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Abstract—Recent advances in multi-robot deep reinforcement 

learning have made it possible to perform efficient exploration in 

problem space, but it remains a significant challenge in many 

complex domains. To alleviate this problem, a hierarchical 

approach has been designed in which agents can operate at many 

levels to complete tasks more efficiently. This paper proposes a 

novel technique called Multi-Agent Hierarchical Deep 

Deterministic Policy Gradient that combines the benefits of 

multiple robot systems with the hierarchical system used in Deep 

Reinforcement Learning. Here, agents acquire the ability to 

decompose a problem into simpler subproblems with varying 

time scales. Furthermore, this study develops a framework to 

formulate tasks into multiple levels. The upper levels function to 

learn policies for defining lower levels’ subgoals, whereas the 

lowest level depicts robot’s learning policies for primitive actions 

in the real environment. The proposed method is implemented 

and validated in a modified Multiple Particle Environment 

(MPE) scenario. 
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I. INTRODUCTION 

Multi-Robot System (MRS) research has attracted 
significant attention recently due to its advantages over single 
robots. The benefits include (1) the decrease in time and the 
improvement in problem-solving efficiency due to the task 
decomposition, (2) an increase in problem-solving reliability, 
robustness, and resiliencies as the failures of single robots can 
be [1]–[3]. Using MRS, numerous prospective applications 
have been developed in which robots must be able to compete 
and cooperate, such as formation coordination [4], hide and 
seek [5], exploration and search [6]–[8], object transportation 
[9], disaster detection [10], communication networks [11], 
[12], etc. This study focuses on using MRS technology for 
exploration and search missions in unknown environments, 
where robots must collaborate to find the optimal path. 

As shown in [13], [14], Reinforcement Learning (RL) is 
currently extensively employed as a robot learning algorithm 
that can automatically handle exploration and search problems 
in unknown environments, both in simulation and physical 
environments. Multiple robots undertake search and 
exploration operations in large and complex environments, 
such as in [15]–[17]. The objective of MRS is to distribute 
tasks between many robots to increase efficiency. Nowadays, 
applying RL is an important and challenging subject in MRS, 

where robots must learn and adapt based on their individual 
strategies and collective behavior. Multi-Agent Deep 
Deterministic Policy Gradient (MADDPG) algorithm was 
proposed as an advancement of RL that may be used for multi-
robot learning in which robots can collaborate to solve 
problems in unknown environments [18]. 

RL in complex environments is always challenging, hence 
it serves as the primary motivation for the proposed approach. 
This paper proposes Multi-Agent Hierarchical Deep 
Deterministic Policy Gradient (MH-DDPG) as an extension of 
MADDPG for solving search and exploration problems with 
many robots in finding the optimal path for each robot in 
various environmental complexities. Here, hierarchical 
learning is adopted to learn in complex environments 
efficiently [13]. 

The primary contribution of this paper is as follows: (1) 
MH-DDPG presents a framework that enables multiple robots 
to learn by sharing environmental information collectively. (2) 
MH-DDPG proposes a hierarchical learning strategy by 
assigning different abstraction levels to the problem space, 
where higher abstraction learnings supply the learning subgoal 
for the lower ones, which consequently execute automatic task 
decomposition. 

The structure of this article is as follows: Section 
II examines the previous research and theories relevant to the 
proposed method. In Section III, the technical context and 
theory are explained. The proposed MH-DDPG is discussed in 
detail in Section IV. Sections V and VI present the conducted 
experiments and the validation of the results. Finally, section 
VII provides conclusions and potential future works. 

II. RELATED WORKS 

Reinforcement Learning (RL) [19] is increasingly used as 
learning method to address complicated problems like games 
[20], [21], and robotics [22], [23]. Q-Learning [24], SARSA 
[25], and Temporal Differences (TD) [26] are RL algorithms 
that are predominantly applied to single agents within the 
Markov Decision Process (MDP) mathematical modeling 
framework [27]. 

Traditional RL faces various problems when attempting to 
solve real-world problems. This issue is known as the "curse of 
dimensionality", in which data grows exponentially, and 
computations become costly. Deep Reinforcement Learning 
(DRL) was introduced to solve this issue, for example, in [20]. 
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DRL models complex functions using the advantages of Neural 
Networks (NN), for example, Deep Q-network (DQN) [20], 
[28]. However, implementing DQN for robots with many 
degrees of freedom in action or continuous action space 
remains challenging. Policy Gradient (PG) [29] has been 
proposed to solve these issues; nevertheless, PG has its 
challenges, mainly that it requires extensive training. An actor-
critic algorithm [25] combining DQN and PG's benefits was 
proposed to mitigate these problems. In the actor-critic 
algorithm, there are two networks: the actor-network, which 
employs a policy gradient to create optimal policies, and the 
critic-network, which contains DQN to evaluate the actor's 
policies. Deep Deterministic Policy Gradient (DDPG) [30] is 
an actor-critic [31] based algorithm that has been proposed to 
solve problems in continuous or high-dimensional action 
spaces. 

Multi-Robot System (MRS) is currently attracting much 
interest because it can solve complex problems that are 
prohibitively difficult for single-agent systems. Although 
several attempts have been made to apply the prior algorithm 
in MRS, it is still not as successful as in single-agent systems. 
The recent development of MRS operates within the stochastic 
(Markov) games framework to model mathematical decision-
making [32]. The difficulty of developing MRS is that the 
policies of one robot will impact a non-stationary environment 
generated by the policies of another agent. Recently, Multi-
agent Deep Deterministic Policy Gradient (MADDPG) [18] 
was presented as a solution to this issue. For each robot, there 
is a DDPG in the MADDPG. The MADDPG is able to manage 
the problems of competitive as well as collaborative multi-
agent systems. 

