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Abstract—This paper presents a reliable and competent 
evolutionary-based approach for improving the response time of 
Emergency Medical Service (EMS) by efficiently allocating 
ambulances at the base stations. As the prime objective of EMS is 
to save people's lives by providing them with timely assistance, 
thus increasing the chances of a person's survivability, this paper 
has undertaken the problem of ambulance allocation. The work 
has been implemented using the proposed mutation-based 
Shuffled Frog Leaping Algorithm (mSFLA) to provide an 
optimal allocation plan. The authors have altered the basic SFLA 
using the concept of mutation to improve the quality of the 
solution obtained and avoid being trapped in local optima. 
Considering a set of assumptions, the new algorithm has been 
applied for allocating 50 ambulances among 11 base stations in 
Southern Delhi. The working environment of EMS, which 
includes stochastic requests, travel time, and dynamic traffic 
conditions, has been considered to attain accurate results. The 
work has been implemented in the MATLAB simulation 
environment to find an optimized allocation plan with a 
minimum average response time. The authors have reduced the 
average response time by 12.23% with the proposed algorithm. 
The paper also compares mSFLA, Genetic Algorithm (GA), and 
Particle Swarm Optimization (PSO) for the stated problem. The 
algorithms are compared in terms of objective value (average 
response time), convergence rate, and constancy repeatability to 
conclude that mSFLA performs better than the other two 
algorithms. 
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I. INTRODUCTION 
Emergency Medical Service (EMS) control centers are vital 

in modern health systems and act as a pre-hospital component. 
EMSs provide out-of-hospital medical care and transport 
activities for the victims of accidents or illnesses. It plays a 
significant role in the public health system, and its ability to 
respond to emergency calls can significantly impact a patient's 
health and recovery [1]. Therefore, EMS control centers need 
to strategize and work towards handling a significant concern 
of allocating an appropriate count of ambulances to the base 
stations in an area [2]. Having a suitable count of ambulances 
available at the base stations will help the EMS provide a 
timely response to the persons in need. This motive has 
attracted many researchers to suggest solutions that prove 
viable in the working environment of EMS. As per the working 
procedure, an ambulance is selected and dispatched to the 
demand site when the EMS control center receives a request 
call. The rules set by the EMS authority help select and 

dispatch the ambulance from one of the base stations (with 
ambulance availability) to serve the request. The rule may 
select the nearest ambulance to the requested location or the 
ambulance that will take less time to reach the location [3]–[5]. 
When the ambulance reaches the requested location, it may 
provide first aid to the patient or resuscitation. It then takes the 
patient to the hospital as per the requirement. 

Research carried out to date has emphasized many issues 
related to planning, working, and management activities related 
to EMS using static models, dynamic models, hypercube 
models, covering models, etc. To attain optimum service 
performance, EMS facilities must be positioned strategically in 
a specific locality. Decisions here are taken from two aspects: 
selecting appropriate sites at which ambulances should be 
stationed and the number of ambulances stationed at each site 
[6]. However, considering densely populated cities and 
countries, deciding on allotting and constructing new places for 
base stations is challenging for the government. Therefore, the 
authors have undertaken the problem of optimizing the 
performance of EMSs by finding an optimal allocation solution 
for distributing ambulances among the existing base stations 
using the details regarding (1) the number of ambulances in the 
fleet, (2) the location of base stations, (3) frequency of request 
calls, and (4) tentative demand sites. 

The remaining paper is organized as follows: Section II 
covers the literature review; Section III focuses on the problem 
background; followed by problem formulation in Section IV. 
Simulation modeling has been explained in Section V. Section 
VI covers the details related to simulation, results obtained, and 
discussions related to the same. Finally, the paper is concluded 
in Section VII. 

II. LITERTAURE REVIEW 
Out of all the literature available on this domain, the 

authors have cited works primarily focusing on optimizing 
ambulance allocation. Ambulance allocation is the distribution 
of ambulances to the base stations based on specific criteria 
[7]. The base station is an area where the ambulances are in 
standby mode. They are dispatched from the base station when 
they have to serve any request. However, deciding the 
locations for positioning the base station is out of the scope of 
this work. Our work primarily focuses on finding the allocation 
plan for ambulances at the existing base stations. Many 
researchers have extensively explored the EMS field to 
improve the service level provided to society. The research in 
the field of EMS needs the answer to the following two 
queries: (1) the optimization criterion that can be used as the 
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best proxy for health outcomes, and (2) the model that is apt to 
be used for designing EMS systems handling a mixed territory 
comprising urban and rural areas. The work of many authors 
has covered the answer to the first query. In work put forward 
by [8]–[10], the authors have tried to determine the attribute 
that should be measured to assess the performance of EMS. 

Many models exist in literature like Location Set Covering 
Problem (LSCP), Maximal Covering Location Problem 
(MCLP), Maximum Expected Covering Location Problem 
(MEXCLP), and Double Standard Model (DSM) for solving 
the facility location problem that has considered area covered 
by EMS as a significant attribute for proposing allocation 
plans. Similarly, some papers in the literature have considered 
service distance as an attribute for evaluating the performance 
of EMSs. In addition, the background of many articles has 
validated response time as a significant factor for gaining better 
insight into the operational performance of EMS. Some works 
have demonstrated that the patient's mortality and recovery 
rates are highly influenced by the response time [11]–[14]. 
Using the same objective in this paper, the authors have 
considered response time as the prime attribute for estimating 
and improving the medical service provided by EMS. 

