projects employ a whole-
team approach to execute it. Advantages of employing a
whole-team approach include the fact that quality is everyone's
responsibility. Scrum focuses on developing high-quality
software within a timeframe that optimizes its business value.
This is everyone's responsibility, not just the testers. Every
member of a scrum team is a tester. Tests, from the unit level
on up, drive the code, teach the team how the program should
function, and indicate when a task or story is "done." A Scrum
team must have all the competences necessary to generate
high-quality code that provides the organization's requested
features. This means that the team is responsible for all testing
activities, including test automation and manual exploratory
testing. It also implies that the entire team continuously
considers testability while creating code.

Scrum divides a project into iterations known as "Sprints".
A Sprint is a time-boxed, often 30-day iteration in which the

Scrum team adds new features to the product. The sprint begins
with a "Sprint Planning Meeting" where the team picks from
the product backlog the items to be handled in the sprint and
plans the work to be performed. The team will estimate the
selected items based on their velocity (e.g., the number of
"story points" they can execute within a predetermined time
limit). The result of planning is turned into an objective known
as the "Sprint Goal" The Scrum Team then has an internal
meeting and utilizes the Sprint Goal to generate a list of the
necessary requirements to achieve the target. These
requirements are decomposed into "tasks" that become entries
in the "Sprint Backlog." The success of the sprint is based on
the achievement of the sprint goal [2].

During the sprint, the team holds daily 15-minute stand-up
meetings called “Daily Scrum” with the purpose of assessing
progress and maximizing the chance that the development team
will accomplish the sprint goal. Each team member responds to
three questions [13]:

 What progress has been made since the last meeting?

 What will be accomplished by the next meeting?

 What impediments stand in the way?

The Sprint yields a deliverable product increment as its
final output. During a 4-hour Sprint Review, the Scrum Team
inspects the product increment, evaluates what they were able
to accomplish during the sprint, and modifies the product
backlog as needed prior to the next Sprint Planning meeting
[17]. The “Product Owner” will approve the needs for the live
system based on the requirements and their preset acceptance
criteria.

The last meeting of a "sprint" is the "retrospective," at
which time the team examines and comments on itself and the
project in terms of people, relationships, processes, and tools.
As a consequence, an improvement strategy may be developed.

Merzouk et al. [12] proposed, in their paper titled "Towards
a New Metamodel Approach of Scrum, XP, and Ignite
Methods," a metamodel of Scrum (see Fig. 2).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

242 | P a g e

www.ijacsa.thesai.org

Fig. 2. Proposed Metamodel for Scrum Method [12]

IV. CRITICAL ANALYSIS OF SCRUM

Scrum is the most popular and effective Agile methodology
due to its many advantages, including quick delivery and
flexibility to change. It emphasizes customer satisfaction,
continuous feedback, and process transparency. In spite of its
many advantages, it has three disadvantages. First, Scrum
backlogs focus only on functional requirements (FR) and tend
to neglect non-functional requirements (aka Quality Attributes;
see Fig. 3) [6] [14]. Second, the majority of quality assurance
activities are skipped in scrum due to the sprint's short period
and the lack of a dedicated quality management role [8].
Finally, in Scrum, the requirements are typically managed by a
person with a business-oriented profile. Thus, the focus is on
the development activities that produce business value, while

quality assurance practices receive less attention and an overall
picture is missing [7].

This study proposes the SQrum as the solution to the
aforementioned problems. SQrum is built on the traditional
scrum to present a more effective method.

Our new approach will improve classic Scrum in three
ways.

 The quality attributes will be considered and included
in the product backlog.

 Quality assurance activities will be effectively handled.

 The tester's responsibilities will be precisely outlined.

Fig. 3. ISO 9126 Model for Quality Attribute [15].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

243 | P a g e

www.ijacsa.thesai.org

V. PROPOSED METHOD

A. SQrum Quality Artifacts

SQrum intends to incorporate the DoD as an artifact into its
new model and proposes four new artifacts: QA strategy, test
plan, defect backlog, and test library.

1) Definition of done: DoD is a significant part of the test

plan. It is used by the QM as a check list of items, each one

used to validate a story or a PBI for completeness. Unlike the

acceptance criteria, the DoD is applicable to all items in the

Product Backlog, not just a single user story. It is applied to

the product increment as a whole [16]. The QM collaborates

with the PO and the dev team to identify all the conditions that

make an increment shippable or not at the end of the sprint.