One attempt to alleviate the learning difficulty is to design 
a mechanism for hierarchical learning. Hierarchical learning 
involves decomposing large and complex problems into more 
manageable subproblems. However, most algorithms need to 
fix the sub-problems that may hinder problem-solving 
flexibility. The Hierarchical Reinforcement Learning (HRL) 
approach of a single robot with discrete action has been 
proposed in [33], [34]; however, the subgoals need to be 
assigned manually, while [35] has been designed to be able to 
find subgoals automatically. Hierarchical Deep Reinforcement 
Learning (HDRL), [36], [37] proposed systems that can 
operate with continuous robot action. Algorithms in [33]–[37] 
work well with a single robot but are unsuitable for multi-robot 
implementation. Studies in [38], [39] presented a multi-agent 
hierarchy system with DRL for learning subgoals/skills at 
higher levels. However, the higher-level environment was 
manually defined using these approaches. 

It is known that MADDPG can handle collaborative multi-
robot system problems in a simple environment. However, an 
algorithm that can improve the learning performance of multi-
robot systems is required for more complex environments. In 
this study, we propose MH-DDPG by developing MADDPG to 
perform under a hierarchical system. The proposed method is 
expected to be able to automatically discover subgoals, 
allowing it to perform better in a high-complexity environment. 

III. TECHNICAL PRELIMINARIES 

This section highlights the theoretical basis for developing 
a hierarchical MADDPG method for cooperative multi-agent 
learning in handling complex problems. 

A. Markov Decision Process and Reinforcement Learning 

The decision-making process of a single robot is often 
based on Markov Decision Process (MDP). In RL, at each time 
step t, the robot perceives a state 𝑆𝑡 from the environment's set 
of states 𝒮 (𝑆𝑡 ∈ 𝒮) and the robot selects an action 𝐴𝑡 from the 
set of actions 𝒜 that may be executed in the state 𝑆𝑡  (𝐴𝑡 ∈ 𝒜). 
Here, the next state is decided based on transition probability 𝒫 

under the learned policy , as shown in (1). The transition 
brings the robot to the next state 𝑆𝑡+1 and gives reward 𝑅𝑡+1. 

(𝑠′, 𝑟|𝑠, 𝑎) = 𝒫(𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎)        (1) 

where 𝑠 ∈ 𝒮  and 𝑠′ ∈ 𝒮  are particular states that occur at 
time t and t+1, 𝑎 ∈ 𝒜 is the action taken by the robot at time t 
(𝑎 ∈ 𝒜), and (𝑟 ∈ ℛ) is the reward received by the robot at 
time t+1. 

Typically, the Bellman Equation is used to optimize two 
functions in RL: the state (V*) and state-action (Q*) functions, 
for which the optimal equation is as follows: 

𝑉∗(𝑠) = 𝑚𝑎𝑥
𝜋

𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝒫𝑠𝑠′
𝑎 𝑉∗(𝑠′)𝑠′𝜖𝑆            (2) 

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝒫𝑠𝑠′
𝑎 𝑄∗(𝑠′, 𝑎′)𝑠′𝜖𝑆            (3) 

Here, the discount factor (0 ≤ 𝛾 ≤ 1) is used to express the 
significance of the future reward value. 

B. Stochastic (Markov) Games 

In contrast to MDP, which is utilized for a single robot, 
stochastic games are proposed as a mathematical framework 
for modeling decision-making in Multi-robot Reinforcement 
Learning. Stochastic games consist of N robots, a set of states 
containing the state of all robots (𝒮), a set of actions 𝒜 from all 
robots (A = A1 x A2 x... x AN), and a set of state transitions (T) 
which are the transition probability (𝒫) from the current state 
to the next state for a robot based on the actions taken by all 
robots (T: S x A1 x A2 x... x AN  𝒫 (S)). The reward obtained 
by a robot depends on the actions taken by all robots (R: S x A1 

x A2 x... x AN  ℛ). The reward function for each robot can be 
used to classify the type of games. For example, all robots 
share the same reward function if they play cooperatively. In 
contrast, when the robots play competitively, one robot aims to 
maximize the reward while the other attempts to minimize it. 
In stochastic games, the state value function (V) could be 
written as follows: 

𝑉𝑖,𝜋(𝑠) = 𝔼[∑ 𝛾𝑘𝑟𝑖,𝑡+𝑘+1 | 𝑆𝑖,𝑡 = 𝑠𝑖
∞
𝑘=0 ]           (4) 

C. Q-Learning and Deep Q-Network 

Q-Learning is a RL mechanism based on Q-function. 
Similar to (3), the Q-function is used to compute the expected 
reward based on the action done by the robot in its current 
state. The optimum policy is found by maximizing the value of 
the Q-function. The Q-value is learned iteratively, as follows: 
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𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 (𝑅 + 𝛾 (max
𝑎′

𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)))     (5) 

where 0    1 denotes the learning rate. 

The Q-value for all potential state-action combinations is 
stored in a Q-table, and thus high computational resources are 
required in a large number of states and large action space. The 
necessity for these costly computation resources can be 
alleviated by replacing the Q-table with a neural network for 
estimating the Q-value as in Deep Q-Network (DQN). 