EMS operates in an uncertain environment in terms of 
demand rate, travel time, and response time. The effect of such 
an uncertain environment on the working of EMS was studied 
using a simulation-based evaluation method by Ünlüyurt and 
Tunçer [15]. Different authors have used various algorithms to 
attain optimized ambulance allocation plans. A data-driven 
approach was used to allocate and dynamically relocate the 
complete fleet of ambulances, using a mixed-integer linear 
formulation to solve the problem of ambulance allocation [16]. 
Firooze et al. proposed an optimizing model for allocating the 
ambulances to the base stations, considering the capacity of 
every base station, travel time, and service time of ambulances 
[17]. The authors [10], [18] proposed a new model by 
integrating survival functions with a motive to capture different 
categories of patients. The conditions faced by the EMS 
organization are dynamic in terms of variation in travel time, 
frequency of requests, speed of ambulances, and coverage of 
areas while fulfilling the requests. The critical issue of the 
impact of spatial randomness of demand has been considered 
in very few studies failing to obtain appropriate solutions. The 
covering models may not be suitable because the spatial 
distribution of demands may or may not be covered entirely, 
violating the assumption of the all-or-nothing binary coverage 
[19]. In 2018, an adjusted queuing solution for ambulance 
allocation was proposed by considering a heterogeneous spatial 
distribution of demands in urban and rural areas [20]. Although 
this solution helped overcome the overstaffing problem, it 
ignored the definite spatial distribution of demand in each area. 
In another solution by Chen et al., the authors used various 
shapes and sizes of grid systems to overcome the problem of 
the spatial distribution of demand [21]. However, obtaining a 
probability density function for request calls in a specific grid 
is challenging [22]. Moreover, a grid area holds no importance 
until it is classified as an area with a high frequency of request 
calls, a hospital, or a community resulting in an unstable 
demand distribution in the grid. 

Considering these factors, Degel et al. proposed a time-
dependent ambulance allocation model to improve the quality 
of emergency services [23]. In another work, the authors used a 
robust optimization approach to improve the functioning of 
EMS, considering the spatial demand characteristics and 
uncertain travel time to the requested site [24]. Geroliminis et 
al. presented a model and a heuristic solution for the optimal 
deployment of ambulances. They integrated a location model, 
Genetic Algorithm (GA), and hypercube model for their work 
[25]. The work by [26] used GA to propose an optimized 
solution for ambulance deployment. Later, a simulation model 
incorporating a Gaussian-process-based search algorithm was 
proposed to attain an optimal allocation plan for ambulances 
[27]. The authors in [28] handled the emergency department's 
overcrowding problem by using game theory-based 
optimization to propose a new optimized allocation plan for 
ambulances to reduce patient waiting and treatment time. 
Similarly, many authors [29]–[31] have used Particle Swarm 
Optimization (PSO) algorithm to achieve an optimized 
ambulance allocation plan for ambulances. Work was proposed 
by the authors [32], where a solution for optimally allocating 
the ambulances was proposed using Jumping PSO. Ant Colony 
Optimization (ACO) was also used for deploying and 
redeploying ambulances by [33], [34]. Another algorithm 
called Shuffled Frog Leaping Algorithm (SFLA) has been used 
in some works to explore the field of EMS. The authors [35], 
[36] used SFLA to optimize the working of EMS. SFLA has 
also been used in different domains for optimally allocating 
resources [37], [38]. However, there is a dearth of research 
papers where SFLA is used in the context of EMS. 

Research by Elbeltagi et al. [38] indicated that SFLA is a 
better optimization technique than other evolutionary 
algorithms such as PSO, ACO, GA, and memetic algorithms. 
SFLA is a memetic metaheuristic algorithm proposed by 
Eusuff and Lansey in 2003. This algorithm combines the 
benefit of the social behavior-based PSO algorithm and 
genetic-based memetic algorithm. It performs similarly to PSO 
and surpasses GA in terms of quality of solution, consistency, 
and processing time. It is considered an efficient and fast 
algorithm as it can quickly converge to global optima with 
small population size. However, in some cases, traditional 
SFLA traps in local optima. To avoid this issue, the authors 
have proposed mutation-based SFLA (mSFLA) by 
incorporating the concept of mutation into the working of 
SFLA. 

Considering the previous studies focusing on improvising 
EMS, most works have used simplified assumptions to come 
up with a result, while others fail to provide a mutual 
comparison of models. Computer simulation has proved to be 
the best way to assess the validation of different processes. Due 
to the lack of operational data or to avoid ample computation 
time, many simulation models oversimplify the actual 
operation. However, the simulation model should consider all 
the processes, sub-processes, and real-time conditions to find 
accurate results. The actual operation of the system should be 
considered while deriving the parameters for the simulation 
model. Therefore, in this work, the authors have proposed and 
used a simulation-optimization framework with mSFLA as the 
optimization component for ambulance allocation. The work 
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considers the spatial distribution of demands and other 
uncertainty factors associated with the environment of EMS. 
To verify and validate the suitability of mSFLA, the algorithm 
is executed in the MATLAB environment to compare the 
results with PSO and GA. 

III. PROBLEM BACKGROUND 
In India, EMS refers to the ambulance service provided for 

on-the-spot treatment by paramedics or transporting sick or 
accident victims to the hospital. Despite being an essential 
component of society, a fully encompassing definition of EMS 
is impossible as it does not have a strong representation at the 
federal level owing to numerous local agencies providing EMS 
to the public. EMS agencies are classified into three categories 
based on the tasks they perform. 

1) EMS that handles scheduled medical transport, 
2) EMS that handles emergent inter-facility transport, and 
3) EMS agencies that primarily handle 102-based 

emergency calls with or without transport. 