This proposal's DoD should emphasize quality attributes.

2) QA strategy: A QA strategy is a long-term plan of

action, the key word being “long-term” about the overall test

approach to projects. It defines the project’s testing guidelines

on how to test the target system.

Using the ship analogy once more, the QA strategy
symbolizes the "course" to follow in order to reach the final
destination.

QA strategy is a static high-level document that can be used
as a reference that doesn’t change much over time and needs to
be updated only if processes change. It generally includes
decisions made in terms of sprint timelines, test types required,
infrastructure such as test management tools, defects
management tool, test environments, test monitoring and
reporting.

3) Test plan: A test plan is a concise and lightweight

document used to organize the test activities. Each sprint has

its own test plan, which is a living document that changes and

evolves based on sprint requirements. A test plan outlines the

scope, approach, resources, and schedule of planned testing

activities. It identifies, among other things, the items and

features to be tested, the assignment of tasks, the DoD and the

test types to be performed, the test environment, the test

design techniques, test data requirements and test

measurement techniques to be used, the risk and dependencies

assessment carried out, automation tests programmed, and

time budget allocated. Continuing with the ship metaphor, the

sprint is the trip, and the test plan is all that is required to

ensure its success.

An Agile Test Plan is a crucial document since it collects
all the answers to test-related questions in one place.

4) Defect backlog: A defect backlog is an ordered list of

all the known defects in the project that haven't been fixed yet.

Defects may be functional, describing misbehavior or
technical related to quality attributes such as performance,
security, or other. The remaining bugs can be calculated by
subtracting the fixed bugs from the total bugs:

Remaining bugs = number of total bugs - fixed bugs

There are three types of defects that we can find in the
defect backlog:

 Defects within the current iteration: These are defects
that can’t be fixed immediately and do not impact the
increment date of release. Ideally, defects should be
corrected as soon as they are discovered, before they
become massive, tangled defects.

 From the Legacy System: These are inherited defects
of the old system that have remained hidden until now.
When found, they are logged to the defect backlog and
the QM with the team can choose to fix them or not. If
so, they will be prioritized as part of the product
backlog.

 Found in Production: These are bugs found by the
customer in production. Depending on their severity,
these bugs may be fixed immediately, at the time of the
next release, or they’ll be estimated, prioritized, and
put in your product backlog.

5) Test library: Scrum uses an iterative approach for

product development; the same approach can also be applied

to testing. As a product is produced, the test library expands

progressively. It includes test cases, test scenarios, and test

campaigns. User stories are the basis for the creation of test

cases. The relationship between test cases and user stories in

the sprint backlog is one-to-many, as a single user story may

have numerous test cases. The test cases are similar to puzzle

pieces that compose the test scenario (see Fig. 4), and test

scenarios are the main components of test campaigns. Each

campaign is designed to evaluate an increment. Utilizing the

library enables testers to save time since for each new script,

there are reusable components that can be used to develop a

new test campaign. Also, all they have to do is make test cases

and scenarios for the new features. For example, a first sprint

is conducted to develop a command-launching feature. The

test campaign is then utilized to check that this increment

functions properly. Sprint 2: This sprint's objective is to

develop functionality that allows for the management of

billing for placed orders. Testers won't have to start from

scratch to test this new feature. Instead, they can use the first

tests they ran to launch the order and finish this test campaign

with tests that make sure billing is handled correctly.

Fig. 4. The Components of a Test Campaign.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

244 | P a g e

www.ijacsa.thesai.org

B. SQrum Events

1) Refactoring iteration: it is a didicated sprint for

continuously enhancing the design of an existing solution

without modifying its core behavior. Agile teams

incrementally maintain and enhance their code from Sprint to

Sprint. If code is not refactored, the resulting product will be

of poor quality, with unhealthy dependencies between

building blocks and improper allocation of component

responsibilities [17].

2) Product backlog grooming: is a meeting that helps the

Product Owner maintain his Product Backlog . He can ask for

the aid of the team in creating and refining Product Backlog

Items, estimating the amount of work required to complete a

PBI, and prioritizing PBIs in the Product Backlog to ensure

that the Product Backlog is ready according to the Definition

of Ready [18].