Q-Network and target Network are the two neural networks 
that constitute a DQN. The Q-network is used to train robots to 
predict the optimal Q-value, while the target network is used to 
forecast the next state based on the sample data and the optimal 
Q-value from all potential actions in the next state. In addition, 
DQN has a component called Experience Replay (ER) that 
stores and generates training data for Q-Network. 

The optimal policy for DQN is determined by minimizing 
the Loss function in (6). 

𝐿(𝑄) = 𝔼𝑠,𝑎,𝑟,𝑠′ [(𝑅(𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄∗(𝑠′, 𝑎′|𝜃̅) − 𝑄(𝑠, 𝑎|𝜃))
2

]  (6) 

where 𝜃̅ and  are the parameters for the target network and 
the Q-network. 

D. Policy Gradient 

Policy Gradient (PG) is used to enhance DQN's 
performance in generating optimum policies. In DQN, the 
robot chooses an action with the maximum Q-value, while in 
PG, the agent selects an action stochastically according to the 
probability distribution generated in the output layer. 

The PG consists of a neural network known as a policy 
network, which predicts the probability distribution of actions 
given the current state. Here, the optimal policy is determined 
by maximizing the objective function defined as follows: 

𝐽(𝜃) = ∑ 𝑑𝜋(𝑠) ∑ 𝜋𝜃(𝑎, 𝑠)𝑄𝜋(𝑠, 𝑎)𝑎∈𝐴𝑠∈𝑆            (7) 

where 𝑑𝜋(𝑠) is the deterministic distribution of the states 

on . Here, the objective function 𝐽(𝜃) can be maximized by 

adjusting the parameter  by gradient ∇𝜃𝐽(𝜃 as follows: 

∇𝜃𝐽(𝜃) = 𝔼𝑠~𝑑𝜋,𝑎~𝜋𝜃
[∇𝜃 log 𝜋𝜃(𝑎, 𝑠)𝑄𝜋(𝑠, 𝑎)]          (8) 

E. Deterministic Policy Gradient and Deep Deterministic 

Policy Gradient 

The policy function in PG is always modeled as a 
stochastic probability distribution of the agent's actions given 
the current state. The Deterministic Policy Gradient (DPG) has 
been proposed to model policy as a deterministic decision by 
the agent in the current state. The objective function in DPG 
can be written as follows: 

𝐽(𝜃) = 𝔼𝑠~𝜌𝜋
[𝑅(𝑠, 𝜋𝜃(𝑠))]            (9) 

where  is discounted state distribution. The gradient of 
the objective function in DPG can be written as follows: 

𝐽(𝜃) = 𝔼𝑠~𝜌𝜋
[𝛻𝜃𝜋𝜃(𝑠)𝛻𝜃𝑄𝜋(𝑠, 𝑎)|𝑎=𝜋𝜃(𝑠)]         (10) 

Deep Deterministic Policy Gradient (DDPG) is an actor-
critical algorithm that combines DQN and DPG. DQN is for 
the actors that operate in discrete action space, while DPG is 
for the critics that work in continuous action space. 

F. Multi-Agent Deep Deterministic Policy Gradient 

Multi-Agent Deep Deterministic Policy Gradient 
(MADDPG) is an expansion of DDPG that adopt an actor-
critic algorithm as its fundamental structure. The MADDPG 
contains multiple robots, each with its neural networks for the 
actors and the critics, while DDPG only uses a single robot. 
Similar to DDPG, the actors in MADDPG receive input from 
the robot's local observations and produce executable action 
recommendations for the robot. However, in contrast to the 
critical network in DDPG, the input of critics in MADDPG 
does come from not only the robot's local observations and 
actions but also other robots' observations and actions. The 
critic's output is the Q-value, which is used to evaluate the 
actor's actions by considering other robots' observations and 
acts. The network of agents may therefore learn both 
cooperative and competitive strategies. 

IV. MULTI-HIERARCHIES OF MULTI-AGENT DEEP 

DETERMINISTIC POLICY GRADIENT 

This study proposes Multi-Agent Hierarchical Deep 
Deterministic Policy Gradient (MH-DDPG) as a new approach 
that enables learning robots to decompose complex tasks into 
more manageable subtasks at different time scales. Here, the 
robots train to learn several levels of policy, each of which has 
a specific task for the agents to do in parallel. 

A. Architecture 

MH-DDPG trains robots to hierarchically learn policies 
based on the architecture shown in Fig. 1. Here, MH-DDPG is 
comprised of DDPG and experience replay (ER). The number 
of DDPG and ER depends on the number of agents and 
hierarchy. For example, suppose N and K indicate the number 
of agents and hierarchies, respectively. Consequently, there are 
N x K DDPG in MH-DDPG. Furthermore, the number of ER 
will equal the number of hierarchies, K. The bottom level 
represents the physical environment in which the robots 
physically operate. While the higher level, robots are presented 
by their abstraction. 

Formally, the MH-DDPG with N agents and K levels are 
defined by the set of state 𝒮 ; the set of joint action 𝒜 =

⋃ 𝐴𝑖,𝑡
𝓀𝑁

𝑖=1  and the set of joint observations 𝒪 = ⋃ 𝑂𝑖
𝓀𝑁

𝑖=1 , where 

𝐴𝑖,𝑡
𝓀  and 𝑂𝑖,𝑡

𝓀  are actions 𝐴𝑖 and observation 𝑂𝑖  for each agent 𝑖 
at level 𝓀 and time 𝑡. Each agent will optimize their respective 
policy at every level to estimate the transition probability 𝒫 for 

selecting an action at time 𝑡, such that 𝜋 = ⋃ 𝜋𝑖,𝑡
𝓀𝑁

𝑖=1 , where 𝓀 

is the hierarchy level and 0 ≤ 𝓀 ≤ 𝐾 − 1. 
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Fig. 1. Architecture of MH-MADDPG. 