 In this study, the authors have focused on the third 
category that deals mainly with the optimized use of 
ambulances. In terms of population and vehicle density across 
any country, extensive growth is visible. With an increase in 
vehicle density, accidents (fatal and non-fatal) have also 
increased, thus, raising the concern of providing medical 
facilities at the location of the accident. Therefore, when an 
accident occurs at any location, an ambulance or hospital 
should be within reach in the shortest duration possible. Since 
setting up hospitals in every area is impossible, ambulances 
can be strategically deployed so that on-the-spot treatment and 
transportation can be provided to accident victims at the 
earliest. Centralized Accident and Trauma Services (CATS) is 
an autonomous body of government in Delhi, India, that 
provides EMS to the victims of accidents and trauma with an 
ART of approximately 13 minutes. CATS has deployed 50 
ambulances at 11 base stations covering the southern portion of 
Delhi. The area of Southern Delhi is approximately 857 square 
kilometers and comprises four districts South West Delhi, 
South East Delhi, New Delhi, and South Delhi. The high 
frequency of request calls from Southern Delhi motivated the 
authors to select and work upon the data of this region to 
allocate and dispatch ambulances for handling accidents and 
reducing the casualty rate. 

IV. PROBLEM FORMULATION 
The problem of allocating ambulances involves distributing 

a specific count of ambulances (A) in the fleet among the base 
stations (B) in such a way that the performance of EMS in 
terms of response time is improved while serving the requests 
generated from numerous demand points (D). The solution for 
the distribution of ambulances among the base stations is 
represented by an integer variable ai, where i є B specifies the 
exact count of ambulances placed at different base stations. 
Thus, 

A = {a1, a2, a3……., aB} 

Considering the real-world scenario, the authors have 
assumed that at an instant, only 'p' ambulances are available out 
of 'A' ambulances to handle the requests as the other 

ambulances are busy handling the patients or are on their way 
back to the base station. The number of ambulances available 
at each base station 'i' is denoted as ai(p). To indicate the 
availability or non-availability of an ambulance at the base 
statio 'i', a binary variable xi(p) is used. Values 1 and 0 for xi(p) 
indicate availability or non-availability at a particular base 
station. The mathematical formulation for minimizing ART is 
as follows. 

min RT = ∑  i∈D νi ∗ tij             (1) 

subject to the constraints. 

∑  i∈D ai(p) = p              (2) 

 ∑  ai  = A              (3) 

 xi(p) ≤ ai(p)              (4) 

 ai(p) ≥ 0  (5)   xi(p) ≥ 0           (6) 

 xi(p) ∈ (0,1)              (7) 

In the objective function shown in Equation 1, 𝜈𝑖  indicates 
the arrival rate of request calls per hour and tij denotes the 
travel time from location i (base station) to location j (demand 
spot). As stated if 'p' ambulances are available out of A 
ambulances, Constraint (2) checks that the total ambulances 
available at each base station are equal to the total number of 
ambulances present in the system at the same instant. 
Constraint (3) restricts the total count of ambulances to A. The 
fulfillment of requests is constrained by the presence of a 
certain number of ambulances at the base station by 
Constraints (4)-(6). Constraint (7) restricts the value of the 
variable. 

V. SIMULATION MODELLING 
The essential processes of an EMS system are structured in 

a simulation model, as shown in Fig. 1. As soon as the EMS 
center receives a call after an emergency occurs, the dispatcher 
selects the nearest ambulance available to serve at the accident 
site. The ambulance commutes from the base station to the 
requested site to locate the victim and provides on-the-spot 
treatment. After assessing the victim's situation, an ambulance 
transports the victim to the hospital if needed. The ambulance 
crew transfers the victim to the emergency room at the 
hospital. After completing the call, either at the requested site 
or the hospital, the ambulance returns to the base station and 
waits until assigned a new task. 

An EMS system's complicated structure and process 
dynamics can be effectively represented with the help of an 
operational model. Fig. 2 shows the operational model 
designed using the workflow of EMS to achieve the objective 
of the proposed work. The emergency calls exhibit strong 
randomness in dimensions of time and space as they can occur 
at any time and place. Therefore, the spatiotemporal 
randomness of such calls should be described quantitatively for 
the correct working of the simulation model. Hence, all the 
data used in the simulation should be defined accurately to 
attain relevant results. A random two-dimensional variable 'r' 
represents the latitude and longitude coordinates of the point 
from where the request initiates. The EMS system uses these 
coordinates to know the exact request location to respond to 
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emergency calls. The optimization algorithm used in work 
determines the state values for base stations and ambulances. 
These state values act as input for the simulation model. The 
state values refer to the data on the location (coordinates) of the 
base station, the id of the base station, and the number of 
ambulances available at that base station. Whenever a request 
call arrives, the travel time between the request location 'r' and 
each base station 'bsi ' can be calculated using the coordinate 

data of 'r', base stations, and Google distance matrix 
application programming interface. This way, a list of base 
stations ranked by travel time from the requested location is 
obtained. Then an ambulance with the status 'available' is 
selected from the base station with the least travel time to 
request location and dispatched to serve the patient. The status 
of the selected ambulance is changed from 'available' to 'busy.' 

 
Fig. 1. Simulation Model of EMS System. 

Request call arrives 
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time for ambulance to the demand spot is the least 
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Fig. 2. Operational Model for the Proposed Work. 

After the ambulance dispatches, the system calculates 
response and delay time values. Response time is the time an 
ambulance takes to reach the patient's location after the request 
is initiated. As soon as the ambulance arrives at the requested 
site, the simulation model records the time for on-the-spot 
treatment. If the patient does not require transportation to a 
hospital, the ambulance returns to the base station, and its state 
changes from busy to available. Otherwise, travel and waiting 
time values are calculated if the patient is transported to a 
hospital. If no ambulance is available, the patient has to wait in 
a queue and is served as soon as an ambulance is available. The 
response time, in this case, is calculated as the sum of travel 
time and waiting time. After all the requests are served in a 
day, the total time taken by ambulances to reach the requested 
locations (response time) is divided by the total number of 
request calls received at the EMS centre to find the value of 
ART. The algorithm of mSFLA has been used as an optimizing 
component and works on the result of the simulation 
component to find the best allocation plan for ambulances. 