C. Quality Manager Responsibilities

1) Manage quality attributes: Quality Manager is

responsible for NFR Also known as quality attributes (see

Fig. 3), QM works with the scrum team to analyze the quality

attributes based on the functional requirements. With the

agreement of the product owner, he complete the product

backlog by mapping out the functional requirements and the

quality attributes. QM can use three ways to elicit NFR

1) Acceptance criteria 2) User story 3) Definition of done.

QM plays an important role in every stage of the sprint:

 During the Product Grooming meeting, the QM begins
gathering NFR by asking the PO and the development
team several questions, such as: the system's scalability
when more resources are added; the likelihood of the
system performing without failure; and how long data
should be retained in the system for reference (this
might be a government/national regulation); What are
the consequences if the user cannot access the system?

 Prior to Sprint planning: QM works with the PO to
complete the product backlog.

QM incorporates NFR testing into the test plan.

 Sprint planning: QM presents and explains to the
development team the identified NFRs for each user
story.

 Daily meeting: QM tracks NFR work progress and
assist the team in overcoming difficulties.

QM assists the team in remembering the importance of the
quality attributes.

 Review meeting: While the PO focuses on the FR, the
QM examines the NFR.

 Retrospective: QM recommends enhancements to
increase product quality. For instance, devote more
time to quality attributes such as security.

2) Manage testing activities: The SQrum method

enhances the classic scrum "whole team" approach, in which

every team member is responsible for quality and every team

member is a tester [19]. SQrum proposes to give the

responsibility for managing testing tasks to a single member

who is the Quality Manager. QM's mission is not to pilot and

supervise the SQrum team, but to accompany and coach them

to ensure that they have all they need to execute QA activities.

His role is to:

 Break down testing activities into several tasks.

 Ensure that the appropriate testing tasks are scheduled
during release and iteration planning sessions.

 Assign testing responsibilities to team members so that
everyone is aware of what to accomplish.

 Ensure that all testers meet their deadlines for work
completion.

 Take notice of test-related challenges and attempt to
address them.

 Ensure that each tester has the skills and knowledge
necessary to develop and perform the tests required for
each user story.

 Employ pair testing to address the skills gaps of the
tester.

 Help to estimate the overall test effort and the technical
resources need it.

3) Define QA strategy: In Sprint Zero (also known as the

pre-planning phase of a sprint project), the QM collaborates

with the scrum team to develop the QA strategy. However, his

responsibilities do not end there because he is also responsible

for keeping the QA strategy updated. The QA strategy is used

by the quality manager to provide a new tester with an

overview of the test process.

4) Establish the test plan: Before the sprint planning, the

QM asks the PO about what stories will be in the next sprint,

so he takes time to understand functionally and technically the

requirements, and he starts working on his sprint plan. When

the sprint planning comes, he already has an idea about quality

attributes, possible issues and dependencies, data creation

estimation, and test effort. This raises awareness of potential

resource, time, and scope of work constraints confronting

testers, as well as risks that must be discussed and addressed.

This also allows the PO to reevaluate the level of quality he

requires, and how much work should fit within the actual,

achievable velocity of the sprint.

The Quality Manager may delegate the preparation of the
test plan to a member of the team, but he remains responsible
for the veracity of the information included within.

5) Help the team in expressing its DoD: The Quality

Manager assists the team in creating a common understanding

of quality to ensure that each user story makes sense within

the context of the product's bigger story. The QM helps the

team in formulating its DoD by asking the appropriate

questions, such as:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

245 | P a g e

www.ijacsa.thesai.org

Are functional tests passed?

Is acceptance testing finished?

Are quality attributes considered?

6) Tracking test tasks and status: At any point in the

sprint, the Quality Manager must be able to quickly determine

how much testing work remains on each story and which

stories are "done." He must also ensure that no story is "done"

until it has been tested at all appropriate levels. This helps him

to check if the team is on schedule and to anticipate if there is

a story that cannot be completed and he must remove it or ask

programmers to help with the testing tasks.

Tracking the number of tests produced, executed, and
passed at the story level helps indicate the status of a story. The
number of tests written shows the progress of tests to drive
development. Knowing how many tests aren’t passing yet
gives you an idea of how much code still needs to be written.
The burndown chart is an example of a method used for
measuring team progress.