 

Fig. 2. Illustration Environment with Two Hierarchies. 

For illustrating the dynamics of MH-DDPG multi-agent 
particle environment (MPE) environments will be utilized [40]. 
One of the MPE scenarios, "simple spread” has been modified 
here. For example, Fig. 2 depicts the problem that MH-DDPG 
must address. Simple_spread is an environment with N robots 
and M goals (landmarks). Robots are expected to cooperate to 
accomplish a common objective while avoiding collisions with 
one another. There are three robots (N=3), three goals (M=3), 
and two hierarchies (K=2). First, the real problem of the 
environment is illustrated at level 0, where a blue circle 
represents the actual robots, and a green rectangle represents 
the goals. Then, at level 1, an abstraction of level 0, the robots 
are referred to as abstract robots and symbolized by a red 
circle. Abstract robots at level 1 possess actions with more 
capabilities than those of actual robots at level 0. For instance, 
the actual robots at level 0 have a maximum velocity of 1 pixel 
per second, while the robot at level 1 is set with a maximum 
velocity of 10 pixels per second. As seen on the right of Fig. 2, 
the robot at level 1 has a greater range of distances than the 
actual robot for each action taken at each step. 

The abstract robots are predicted to learn faster than the 
actual robots in achieving goals since they are less constrained 
than actual robots (for example, more quickly and with no 
obstacles). However, remember that abstract robots are only 
imaginative robots with no capacity to execute physical 
actions. The task of the abstract robot at level 1 is to learn how 
to accomplish the main goal best, while at level 0, the task is to 
learn how to achieve the subgoal optimally. MH-DDPG 
implicitly assigns different objectives for each level, in which 
the robots' objective at level 1 is to learn to achieve goals 
optimally, while the robots' work at level 0 is to learn to 
achieve subgoals optimally. The subgoal at level 0 is 
automatically determined from the higher level, which happens 

when the abstract robot chooses the action 𝐴𝑖,𝑡
1  based on the 

policy 𝜋𝑖,𝑡
1  in the current state 𝑆𝑖,𝑡

1  at time 𝑡. The robot will be 

transitioned to the next state 𝑆𝑖,𝑡+1
1  and will receive a reward 

𝑅𝑖,𝑡+1
1 . Then, the learning shifts to the bottom level, and the 

next state at level 0 becomes a subgoal for the actual robots. In 
addition, robots at level 0 engage in learning to achieve these 

subgoals. When the robots get 𝑆𝑖,𝑡
0  at level 0, the agent will pick 

the action 𝐴𝑖,𝑡
0  based on the policy of 𝜋𝑖,𝑡

0 . The robots then 

transition to 𝑆𝑖,𝑡+1
0  and is rewarded with 𝑅𝑖,𝑡+1

0 . The learning 

process at level 0 will continue until the terminal criteria are 
satisfied. A terminal condition is defined by manually setting 
the maximum number of steps at level 0. If the terminal 
requirements are satisfied, learning returns to level 1 to execute 
the next step at the top level. 

B. Learning Dynamic 

In MH-DDPG, the multiple robots learn in parallel at all 
levels. The process of robot learning will start at the top level 
and flows downward. Robot learning aims to provide optimum 
policies for each robot at all levels. According to the RL 
concept that the optimal policy is acquired by maximizing the 
rewards received by each robot. The reward obtained in the 
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future by each robot i at level 𝓀 could be expressed by the 
following V-function: 

𝑉𝑖,𝜋
𝓀 (𝑠) = 𝔼[∑ 𝛾𝑡𝑟𝑖,𝑡+1

𝓀  | 𝑆𝑖,𝑡
𝓀 = 𝑠∞

𝑡=0 ]          (11) 

𝑉𝑖,𝜋
𝓀 (𝑠) = ∑ 𝜋𝑖

𝓀(𝑎|𝑠)(𝑅𝑖
𝓀(𝑠, 𝑎) + 𝛾 ∑ 𝒫𝑠𝑠′

𝑎 𝑉𝑖,𝜋
𝓀 (𝑠′)𝑠′𝜖𝑆 )𝑎𝜖𝐴   (12) 

where 𝑟𝑖,𝑡+1
𝓀  is the reward earned by agent 𝑖  at level 𝓀 at 

𝑡 + 1, and 𝜋𝑖
𝓀(𝑎|𝑠) is the agent policy. Here, the joint action is 

designed to make the robot's policy dependent on individual 
policies and joint policies. The definition of the Q-function is 
as follows: 

𝑄𝑖,𝜋
𝓀 (𝑠, 𝑎) = 𝔼[∑ 𝛾𝑡𝑟𝑖,𝑡+1

𝓀  | 𝑆𝑖,𝑡+1
𝓀 = 𝑠, 𝐴𝑖,𝑡

𝓀 = 𝑎∞
𝑡=0 ]        (13) 

𝑄𝑖,𝜋
𝓀 (𝑠, 𝑎) = 𝑅𝑖

𝓀(𝑠, 𝑎) +

𝛾 ∑ 𝒫𝑠𝑠′
𝑎 ∑ 𝜋𝑖

𝓀(𝑎′|𝑠′) 𝑄𝑖,𝜋
𝓀 (𝑠′, 𝑎′)𝑎𝜖𝐴𝑠′𝜖𝑆         (14) 