A. Shuffled Frog Leaping Algorithm 
The shuffled frog leaping algorithm helps in finding an 

optimal solution. It is a memetic meta-heuristic population-
based cooperative search approach that imitates the group 
behavior (jumping strategy) used by frogs to find a location 
with the maximum amount of food. The algorithm incorporates 
techniques for performing local searches and exchanging 
global information. The frogs are randomly assigned a location 
in the search space. Several groups are formed by dividing the 
population of frogs, thus generating memeplexes. The 
memeplexes then evolve separately in different directions 

within the search space. Individual frogs can use the 
information of the population's best frog (global best) or best 
frog in the memeplex (local best) and change their direction. 
Each frog experiences memetic evolution because they 
influence each other and improve their performance to achieve 
the goal. After a specific number of memetic evolutions, the 
memeplexes are shuffled to generate new memeplexes, 
enhancing frogs' ability to attain the best solution in search 
space. Thus, PSO and Shuffled complex evolution [39] are 
used for local search and integrating information from parallel 
local searches in SFLA. The various steps in SFLA are 
explained below. 

Step 1: Population initialization and parameter setting: 
Various parameters need to be set up for SFLA, such as the 
size of the population, number of memeplexes and sub 
memeplexes, and number of memetic evolutions. A random 
population of 'N' frogs is generated to form the population. For 
all the frogs in the population, the fitness value is calculated. 

Step 2: Grouping: The fitness value obtained above is used 
to sort the frogs in descending order of their fitness value. 
These frogs are then divided into 'm' subgroups, with n frogs in 
each subgroup. 

Step 3: Intra-group search: From each subgroup, the frog 
with the best fitness value 'Xb' and worst fitness value 'Xw' are 
found. The worst solution in the subgroup is updated by using 
Equation 8 and 9, and only one solution which is the worst in 
the subgroup is updated at a sub iteration. For updating the 
position of the worst frog the following equations are used 
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 𝑆𝑖  = 𝑟𝑎𝑛𝑑 ∗  (𝑋𝑏 −  𝑋𝑤)             (8) 

𝑋𝑤′ =  𝑋𝑤 + 𝑆𝑖              (9) 

so that 

 𝑆𝑖𝑚𝑖𝑛  < 𝑆𝑖  < 𝑆𝑖𝑚𝑎𝑥 

where Si is the variation in the location of frog attained in a 
single jump. 'rand' is a uniformly distributed random number 
ranging between 0 and 1. The minimum and maximum step 
sizes for frogs are represented by Simin and Simax. The new 
position of the worst frog is represented by 𝑋𝑤′  If the value of 
𝑋𝑤′  is better than 𝑋𝑤 then the value of 𝑋𝑤′  replaces the value of 
𝑋𝑤  else the new value for 𝑋𝑤′ is calculated by Equation 10 and 
11. 

𝑆𝑖 = 𝑟𝑎𝑛𝑑 ∗  (𝑋𝑏𝑔 −  𝑋𝑤)           (10) 

𝑋𝑤′ =  𝑋𝑤 + 𝑆𝑖            (11) 

Xbg is the best frog in the current population. In case if the 
value of 𝑋𝑤′  is still not better than 𝑋𝑤, then the value of 𝑋𝑤′  can 
be calculated using 

𝑋𝑤′ =  𝑔 + 𝑟𝑎𝑛𝑑(1,𝐷)⨂(ℎ − 𝑔)          (12) 

In the above equation D represents the dimension of the 
optimization problem. rand(1, D) is a random vector of D 
components with each component between 0 and 1. 'g' and 'h' 
represent the upper and lower boundary vectors of the decisive 
variables. ⊗ means an entry wise multiplication. 

The worst frog and best frog is determined from the 
subgroups attained. Repeated subgroup search is carried out for 
predefined number of sub iterations. The intra group search 
stops when the search has been finished by all the subgroups. 

Step 4: Exchange of global information: The exchange of 
global information considers reorganizing all the subgroups 
into a population of N frogs. Steps 2 and 3 are used again to 
sort and divide the population into subgroups. Alternate 
executions of these steps are carried out until either the 
termination criterion is reached or the best solution is obtained. 
However, in some cases, a low diversity in the population traps 
the SFLA into local optima or premature convergence. 
Therefore, the concept of strong mutation is proposed in this 
paper to increase the diversity in the population. This concept 
works upon generating a trial mutated vector using the values 
of the best solution (Xb) in each memeplex and the value of the 
globally best solution (Xbg). It is crucial to ensure that the 
dimension of the mutation vector and the number of 
memeplexes is the same. 

𝑋𝑚𝑢𝑡𝑖 =  𝑋𝑟𝑎𝑛𝑑𝑖 + 𝑟𝑎�𝑋𝑏𝑖 − 𝑋𝑟𝑎𝑛𝑑𝑖 � +  𝑟𝑎(𝑋𝑏𝑔𝑖 −  𝑋𝑟𝑎𝑛𝑑𝑖 )    (13) 

i = 1,2,3……. number of memeplexes. 

Here 𝑋𝑟𝑎𝑛𝑑𝑖  represents a randomly generated vector and ra 
is random number between 0 and 1. Now, the generation cost 
of trial vector f(𝑋𝑚𝑢𝑡𝑖 )and target vector f(Xbg) are compared. If 
the value of the former is better than the latter, then the target 
vector is replaced by the trail vector in the next generation. 
Thus using this step, the algorithm can be prevented from 
being stuck into a local optimum, and convergence of the 
algorithm to a global value can be assured. 