Story or task boards are a helpful visual way to determine
the state of an iteration, particularly if color coding is utilized;
there are different colored index cards for the various types of
tasks, such as green for testing, white for coding, and yellow
and red for defects . Progress tracking can be achieved by any
method and with both virtual and physical storyboards, as long
as it enables the QM to see at a glance how many stories are
"done," with all coding, database, and testing completed, and
whatever the team's DoD is.

7) Identify risks and threats to sprint: Every user story in

the product backlog is a potential risk. A story risk is the level

that a user story will fail (the impact of the failure multiplied

by the probability of failure). The key purpose of the risk

prediction is to accurately anticipate the testing work so that

all user stories can be tested in accordance with the risk level

defined by the entire team. A simple test is sufficient for

stories with a low likelihood of failure. Unlike stories with a

high failure risk, which require a very careful test plan

containing a variety of test techniques. Stories with a high

failure risk require a very careful test plan containing a variety

of test techniques. The QM assists the team in achieving the

ideal balance between sufficient quality and acceptable risk,

on the one hand, and time and resource limits, on the other.

The QM can initiate the identification and assessment of
risk for both functional and non-functional requirements prior
to sprint planning, and the team can finish the risk analysis
during sprint planning. If there is not enough time to address
the relevant risks at this meeting, the QM can ask the Scrum
Master to organize a risk poker session. Once the risks have
been identified, the team classifies and evaluates them based
on likelihood and impact. This assessment is recorded in the
test plan and taken into account during the design,
implementation, and execution of tests for this iteration.

8) Track defect: Since quality is the concern of the entire

team, everyone works collaboratively throughout. The Quality

Manager's responsibility is to assist the SQrum team in setting

targets relating to defects and using the right metrics to assess

progress toward these goals. Gathering metrics on defects

helps reflect the trend, which means the growing attitude in

the number of defects in the defect backlog over a period of

time. Another QM’s responsibility is to communicate the

trend in the defect backlog to the SQrum team. If the defect

backlog is decreasing, there are no concerns. If it is increasing,

the SQrum team must invest time in analyzing the underlying

cause. In order to address the root cause, the QM must tell the

SQrum team about the nature of the defects. If the defects

could not have been detected using unit tests, then perhaps the

programmers need additional training in unit test writing. If

defects are missed or functional requirements are

misinterpreted, then perhaps not enough effort is spent on

sprint planning or acceptance tests are insufficiently thorough.

The QM can use a visual technique such as "Defect Trend
chart." As shown in Fig. 5, the "Defect Trend chart" is a
graphical representation of reported defects over time. The x-
axis represents a period of time, while the y-axis represents the
number of defects.

9) Manage defects backlog: The Quality Manager is in

charge of the Defect Backlog, which includes what's in it,

when it's available, and how it's organized. Before sprint

planning, the quality manager makes an initial selection of

defects based on their severity. Product backlog grooming is

an excellent opportunity to discuss this selection with the

product owner in order to determine which defects to fix first.

The selected defects are presented to the team during the

sprint planning and are scheduled for the next sprint.

The QM must ensure that the team does not accumulate
technical debt, particularly when working with legacy code.
The longer a defect remains in the system, the greater its
impact. Defects in a code base have negative effects on code
quality, system security and flexibility, team effectiveness, and
velocity.

Fig. 5. Defect Trend Chart.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

246 | P a g e

www.ijacsa.thesai.org

Early detection and correction of defects is more cost-
effective. In iSixSigma Magazine, Mukesh Soni [20] cites an
IBM report stating that a defect discovered after product
release costs four to five times as much as one discovered
during product design and up to 100 times as much as one
discovered during product maintenance.

The QM must constantly evaluate the amount of technical
debt dragging it down and work on reducing and preventing it.
The QM needs to persuade the product owner of the benefits of
addressing technical debt by demonstrating that technical debt
may be costing the business money due to decreasing velocity.
The team’s velocity is sometimes consumed by bug fixes and
trying to make sense of the code.

The QM can request that the PO reduce the scope of his
desired features to allow sufficient time for good practices such
as continuous small refactoring, which results in improved test
coverage, a solid foundation for future development, decreased
technical debt, and higher overall team velocity.

If it is insufficient and the PO cannot budget time in each
iteration, the QM may suggest to the PO that a "refactoring
iteration" be planned as a last resort to upgrade or add
necessary tools, reduce technical debt, automate more tests,
and perform major refactoring efforts. Planning refactoring
iterations at regular intervals improves quality, maintains the
system and its infrastructure, and preserves the team's velocity,
allowing the team to move faster.