The optimal policy is determined by maximizing the value 
of all actions. According to the Bellman optimality equation, 
the optimal V-value (V*) and Q-value (Q*) could be written as 
follows: 

𝑉𝑖
𝓀∗

(𝑠) = 𝑚𝑎𝑥
𝜋𝑖

𝑅𝑖
𝓀(𝑠, 𝑎) + 𝛾 ∑ 𝒫𝑠𝑠′

𝑎 𝑉𝑖
𝓀∗

(𝑠′)𝑠′𝜖𝑆         (15) 

𝑄𝑖
𝓀∗

(𝑠, 𝑎) = 𝑅𝑖
𝓀(𝑠, 𝑎) + 𝛾 ∑ 𝒫𝑠𝑠′

𝑎 𝑄𝑖
𝓀∗

(𝑠′, 𝑎′)𝑠′𝜖𝑆         (16) 

If the environment consists of N agents and K levels, then 

the policy set 𝜋 = {𝜋1
𝓀, 𝜋2

𝓀 , … , 𝜋𝑁
𝓀}  that is parameterized by 

𝜃 = {𝜃1
𝓀 , 𝜃2

𝓀 , … , 𝜃𝑁
𝓀} , where 1 ≤ 𝑖 ≤ 𝑁  and 0 ≤ 𝓀 ≤ 𝐾 − 1 . 

Then, the gradient of the expected return for each agent 𝑖 at 
level 𝓀 could be expressed as follows: 

𝐽(𝜃𝑖
𝓀) = 𝔼𝑥,𝑎~𝐷 [𝑅 (𝑠, 𝜋𝑖

𝓀(𝑠))]          (17) 

∇
𝜃𝑖

𝓀𝐽(𝜃𝑖
𝓀) = 𝔼𝑥,𝑎~𝐷 

[∇
𝜃𝑖

𝓀 log 𝜋𝑖
𝓀(𝑎𝑖

𝓀|𝒪𝑖
𝓀)𝑄𝑖,𝜋

𝓀 (𝑥𝓀, 𝑎1
𝓀 , … , 𝑎𝑁

𝓀)|
𝑎𝑖

𝓀=𝜋𝑖
𝓀(𝒪𝑖

𝓀)
]        (18) 

where 𝑄𝑖,𝜋
𝓀 (𝑥, 𝑎1

𝓀 , … , 𝑎𝑁
𝓀)  is the centralized Q-function at 

level 𝓀  that accepts as input all agent actions at level 𝓀 , 

𝑎1
𝓀 , … , 𝑎𝑁

𝓀 , and observation 𝑥  at level 𝓀  of all agents, 𝑥 =
(𝒪1

𝓀 , … , 𝒪𝑁
𝓀), with the output being the Q-value for each agent 

𝑖  at level 𝓀 . Experience Replay buffer 𝒟  contains 

(𝑥, 𝑥′, 𝑎1
𝓀 , … , 𝑎𝑁

𝓀 , 𝑟1
𝓀 , … , 𝑟𝑁

𝓀) where 𝑥′ is the next state obtained 

after the agent took action while in state 𝑥. The centralize Q-

function 𝑄𝑖,𝜋
𝓀  will be updated by minimizing the following loss 

function: 

ℒ(𝜃𝑖
𝓀) = 𝔼𝑥,𝑎,𝑟,𝑥′[(𝑄𝑖,𝜋

𝓀 (𝑥, 𝑎1
𝓀 , … , 𝑎𝑁

𝓀) − 𝑦2)]        (19) 

𝑦 = 𝑟𝑖
𝓀 𝑄

𝑖,𝜋′,𝓀
𝓀 (𝑥′, 𝑎𝑖

′,𝓀 , … , 𝑎𝑁
′,𝓀)|

𝑎𝑗
′,𝓀

=𝜋𝑗
′,𝓀

(𝒪𝑗
′,𝓀

)
         (20) 

where 𝜋′,𝓀 = {𝜋
𝜃1

′,𝓀 , … , 𝜋
𝜃𝑁

′,𝓀  }  is the set of target policy 

with delayed parameter 𝜃𝑖
′ at each level 𝓀. As the Q-function 

𝑄𝑖,𝜋
𝓀  for each agent 𝑖 is learned independently at all levels, the 

reward may be determined arbitrarily based on the issue. The 
algorithm of MH-DDPG is shown in algorithm 1. 

Algorithm 1. MH-MADDPG 
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: 
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: 

: 

: 

: 

: 

: 

Initialize: Actor-critic evaluation and target networks for each agent, 

number of levels K, maximum step H, Replay buffer 

For episode = 1 to max-episode, do 

 For each agent i, set initial states (S) and goals (𝒢) for each agent 

 Train (K-1, S, 𝒢) 

End for 
  

Function Train(𝓀 ::level, S ::state, 𝒢 ::goal) 

 𝑠 ← 𝑆𝑖,𝑡
𝓀   𝑆, 𝑔𝓀  𝒢 (initial, t=0) 

 For t = 1 to H do 

  For each agent n: select action (a
i
) where 𝑎𝑖 ← 𝐴𝑖,𝑡

𝓀  based on 𝜋𝑖,𝑡
𝓀  

  Execute actions 𝑎 = (𝑎1, … , 𝑎𝑁) and observe reward r and new 
state s’ 

  Store (s, a, r, s’) in replay buffer 𝒟 

  If 𝓀 > 0: 

   𝑔𝓀−1 ← 𝑠′ 

   𝑇𝑟𝑎𝑖𝑛(𝓀 − 1,  𝑠,  𝑔𝓀−1) 