B. Application of mSFLA to the Problem of Ambulance 
Allocation 
The application of mSFLA to ambulance allocation 

problem is explained in this section. The steps used in the work 
are as follows: 

1) The coordinate data about the base stations, count of 
ambulances at the base stations, total number of ambulances in 
the fleet, coordinate data of demand points are defined. 

2) Initial population is generated as 

Population = 

⎣
⎢
⎢
⎢
⎡
𝐴1
𝐴2
𝐴3

 

⋯
𝐴100⎦

⎥
⎥
⎥
⎤
 

𝐴𝑖 =  𝑎𝑖,1, 𝑎𝑖,2, … . . 𝑎𝑖,𝑁 

3) The objective function is defined stating the constraints 
and values. 

4) Compute the fitness value for the objective function. 
5) Sort and divide the population into memeplexes on the 

basis of the value of the fitness function. The local best 
solution (Xb) and the global best solution (Xbg) is defined. 

6) The frog with worst solution (Xw) is amended using 
Equation (8) and (9) or Equation (10) and (11) depending on 
the situation explained in previous section. 

7) The process of mutation is applied and the result 
obtained is compared with the value of Xbg. 

8) The values are updated and the amended and steps 
through 4 to 8 are repeated until the termination criteria is met. 

9) The best solution is obtained. 

VI. SIMULATION RESULTS AND DISCUSSION 

A. Area of Concern 
The authors have undertaken the southern portion of Delhi 

to obtain an optimal allocation plan for a fleet of 50 
ambulances at 11 base stations in the area. Fig. 3 and Fig. 4 
show the southern portion of Delhi and base stations (BS1-
BS11) of that area. The traffic police department of Delhi 
maintains records and releases a report every year stating the 
details like count of accidents, locations of accidents, time at 
which the accident took place, information regarding vehicles 
involved in accidents, etc. To get an insight into the situation, 
the authors used the report for the year 2019-2020. The report 
mentions different locations in Delhi which are accident-prone 
and must be taken into consideration by EMS organizations 
while devising and designing any policy or strategy. However, 
since an accident can occur at any location and at any point of 
time, the authors invented a robust framework that can handle 
any request initiated from any point in a short time. 
Considering each point (latitude and longitude) as a tentative 
spot for the occurrence of an accident, the authors divided 
southern Delhi into 230 blocks. Each block covered an area of 
approximately four kilometers square shown in Fig. 5. In every 
run of the framework, random requests are generated ensuring 
at least one request is initiated from each block. 
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Fig. 3. Southern Portion of Delhi. 

 
Fig. 4. Base Stations of Southern Delhi. 

 
Fig. 5. Tessellations of Southern Delhi.

B. Results and Discussion  
MATLAB environment is used to execute the work for 

15000 requests and a population size of 100. To exemplify the 
robustness and efficiency of mSFLA, the algorithm is executed 
as the optimization component in the operational model of the 
work. For implementing the mSFLA, the authors conducted 
many experiments to find appropriate values for various 
parameters. From the result of the experiments, the authors set 
values for the parameters: number of memeplexes, number of 
frogs in each memeplex, iteration count for global exploration, 

and iteration count for local exploration, as shown in Table I. 
The parameter values used for GA and PSO are shown in Table 
II and Table III respectively. 

For comparison, similar simulations are performed using 
PSO and GA as optimization components in the operational 
model stated in Section V. 20 runs of simulations are 
performed with each algorithm to compare the performance of 
the algorithms using the metrics such as the value of the 
objective function, convergence rate, and constancy 
repeatability. 
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TABLE I. PARAMETERS FOR M SFLA OPTIMIZATION 

Parameter Name Value 

Number of frogs in each memeplex 10 

Number of memeplexes 10 

Iteration max1 70 

Iteration max2 100 

Iteration of mutation 10 

TABLE II. PARAMETERS FOR GA 

Parameter Name Value 

Population size 100 

Number of iterations 1000 

Crossover fraction 0.1 

Mutation fraction 0.8 

TABLE III. PARAMETERS FOR PSO 

Parameter Name Value 

Population size  100 

Number of iterations 1000 

Cognitive coefficient (c1) 2 

Social coefficient (c2) 2 

Inertia coefficient (w) 0.8 

1) Convergence rate: The suitability of an algorithm for an 
optimization problem can be evaluated using convergence rate 
[36]. The convergence graph can also estimate an algorithm's 
best, average, worst results, and standard deviation. The 
convergence graph for PSO, GA, and mSFLA is shown in Fig. 
6(a), 6(b), and 6(c). As stated, 20 different runs were carried 
out for all three algorithms to attain the global fitness value for 
the objective function. The global fitness value is the best 
fitness value obtained in each iteration within the defined 
population size of the algorithm. The graph illustrates that the 
value of global fitness (in the best iteration/generation of every 
algorithm) changed from 13.58172 to 11.9733 in the case of 
PSO, 19.52089 to 11.72735 in the case of GA, and 12.93752 to 
11.4127 in the case of mSFLA in 1000 iterations of each. The 
graph also indicates that the PSO algorithm converged in 94, 
the GA in 358, and the mSFLA in 41 iterations. The quick 
convergence of mSFLA indicates that the convergence rate and 
computational time of mSFLA are better than GA and PSO. 

Another comparison result is shown in Fig. 7 and Fig. 8, 
where the values of standard deviation, best, average, and 
worst solutions are plotted for each algorithm. The result in 
Fig. 7 indicates that the even worst solution (maximum ART) 
provided by mSFLA is better than the other two algorithms' 
average solutions. In addition, the average result of mSFLA is 
also better, making it more efficient. The value of Standard 
Deviation (stdev) for all the algorithms shown in Fig. 8 reveals 
that the value of stdev i.e. 0.045331 is almost negligible in the 
case of mSFLA; therefore, it can provide the best solution in 
each run. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. (a). Convergence Graph of PSO, (b). Convergence Graph of GA, (c). 
Convergence Graph of mSFLA. 
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Fig. 7. Comparison of Worst, Best, and Average Result. 