10) Help the team stay focused on the big picture: he

Quality Manager tries to put each story in the context of the

whole system by looking at possible risks, dependencies, and

unplanned effects on other parts. The QM assumed the

perspectives of the user, product owner, programmer, and

tester, as well as everyone engaged in building and using the

features. He can consider the effects of FR and NFR on the

larger system and bring this to the attention of the team.

Everyone on the team may easily focus their attention on the

work or story at hand. This is a disadvantage of working on

small feature portions at a time. The goal of the QM is to help

the team take a step back and evaluate how their current

stories fit into the big picture. QM keeps challenging the team

to do a better job of delivering real value.

11) Keep testing environment updated: Testers cannot test

effectively in the absence of a test-controlled environment.

The QM must continuously inspect test environments and

collect information regarding the deployed build, database

schema, whether or not somebody is altering the schema, and

other processes operating on the system. This information

enables him to sustain the test environment with the most

recent or updated version and eliminate the obsolete test

environment, its tools,and techniques. This is also true for

databases. Sometimes other teams can modify fields, add

columns, or remove obsolete ones. The QM must be aware of

all these changes in order to keep his database updated.

D. SQrum Process

We have identified eleven quality manager responsibilities.
This list of eleven responsibilities indicates the tasks for which
the QM is accountable; the remaining QA activities can be
performed by the rest of the team, since quality is still owned
by the entire team (everyone is a tester), but managed by just
one person.

SQrum method follows eight phases, which are: Project
Initiation, Sprint 0, Product Grooming, Sprint Planning, Sprint
Execution, Sprint Demo, Sprint Retrospective, and Release.
These phases are described in Table I with the artifacts of each
phase.

E. SQrum Metamodel

This section presents the proposal of the new SQrum
method as a metamodel. As shown in Fig. 6, the SQrum
Metamodel is based on the transformation of the method’s
concepts into metaclasses linked by meta-associations, which
define the kinds of relationships between these concepts. The
green metaclasses represent the new concepts added to the
Scrum method related to QA viz, Test Library, Defect
Backlog, Definition of Done, QA Strategy, Refactoring
Iteration, Test Plan, Product Grooming, and Quality Manager.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

247 | P a g e

www.ijacsa.thesai.org

TABLE I. SQRUM PROCESS

 Project

Initiation
Sprint 0 Grooming Sprint Planning Sprint Execution Sprint Demo

Sprint

Restro
Release

A
c
ti

vi
ti

e
s

 Create

project Idea
 Define

project

start/end
dates

 Team

composition
 Get a Quality

Manager

 Define sprint

length

 Train the team in
the SQrum method

 Communicate the

role of QM
 Define the QA

strategy

 Setup the test
environment

 Build the test

infrastructure

 Identify

product’s
quality

attributes

 Identify risk
and

dependencies

 Review the
future scope

 Plan tests

 Keep testing
environment

updated

 Define DoD
 Identify

acceptance

criteria
 Estimate test

effort

 Plan tests
automation

 Identify test data

 Participate in

sizing stories

 Complete

product backlog
with NFR

 Track tests
activities

 Track defect

 Report defect
 Write and execute

tests campaigns

 Perform
nonfunctional

testing

 Communicate tests
results

 Report test

impediments
 Create test data

 Run automated

testing scripts

 Automate new

functional tests

 Review of resolved
defects

 Pair-test with

other testers

 Check

functional and

non-functional
requirements

 Report defect

 Inspect the

process and
people

 Identify

improvement
s

 Participate in

release to

production
 Train end users

A
rt

if
a

ct
s

 Project idea QA strategy

 Product

backlog
 Defect

backlog

 Product backlog
 Sprint backlog

 DoD

 Defect backlog
 Test plan

 Sprint backlog

 Increment
 Defect backlog

 Test library

 Increment
 QA strategy
 Test plan

 Increment

Fig. 6. Proposed Metamodel for SQrum Method.