  End If 

  For agent i = 1 to N in level 𝓀 do 

   Sample random minibatch of S samples (s, a, r, s’) from 𝒟𝓀 

   Set 𝑦 = 𝑟𝑖
𝓀 + 𝛾𝑄𝑖,𝜋′

𝓀 (𝑠′, 𝑎1
′ , … , 𝑎𝑁

′ )|
𝑎𝑖

′=𝜋𝑖
′,𝓀 

   Update critic by minimizing the loss ℒ(𝜃𝑖
𝓀) =

1

𝑆
∑ (𝑦 −

𝑄𝑖,𝜋
𝓀 (𝑠, 𝑎𝑖 , … , 𝑎𝑁))

2

 

   Update actor using: 

     ∇𝜃𝑖
𝓀 𝐽 =

1

𝑆
∑ ∇𝜃𝑖

𝓀 𝜋𝑖
𝓀(𝑜𝑖)∇𝑎𝑖

𝑄𝑖,𝜋
𝓀 (𝑠, 𝑎𝑖 , … , 𝑎𝑁)|

𝑎𝑖=𝜋𝑖
𝓀(𝑜𝑖)

 

  End for 

   Update target network parameters for each agent i in level 𝓀: 

   𝜃𝑖
′,𝓀 ← 𝛼𝜃𝑖

𝓀 + (1 − 𝛼)𝜃𝑖
′,𝓀

 

End Function 

C. State, Observation, and Action Space 

Consider an environment with N robots and M goals. 
Robots and goals have a physical entity represented by 𝑋 . 
Based on the original MPE, 𝑋  is a two-dimensional object 
characterized by its position and velocity. Furthermore, the 
state contains polar coordinates that are utilized to identify the 
robot's relative position to the goals and other robots. An 
environment with N robots and M goals corresponds to a state 
space with NxM polar coordinates of robots to the goals 

( 𝑑1,…,𝑁𝑥𝑀
𝐺 ) and N-1 polar coordinates to other robots 

(𝑑1,…,𝑁−1
𝐴 ). However, it should be noted that the goals of the 

bottom level are the subgoals produced at the upper level. 

Based on the preceding discussion, the state space 𝒮 is a 

mixture of each level state space: 𝒮 = ⋃ 𝑆𝓀𝐾−1
𝓀=0 , where 𝑆𝓀 =

{𝑋1,…,𝑁, 𝑑1,…,𝑁𝑥𝑀
𝐺 , 𝑑1,…,𝑁−1

𝐴 }. 

Then each agent can only observe their own state of the 
entire state, called observation. The observation space of each 

agent at each level k is 𝑂𝑖
𝓀(𝑆) = {𝑋𝑖 , 𝑑𝑖,1,…,𝑀

𝐺 , 𝑑𝑖,1,…,𝑁−1
𝐴 }, 

where 𝑖 indicates the 𝑖𝑡ℎ robot. 
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At 𝓀 = 0, the output layer of the actor networks generates 
five outputs between 0 and 1 in which each one is associated 
with a particular action. The five outputs are denoted by 𝑢𝑛, 𝑢𝑙, 
𝑢𝑟, 𝑢𝑑, and 𝑢𝑢 for no action, move left, right, down, and up, 
respectively. At 𝓀 > 0, if the action of the abstract robot should 
have more capabilities than the actual robot, the range 𝑢  is 

increased multiplied by the sensitivity rate, therefore 𝑢𝓀 =
𝑢0𝑥 𝜇 , where 1 ≤ 𝓀 ≤ 𝐾 − 1 and 𝜇 is the sensitivity with a 
value more than 1. The sensitivity of the upper level must be 
larger than the sensitivity of the lower level. 

D. Reward Design 

The reward is designed to correspond to the learning 
objectives of the robot. The distance between objects 
determines the reward design. Suppose that the positions of 
two object types, A and B, in two dimensions are known. A 
and B respectively add up to N and M, therefore 𝐴𝑖 =

(𝑥1
𝑖 , 𝑦1

𝑖 ) and 𝐵𝑗 = (𝑥2
𝑗
, 𝑦2

2), where 1 ≤ 𝑖 ≤ 𝑁  and 1 ≤ 𝑗 ≤ 𝑀 . 

The following formula may be used to compute the total 
distance between two types of objects: 

𝑑(𝐴, 𝐵) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2         (21) 

𝑑(𝐴1,...,𝑁 , 𝐵1,..,𝑀) = ∑ ∑ √(𝑥2
𝑖 − 𝑥1

𝑗
)

2
+ (𝑦2

𝑖 − 𝑦1
𝑗
)

2
𝑀
𝑗=1

𝑁
𝑖=1   (22) 

The design of the reward differs between the bottom and 
upper levels. The term for the rewards at each level is 
explained as follows: 

1) The goal/subgoal reward: Designed to encourage 

agents to achieve the Goal/Subgoal. This reward is available at 

all levels. This reward is utilized at the highest level to promote 

the abstract robot to accomplish the main goal and at the lowest 

level to help the robot reach the subgoal. Reward calculations 

will be based on the distance between all robots and goals 

using (22) and (23). 

𝑅(𝐴𝑔𝑒𝑛𝑡𝑖,…,𝑁 , 𝒢𝑗,…,𝑀) = −𝑑(𝐴1,...,𝑁, 𝐵1,..,𝑀)         (23) 

where A = Robot dan B = G (goal/subgoal). 