 
Fig. 8. Comparison of Standard Deviation. 

2) Objective function value: In this work, the objective 
function minimizes the value of ART of EMS to provide a 
prompt service to the people in need. The evolution graph in 
Fig. 9 depicts the global fitness values of ART for PSO, GA, 
and mSFLA are 11.9733 minutes, 11.72735 minutes, and 
11.4127 minutes respectively. 

 
Fig. 9. Evolution Graph of Algorithms. 

The convergence of mSFLA to the least value demonstrates 
that the result and performance of mSFLA is better than PSO 
and GA for the problem of ambulance allocation. 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. (a). Constancy Graph of GA, (b). Constancy Graph of PSO, (c). 
Constancy Graph of mSFLA. 
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Fig. 11. Ambulance Allocation Plan Attained by Each Algorithm. 

3) Constancy repeatability: The performance of any 
algorithm can also be measured using the concept of constancy 
repeatability. Constancy repeatability of an algorithm is the 
similarity rate of the results obtained by the algorithm in 
different executions with the same input values [40]. To infer 
the constancy and repeatability of the algorithm, the authors 
plotted the fitness values obtained by all three algorithms in 
twenty runs of the operational model. Fig. 10(a), 10(b), and 
10(c) show that the changes in the fitness value of GA, PSO, 
and mSFLA. The changes in the value of GA are from 12.34 to 
11.50 minutes, in PSO are from 12.34 to 11.68 minutes, and in 
mSFLA are from 11.55 to 11.41 minutes. To be more exact, 
the variance of the results is calculated. The variance values are 
0.043178 for PSO, 0.038826 for GA, and 0.00205 for mSFLA. 
The consistency of any algorithm can be highlighted with the 
value of variance ranging between 0 and 1. In the proposed 
work, the variance value is between 0 and 1 for all three 
algorithms stating that all the algorithms are stable and 
consistent. However, the global optima results obtained by 
mSFLA are close to the average value in most runs, so it 
characterizes mSFLA as the most stable algorithm among the 
three algorithms. In other words, it can be said that in most 
cases, mSFLA will converge to global optima or near global 
optima. The ambulance allocation plan for the area of Southern 
Delhi provided by each algorithm is shown in Fig. 11. 

VII. CONCLUSION 
The performance of EMS significantly affects a country's 

healthcare system as it is considered responsible for saving 
people's lives. Response time is considered a key indicator to 
measure the performance of EMS by evaluating the time an 
ambulance takes to report at the spot from where the request 
was generated. To reduce the response time of EMS, the 
ambulances should be strategically allocated at the base 
stations so that the commuting time of the ambulance from the 
base station to the demanded spot is reduced. Considering this 
motive, the authors undertook the problem of finding an 
optimal allocation plan for a fleet of 50 ambulances among the 

11 base stations in the southern portion of Delhi. The authors 
used an operational model that showed the flow of data 
between the simulation component and optimization 
component. For the optimization component, the authors 
proposed mSFLA that used the concept of mutation in SFLA to 
avoid being trapped in local optima. mSFLA was compared 
with GA and PSO using different metrics. The results shown in 
Section VI help analyze the performance of mSFLA with PSO 
and GA. The objective of the work to attain an allocation plan 
with minimum response time is attained by mSFLA. It is able 
to reduce the value of ART from 13 minutes to 11.41 minutes, 
i.e., by 12.23%. 

A comparison of standard deviation, best and worst 
solutions of the proposed algorithm proves that mSFLA is 
more effective than the other two algorithms. The small value 
of 0.045331 for standard deviation signifies that mSFLA is 
consistent and reliable. Quick convergence and short execution 
time of mSFLA imply that it can be efficiently utilized in 
optimization problems similar to ambulance allocation 
problems. Moreover, mSFLA converges to a global optima 
value of 11.4127 minutes at lower iterations i.e. 41st iteration 
number taking less execution time than PSO and GA, which 
converge to a global optima value of 11.9733 and 11.72735 in 
94th and 358th iteration number at much higher iterations. 
Therefore, mSFLA appears superior to the other two 
algorithms regarding the quality of solution and convergence 
rapidity. This work also validates the competency of mSFLA 
to other algorithms in handling problems similar to allocation 
problems. 

As it is impossible to consider all the possible scenarios, the 
authors would like to extend the work by changing the single 
objective function to a multiobjective function. In addition, the 
authors will also focus on proposing an efficient strategy and 
solution for dynamically allocating and relocating ambulances. 

REFERENCES 
[1] V. Bélanger, A. Ruiz, and P. Soriano, “Recent optimization models and 

trends in location, relocation, and dispatching of emergency medical 
vehicles,” Eur. J. Oper. Res., vol. 272, no. 1, pp. 1–23, 2019. 

[2] H. Andersson, T. A. Granberg, M. Christiansen, E. S. Aartun, and H. 
Leknes, “Using optimization to provide decision support for strategic 

0

2

4

6

8

10

12

BS
 1

BS
 2

BS
 3

BS
 4

BS
 5

BS
 6

BS
 7

BS
 8

BS
 9

BS
 1

0

BS
 1

1

N
um

be
r o

f A
m

bu
la

nc
es

 

Base Station Index 

mSFLA

PSO

GA



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 9, 2022 

374 | P a g e  
www.ijacsa.thesai.org 

emergency medical service planning – Three case studies,” Int. J. Med. 
Inform., vol. 133, no. July 2019, pp. 103–113, 2020. 