VI. CASE STUDY AND EVALUATON

A. Project Description

To validate our model, we conducted a four-month case
study on a software development project in a multinational
telecommunications and IT services company, which is a large

mobile network operator that serves European and worldwide
companies. When we began the case study, the project had
been underway for more than a year, and the team was using
the agile scrum methodology. The main goal of this project is
to rebuild a legacy system used by the project managers to plan
and manage the deployment of internet solutions for enterprise

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

248 | P a g e

www.ijacsa.thesai.org

customers (btob business model). By rebuilding the system, the
company wants to establish a new technological system,
standardize further development and maintenance procedures,
improve the system's quality and facilitate project managers’
work. The team has agreed to test our method to determine if it
will help them achieve this goal. Before starting the use trial,
the team received SQrum training. The case study was
distributed into four increments. Three are development
sprints, and one is a refactoring sprint. Sprints were 4 weeks
long. One quality manager, one product owner, seven
developers, and one scrum master made up the team that
worked on the project.

The company required a 10-month trial period, and if the
deployment is successful, it will adopt SQrum as a standard
methodology for two of its projects.

B. First Results

This section presents results after only four months of using
SQrum. It is a classification of the team's feedback about which
aspects they think have been improved using SQrum.

1) Awareness about quality: All the team members

reported that SQcrum made them more aware of software

quality during the sprint. Developers paid more attention to

quality and were more focused.

2) Better organization and more communication:

Communication and organization were also cited by the team

as SQrum improved aspects. Since the QM took over the

management of everything related to quality, the Scrum

Master was able to focus on monitoring development activities

and assisting the team in overcoming obstacles.

The team was also able to communicate more effectively as
a result of the new SQrum events, since each event provided an
opportunity for sharing and interacting.

3) Efficiency improvement: The team members reported

improved efficiency. By mapping out the functional

requirements and quality attributes, the QM helps the PO

define clearer user stories from a technical perspective. Due to

the clarity of the user stories, the team was more efficient and

had a better knowledge of what to do and how to do it, as well

as a better understanding of potential risks. which has

improved not only the efficiency of the team but also the

quality.

4) Better use of team velocity: Analysis and verification of

quality attributes on a periodic basis, as well as the

implementation of a refactoring sprint, led to a reduction in

defect counts and defect-fixing time, resulting in a 21%

increase in development productivity. The team spent more

time in providing value rather that fixing issues.

5) Testing properly: The team found that the tests had

been enhanced; they were better documented and structured as

a result of the use of the test library. That helped them keep

the balance between communication and documentation.

Developers also reported that with the help of the test plan,

they were able to test more thoroughly and were aware of the

aspects to be taken into account when testing in order to

improve quality.

6) Improving quality: Initiating the refactoring iteration,

checking the quality attribute, and using the newly proposed

artifacts decreased the defect density and time required to fix

defects. The prevention and control of bugs contributed to a

36% decrease in the defect density of the project, and the time

necessary to remedy defects was decreased by 41% by easily

locating the spot of change and estimating side-effects.

C. Aspects to be Improved

Despite the positive results of SQrum, months is not
enough time to test all its aspects. Also, for a better assessment
of quality, the method needs to be used on large-scale projects
with SAFe.

The members suggested detailed guidance on analyzing the
quality attributes and enhancing the traceability, they also
suggest a burn-down chart to assess the current state of the QC
activities in SQrum.

VII. DISCUSSION AND CONCLUSION

Scrum is the most used method because it is adaptable to all
project types. It is an iterative and incremental method that
helps teams to deliver a high-quality project. Scrum's primary
issues continue to be process and product quality.

This study introduces SQrum which is an adaptation of
Scrum that includes and promotes the existence of a quality
owner role.

SQrum provides a quality enhancement by adapting the
traditional Scrum to emphasize non-functional requirements,
establishing a new role and new artifacts to focus on control
assurance activities, and ensuring that the quality assurance
process has been adhered to.

In an ideal world, the goal would be to have zero defects,
but due to the sprint's short lifecycle, this goal is almost
impossible to achieve. Quality should not be seen as a
constraint, but rather as a tool for maximizing business value.
The QM's responsibility is to assist the PO in finding the ideal.

REFERENCES

[1] T. Khalane and M. Tanner, “Software quality assurance in Scrum: The
need for concrete guidance on SQA strategies in meeting user
expectations,” in 2013 International Conference on Adaptive Science
and Technology, Pretoria, South Africa, Nov. 2013, pp. 1–6. doi:
10.1109/ICASTech.2013.6707499.