2) Robot relative to other robots Reward: for avoiding 

collisions between robots. This reward is only used at the 

lowest level because the abstract robot is unable to detect other 

robots. This reward term is calculated as follows: 

𝑅𝑐(𝐴, 𝐵) = {
−1;  𝑖𝑓 𝑑(𝐴, 𝐵) ≤ 𝐴𝑠𝑖𝑧𝑒 + 𝐵𝑠𝑖𝑧𝑒

0;  𝑖𝑓 𝑑(𝐴, 𝐵) > 𝐴𝑠𝑖𝑧𝑒 + 𝐵𝑠𝑖𝑧𝑒
        (24) 

where 𝑑(𝐴, 𝐵) is the distance between two robots (A and B) 
that can be calculated by (22) with i, j=1. 

3) Obstacle reward: Aims to encourage robots to avoid 

obstacles. Due to the abstract robot's inability to detect 

obstacles, this reward is only applied at the lowest level. 

Similar to other robot rewards, the robot must compute the 

distance between itself and the obstacle to get reward. 

𝑅𝑐(𝐴, 𝐵) = {
−10;  𝑖𝑓 𝑑(𝐴, 𝑂) ≤ 𝐴𝑠𝑖𝑧𝑒 + 𝑂𝑠𝑖𝑧𝑒

0;  𝑖𝑓 𝑑(𝐴, 𝑂) > 𝐴𝑠𝑖𝑧𝑒 + 𝑂𝑠𝑖𝑧𝑒
        (25) 

where 𝑑(𝐴, 𝑂) is the distance between robot A and obstacle 
O that can be calculated by (22) with i,j=1. 

E. Neural Network Models 

Each robot at each level of the MH-DDPG consists of actor 
and critic networks, structures of which are shown in Fig. 3. 
Local observations are the inputs for the actor-network, while 
robot actions represent the output. Therefore, the critic-network 
uses the observations and actions of all robots as inputs and Q-
value as outputs. The Q-value is then used as the training basis 
for the actor networks. Every network employs the ADAM 

optimizer with a learning rate () and a discount factor (). 

 

Fig. 3. Neural Network Model. 

V. EXPERIMENTAL ENVIRONMENT 

We conducted experiments for comparing the DDPG, 
MADDPG, and MH-DDPG algorithms under the parameters 
listed in Table I. The experimental environment is set with 
three robots and three goals, with some obstacles to increase 
the environment's complexity. Fig. 4 depicts the environment 
for testing the proposed algorithm. The experiments were 
conducted on three types of environments with various 
complexities: low-complexity {Fig. 4(a)}, mid-complexity 
{Fig. 4(b)}, and high-complexity {Fig. 4(c)}. 

 
(a) Low-Complexity.                                    (b) Mid-Complexity.                                    (c) High-Complexity. 

Fig. 4. Illustration of the Experimental Environment. 
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Fig. 5. Block Diagram Comparison for DDPG, MADDPG, and MH-DDPG Employing 3 Robots. Q, O, and a Represent the Q-Value, Observation, and Action, 

Respectively. 

TABLE I. EXPERIMENT-SPECIFIC PARAMETERS FOR DDPG, MADDPG, 
AND MH-DDPG 

Parameters DDPG MADDPG MH-DDPG 

Specific Parameters 

The number of robots (N) 3 3 3 

The number of levels (K) - - 2 

The number of actors  3 3 6 

The number of critics  3 3 6 

The number of ERs 1 1 2 

Sensitivity 5 5 
5 (level 0), 

30 (level 1) 

Actor and Critic Networks Parameters 

Number of hidden layers 1 1 1 

Number of hidden units 64 64 64 

Activation Function ReLU ReLU ReLU 

Input Actor Network 

Current 

Observat

ions 

Current 

Observations 

Current 

Observations 

Output Actor Network Action Action Action 

Input Critic Network 

Current 

Observat

ion and 

Action 

Current 

Observation 

and Action 

Current 

Observation 

and Action 

Output Critic Network Q-value Q-Value Q-value 

Training parameters 

Optimizer ADAM ADAM ADAM 

Learning rate () 1e-2 1e-2 1e-2 

Discount factor () 0.97 0.97 0.97 

Replay buffer size 106 106 106 

Minibatch size 1256 1256 1256 

Fig. 5 compares the block diagrams of DDPG, MADDPG, 
and MH-DDPG, illustrating how the algorithm determines the 
parameter values for the specific parameters given in Table I, 
except for sensitivity. The values for the sensitivity and the 
training parameters are empirically determined. From the 
experiments, the determination of the training parameters in 
different environments demonstrates that the algorithms are not 
excessively sensitive to the chosen parameters. 

Particularly in MH-DDPG, the designed environment can 
decompose into K levels. As a preliminary step in the proposed 
algorithm, this research performs a two-level investigation 
(K=2). Where the bottom level (𝓀 = 0) is the real environment 
used for actual robots learning, and the top level (𝓀 = 1) is the 
abstract environment used for abstract robot learning. In the 
environments, the robots must collaborate to accomplish the 
predetermined goals. The robots' mission will be accomplished 
if the robots can discover the optimal path for reaching all the 
goals. 

VI. RESULTS 

The experiments compare the proposed algorithm against 
MADDPG and DDPG. The first step is assessing the robots 
learning performance based on the rewards obtained 
throughout the learning process. 

Fig. 6 depicts the learning curve based on the robot's 
average reward in each episode. In this experiment, there were 
150000 episodes in each environment. The average reward the 
robot obtains in a low-complexity environment is greater than 
in mid-complexity and high-complexity environments. A 
greater average reward indicates that robots in simple 
environments perform better than in other environments. A 
low-complexity environment without obstacles makes it easier 
for robots to reach their goals. 