[3] T. Andersson and P. Värbrand, “Decision support tools for ambulance 
dispatch and relocation,” J. Oper. Res. Soc., vol. 58, no. 2, pp. 195–201, 
2007. 

[4] C. J. Jagtenberg, S. Bhulai, and R. D. van der Mei, “Dynamic ambulance 
dispatching: is the closest-idle policy always optimal?,” Health Care 
Manag. Sci., vol. 20, no. 4, pp. 517–531, 2017. 

[5] S. El-Masri and B. Saddik, “An emergency system to improve 
ambulance dispatching, ambulance diversion and clinical handover 
communication: a proposed model,” J. Med. Syst., vol. 36, no. 6, pp. 
3917–3923, 2012. 

[6] Y. A. Kochetov and N. B. Shamray, “Optimization of the Ambulance 
Fleet Location and Relocation,” J. Appl. Ind. Math., vol. 15, pp. 234–
252, 2021. 

[7] M. Reuter-Oppermann, P. L. van den Berg, and J. L. Vile, “Logistics for 
Emergency Medical Service systems,” Heal. Syst., vol. 6, no. 3, pp. 
187–208, 2017. 

[8] L. Yan, P. Wang, J. Yang, Y. Hu, Y. Han, and J. Yao, “Refined Path 
Planning for Emergency Rescue Vehicles on Congested Urban Arterial 
Roads via Reinforcement Learning Approach,” J. Adv. Transp., vol. 
2021, pp. 1–12, 2021. 

[9] M. Eusuff, K. Lansey, and F. Pasha, “Shuffled frog-leaping algorithm: a 
memetic meta-heuristic for discrete optimization,” Eng. Optim., vol. 38, 
no. 2, pp. 129–154, 2006. 

[10] V. A. Knight, P. R. Harper, and L. Smith, “Ambulance allocation for 
maximal survival with heterogeneous outcome measures,” Omega, vol. 
40, no. 6, pp. 918–926, 2012. 

[11] E. Wilde, “Do emergency medical system response times matter for 
health outcomes?,” Health Econ., vol. 22, no. 7, pp. 790–806, 2013. 

[12] M. A. Zaffar, H. K. Rajagopalan, C. Saydam, M. Mayorga, and E. 
Sharer, “Coverage, survivability or response time: A comparative study 
of performance statistics used in ambulance location models via 
simulation--optimization,” Oper. Res. Heal. Care, vol. 11, pp. 1–12, 
2016. 

[13] J. J. Boutilier and T. C. Y. Chan, “Ambulance emergency response 
optimization in developing countries,” Oper. Res., vol. 68, no. 5, pp. 
1315–1334, 2020. 

[14] Ľ. Jánošíková, P. Jankovič, M. Kvet, and F. Zajacová, “Coverage versus 
response time objectives in ambulance location,” Int. J. Health Geogr., 
vol. 20, no. 1, pp. 1–16, 2021. 

[15] T. Ünlüyurt and Y. Tunçer, “Estimating the performance of emergency 
medical service location models via discrete event simulation,” Comput. 
Ind. Eng., vol. 102, pp. 467–475, 2016. 

[16] S. Saisubramanian, P. Varakantham, and H. C. Lau, “Risk based 
optimization for improving emergency medical systems,” in Proceedings 
of the AAAI Conference on Artificial Intelligence, 2015, pp. 17–22. 

[17] S. Firooze, M. Rafiee, and S. M. Zenouzzadeh, “An optimization model 
for emergency vehicle location and relocation with consideration of 
unavailability time,” Sci. Iran., vol. 25, no. 6, pp. 3685–3699, 2018. 

[18] R. Mccormack and G. Coates, “A simulation model to enable the 
optimization of ambulance fleet allocation and base station location for 
increased patient survival,” Eur. J. Oper. Res., vol. 247, no. 1, pp. 294–
309, 2015. 

[19] R. Wei, “Coverage location models: alternatives, approximation, and 
uncertainty,” Int. Reg. Sci. Rev., vol. 39, no. 1, pp. 48–76, 2016. 

[20] M. van Buuren, R. an der Mei, and S. Bhulai, “Demand-point 
constrained EMS vehicle allocation problems for regions with both 
urban and rural areas,” Oper. Res. Heal. Care, vol. 18, pp. 65–83, 2018. 

[21] A. Y. Chen, T.-Y. Lu, M. H.-M. Ma, and W.-Z. Sun, “Demand Forecast 
Using Data Analytics for the Preallocation of Ambulances,” IEEE J. 
Biomed. Heal. informatics, vol. 20, no. 4, pp. 1178–1187, 2015. 

[22] S. Wajid, N. Nezamuddin, and A. Unnikrishnan, “Optimizing 
Ambulance Locations for Coverage Enhancement of Accident Sites in 
South Delhi,” Transp. Res. procedia, vol. 48, pp. 280–289, 2020. 

[23] D. Degel, L. Wiesche, S. Rachuba, and B. Werners, “Time-dependent 
ambulance allocation considering data-driven empirically required 
coverage,” Health Care Manag. Sci., vol. 18, no. 4, pp. 444–458, 2015. 

[24] J. J. Boutilier and T. C. Chan, “Ambulance emergency response 
optimization in developing countries,” Oper. Res., vol. 68, no. 51, pp. 
1315--1334, 2020. 

[25] N. Geroliminis, K. Kepaptsoglou, and M. G. Karlaftis, “A hybrid 
hypercube--genetic algorithm approach for deploying many emergency 
response mobile units in an urban network,” Eur. J. Oper. Res., vol. 210, 
no. 2, pp. 287–300, 2011. 

[26] L. Zhen, K. Wang, H. Hu, and D. Chang, “A simulation optimization 
framework for ambulance deployment and relocation problems,” 
Comput. Ind. Eng., vol. 72, pp. 12–23, 2014. 