[2] A. Srivastava, S. Bhardwaj, and S. Saraswat, “SCRUM model for agile
methodology,” in 2017 International Conference on Computing,
Communication and Automation (ICCCA), Greater Noida, May 2017,
pp. 864–869. doi: 10.1109/CCAA.2017.8229928.

[3] L. Crispin and J. Gregory, Agile Testing: A Practical Guide for Testers
and Agile Teams. Pearson Education, 2009.

[4] “MetaObject Facility | Object Management Group.”
https://www.omg.org/mof/ (accessed Sep. 01, 2022).

[5] G. K. Hanssen, B. Haugset, T. Stålhane, T. Myklebust, and I.
Kulbrandstad, “Quality Assurance in Scrum Applied to Safety Critical
Software,” in Agile Processes, in Software Engineering, and Extreme
Programming, vol. 251, H. Sharp and T. Hall, Eds. Cham: Springer
International Publishing, 2016, pp. 92–103. doi: 10.1007/978-3-319-
33515-5_8.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

249 | P a g e

www.ijacsa.thesai.org

[6] S. Jeon, M. Han, E. Lee, and K. Lee, “Quality Attribute Driven Agile
Development,” in 2011 Ninth International Conference on Software
Engineering Research, Management and Applications, Baltimore, MD,
USA, Aug. 2011, pp. 203–210. doi: 10.1109/SERA.2011.24.

[7] O. P. Timperi, “An Overview of Quality Assurance Practices in Agile
Methodologies,” p. 10, 2004.

[8] M. Aamir and M. N. A. Khan, “Incorporating quality control activities
in scrum in relation to the concept of test backlog,” Sādhanā, vol. 42, no.
7, pp. 1051–1061, Jul. 2017, doi: 10.1007/s12046-017-0688-7.

[9] N. Bajnaid, R. Benlamri, and B. Cogan, “An SQA e-Learning System
for Agile Software Development,” in Networked Digital Technologies,
vol. 294, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 69–
83. doi: 10.1007/978-3-642-30567-2_7.

[10] K. Schwaber and J. Sutherland, “The Scrum Guide.”

[11] K. Schwaber, “SCRUM Development Process,” p. 18.

[12] M. Soukaina, E. Badr, M. Abdelaziz, and S. Nawal, “Towards a New
Metamodel Approach of Scrum, XP and Ignite Methods,” IJACSA, vol.
12, no. 12, 2021, doi: 10.14569/IJACSA.2021.0121225.

[13] R. Pichler, Agile Product Management with Scrum: Creating Products
that Customers Love. Addison-Wesley Professional, 2010.

[14] F. Ramos, A. A. M. Costa, M. Perkusich, H. Almeida, and A. Perkusich,
“A Non-Functional Requirements Recommendation System for Scrum-
based Projects,” Jul. 2018, pp. 149–187. doi: 10.18293/SEKE2018-107.

[15] ISO/IEC 9126-1:2001, “Software engineering – Product quality – Part 1:
Quality model.”

[16] A. Silva et al., “A systematic review on the use of Definition of Done on
agile software development projects,” in Proceedings of the 21st
International Conference on Evaluation and Assessment in Software
Engineering, Karlskrona Sweden, Jun. 2017, pp. 364–373. doi:
10.1145/3084226.3084262.

[17] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, and G. Succi, “A
Case Study on the Impact of Refactoring on Quality and Productivity in
an Agile Team,” in Balancing Agility and Formalism in Software
Engineering, vol. 5082, B. Meyer, J. R. Nawrocki, and B. Walter, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 252–266. doi:
10.1007/978-3-540-85279-7_20.

[18] F. Ribeiro, A. L. Ferreira, A. Tereso, and D. Perrotta, “Development of a
Grooming Process for an Agile Software Team in the Automotive
Domain,” in Trends and Advances in Information Systems and
Technologies, vol. 745, Cham: Springer International Publishing, 2018,
pp. 887–896. doi: 10.1007/978-3-319-77703-0_86.

[19] S. Najihi, S. Elhadi, R. A. Abdelouahid, and A. Marzak, “Software
Testing from an Agile and Traditional view,” Procedia Computer
Science, vol. 203, pp. 775–782, 2022, doi: 10.1016/j.procs.2022.07.116.

[20] S. Mukesh, “Defect Prevention_ Reducing Costs and Enhancing
Quality,” p. 6.