From Fig. 6, it can be observed that MH-DDPG converges 
faster to the maximum rewards and produces larger reward in 
each episode than DDPG and MADDPG, indicating that the 
robots that were trained using MH-DDPG reaches the goals 
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faster. Fig. 6 also indicates that the superiority of MH-DDPG 
over DDPG and MADDPG is consistent in complex 
environments. In a high-complexity environment, the graph 
also reveals that the average reward value is unstable for 
DDPG and MADDPG, whereas MH-DDPG remains robust. 

Fig. 7 depicts the robot's behavior during the learning 
process compared to MADDPG and DDPG in a mid-
complexity and high-complexity environment at t=0, 10, and 
40. The blue circle indicates the actual robot, the green 
rectangle represents the goals, and the red circle represents the 
abstract robot found exclusively on MH-DDPG. The abstract 
robots will generate a subgoal for the lower level. At t=0, the 
robot begins its first step of learning. Here, the locations of the 
abstract robot are identical to the positions of the actual robots. 

At t=10, robots are learning to achieve all goals. Here, on 
MH-DDPG, a red circle indicates the presence of an abstract 
robot. At each instant t, the abstract robot generates a subgoal 
for the actual robot. In MH-DDPG, Actual robots will first 
learn to cover subgoals, but in DDPG and MADDPG, robots 

will learn to cover main goals straight away since there are no 
subgoals. Abstract robots that cannot detect obstacles might 
occasionally be located in the same area as the obstacle, as 
shown in the high-complexity environment at time t=10. This 
condition is sometimes harmful to the actual robot when it 
learns to achieve the subgoal since the actual robot cannot 
reach the subgoal properly, which consequently decreases the 
associated state-action values. 

Finally, at t=40, the final step of learning in a single 
episode occurs. In DDPG, it is evident that the robots have 
difficulty cooperating to reach the goal in both mid-complexity 
and high-complexity environments, which is also consistent 
with the successful rates shown in Fig. 8. In the mid-
complexity environment, the robot tends to go toward one of 
the goals. Therefore the targeted objectives to cover all goals 
are often not achieved. This is because the robots work 
independently and do not share information. In high-
complexity, obstacles tend to hinder the robot's ability to 
achieve the subgoals. 

 

Fig. 6. Reward Graph. 

 

Fig. 7. Comparison between DDPG, MADDPG, and MH-DDPG on the Mid-complexity and High-complexity Environment. 
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Fig. 8. Success Rate. 

From Fig. 7, for MADDPG, it can be observed that the 
robots can work collectively to achieve goals in a mid-
complexity environment, while in high-complexity 
environments, due to the complex configurations of the 
obstacles, the robots faced difficulty in the early phase of the 
learning process as apparent from the fluctuating graph, but 
gradually stabilize as the learning progresses. In MH-DDPG, 
subgoals increase the robot's problem-solving ability as they 
are guided by intermediate objectives that consequently 
contrained the problem space. 

Fig. 8 depicts the average success rate for the respective 
algorithm in each environment during the learning process. In 
all environments, the robots with MADDPG and MH-DDPG 
were able to cooperate and learn policies to achieve their goals, 
while the robots with DDPG failed to do so. The failure of the 
robots in DDPG is due to the lack of information sharing 
between robots; hence, the robots only learn independently and 
may repeat the failure of other robots. In the low-complexity 
environment, the average success rates for MADDPG and MH-
DDPG are 74.18% and 82.15%, respectively. As the 
complexity of the environment increases, the average success 
rate for MADDPG and MH-DDPG decreases, as seen from the 
graphs for mid and high-complexity environments. MADDPG 
and MH-DDPG had respective success rates of 56.08% and 
73.18% in a mid-complexity environment, while in a high-
complexity environment, these success rates were 44.18% and 
72.99%, respectively. The results show that MH-DDPG has a 
greater success rate than MADDPG. This indicates that 
decomposing the problem environment into many levels is 
advantageous for maximizing robot learning performance. 

VII. CONCLUSION 

MH-DDPG is proposed as a novel framework for multi-
robot learning with hierarchical Deep Reinforcement Learning. 
Here, the robots collectively learn by sharing information about 
state-action values from their individual runs. In addition, the 
proposed MH-DDPG provides a mechanism for creating multi-
level abstraction, in which higher-level abstraction space allow 
the robots to execute a kind of “image training” where they 
may virtually explore the problem space without considering 
the physical constrains in real-world space. The virtual 
experiment in abstract space allows the robot to discover the 
real robots' intermediate goals rapidly. The intermediate goals 

helps to limit the exploration for the real robots, thus 
alleviating the curse of dimensionality. 

Through some empirical experiments, it can be observed 
that the proposed MH-DDPG outperforms DDPG and 
MADDPG in learning efficiency and success rate. 

The weakness of the MH-DDPG is that an abstract robot at 
higher levels is incapable of detecting obstacles. Hence non-
realistic subgoals are sometimes produced. This is the cost that 
needs to be paid for removing the physical constraints in the 
abstract space. In this preliminary experiment, the abstract 
robots are given higher speed but are constrained by their 
inability to detect obstacles, but it does not have to be so. In the 
following study, experiments will be conducted with various 
constrained conditions at the higher abstraction levels. 

Immediate future research topics include investigating the 
effect of the number of levels and the number of robots in MH-
DDPG. In addition, implementing the proposed learning 
method into physical robots is also of interest. 
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