[27] W. Yang, Q. Su, S. H. Huang, Q. Wang, Y. Zhu, and M. Zhou, 
“Simulation modeling and optimization for ambulance allocation 
considering spatiotemporal stochastic demand,” J. Manag. Sci. Eng., 
vol. 4, no. 4, pp. 252–265, 2019. 

[28] A. JA, J. Zayas-Castro, and H. Charkhgard, “Ambulance allocation 
optimization model for the overcrowding problem in US emergency 
departments: A case study in Florida,” Socio-Economic Plan. Sci., vol. 
71, p. 100747, 2020. 

[29] AhmadM.Manasrah and H. B. Ali, “Workflow Scheduling Using Hybrid 
GA-PSO Algorithm in Cloud Computing,” Wirel. Commun. Mob. 
Comput., vol. 7, no. 4, pp. 17–34, 2018. 

[30] S. H. R. Hajipour, Vahid and Pasandideh, “Proposing an adaptive 
particle swarm optimization for a novel bi-objective queuing facility 
location model,” Econ. Comput. Econ. Cybern. Stud. Res., vol. 46, pp. 
223–240, 2012. 

[31] H. WA, L. CS, A. AF, A. MH, and T. SS., “Solving maximal covering 
location with particle swarm optimization,” Int. J. Eng. Technol., vol. 5, 
no. 4, pp. 3301–3306, 2013. 

[32] Y. Tsai, C. KW, Y. GT, and L. HJ, “Demand forecast and multi-
objective ambulance allocation,” Int. J. Pattern Recognit. Artif. Intell., 
vol. 32, no. 7, p. 1859011, 2018. 

[33] M. Benabdouallah, C. Bojji, and O. El Yaakoubi, “Deployment and 
redeployment of ambulances using a heuristic method and an ant colony 
optimization—case study,” in Third International Conference on 
Systems of Collaboration (SysCo), 2016, pp. 1–4. 

[34] Q. Su, Q. Luo, and H. H. Samuel, “Cost-effective analyses for 
emergency medical services deployment: A case study in Shanghai,” Int. 
J. Prod. Econ., vol. 163, pp. 112–123, 2015. 

[35] H. Adarang, A. Bozorgi-Amiri, K. Khalili-Damghani, and R. Tavakkoli-
Moghaddam, “A robust bi-objective location-routing model for 
providing emergency medical services,” J. Humanit. Logist. Supply 
Chain Manag., 2020. 

[36] X. Duan, T. Niu, and Q. Huang, “An improved shuffled frog leaping 
algorithm and its application in dynamic emergency vehicle 
dispatching,” Math. Probl. Eng., pp. 17–28, 2018. 

[37] H. P. Hsu and T. L. Chiang, “An improved shuffled frog-leaping 
algorithm for solving the dynamic and continuous berth allocation 
problem (DCBAP),” Appl. Sci., vol. 9, no. 21, p. 4682, 2019. 

[38] Q. Huang and W. Song, “A land-use spatial optimum allocation model 
coupling a multi-agent system with the shuffled frog leaping algorithm,” 
Comput. Environ. Urban Syst., vol. 77, p. 101360, 2019. 

[39] Q. Y. Duan, V. K. Gupta, and S. Sorooshian, “Shuffled complex 
evolution approach for effective and efficient global minimization,” J. 
Optim. Theory Appl., vol. 76, no. 3, pp. 501–521, 1993. 

[40] B. Saeidian, M. S. Mesgar, B. Pradhan, and M. Ghodousi, “Optimized 
location-allocation of earthquake relief centers using PSO and ACO, 
complemented by GIS, clustering, and TOPSIS,” Int. J. Geo-
Information, vol. 7, no. 8, pp. 292–315, 2018. 

 


	I. Introduction
	II. Litertaure Review
	III. Problem Background
	1) EMS that handles scheduled medical transport,
	2) EMS that handles emergent inter-facility transport, and
	3) EMS agencies that primarily handle 102-based emergency calls with or without transport.

	IV. Problem Formulation
	V. Simulation Modelling
	A. Shuffled Frog Leaping Algorithm
	B. Application of mSFLA to the Problem of Ambulance Allocation
	1) The coordinate data about the base stations, count of ambulances at the base stations, total number of ambulances in the fleet, coordinate data of demand points are defined.
	2) Initial population is generated as
	3) The objective function is defined stating the constraints and values.
	4) Compute the fitness value for the objective function.
	5) Sort and divide the population into memeplexes on the basis of the value of the fitness function. The local best solution (Xb) and the global best solution (Xbg) is defined.
	6) The frog with worst solution (Xw) is amended using Equation (8) and (9) or Equation (10) and (11) depending on the situation explained in previous section.
	7) The process of mutation is applied and the result obtained is compared with the value of Xbg.
	8) The values are updated and the amended and steps through 4 to 8 are repeated until the termination criteria is met.
	9) The best solution is obtained.


	VI. Simulation Results and Discussion
	A. Area of Concern
	B. Results and Discussion
	1) Convergence rate: The suitability of an algorithm for an optimization problem can be evaluated using convergence rate [36]. The convergence graph can also estimate an algorithm's best, average, worst results, and standard deviation. The convergence grap�
	2) Objective function value: In this work, the objective function minimizes the value of ART of EMS to provide a prompt service to the people in need. The evolution graph in Fig. 9 depicts the global fitness values of ART for PSO, GA, and mSFLA are 11.9733�
	3) Constancy repeatability: The performance of any algorithm can also be measured using the concept of constancy repeatability. Constancy repeatability of an algorithm is the similarity rate of the results obtained by the algorithm in different executions 	


	VII. Conclusion

