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Abstract—Farmers' primary concern is to reduce crop loss 

because of pests and diseases, which occur irrespective of the 

cultivation process used. Worldwide more than 40% of the 

agricultural output is lost due to plant pathogens, insects, and 

weed pests. Earlier farmers relied on agricultural experts to 

detect pests. Recently Deep learning methods have been utilized 

for insect pest detection to increase agricultural productivity. 

This paper presents two deep learning models based on Faster R-

CNN Efficient Net B4 and Faster R-CNN Efficient Net B7 for 

accurate insect pest detection and classification. We validated 

our approach for 5, 10, and 15 class insect pests of the IP102 

dataset. The findings illustrate that our proposed Faster R-CNN 

Efficient Net B7 model achieved an average classification 

accuracy of 99.00 %, 96.00 %, and 93.00 % for 5, 10, and 15 class 

insect pests outperforming other existing models. To detect insect 

pests less computation time is required for our proposed Faster-

R-CNN method. The investigation reveals that our proposed 

Faster R-CNN model can be used to identify crop pests resulting 

in higher agricultural yield and crop protection. 

Keywords—Deep learning; faster RCNN; insect pest detection; 

IP102 dataset; efficient net 

I. INTRODUCTION 

Agricultural production from field crops has advanced 
quickly in both quantity and quality, but the prevalence of 
pests and diseases on crops has limited the quality of agrarian 
output. If pests on crops are not thoroughly inspected and a 
sufficient, long-lasting treatment is not offered, the quality and 
amount of food production will be lowered, causing an 
increase in poverty and food shortages. Any country's 
economy might be negatively impacted by this, but it would 
be most harmful in places where 60-70% of the populace 
relies completely on income from the agricultural sector to 
support itself. Getting rid of pests that are growing and 
reducing crop production is a significant issue for agricultural 
producers. According to our research, a pest is any species that 
disperses disease and induces damage to the plants. Aphids, 
flax budworm, flea beetle, cabbage butterfly, peachtree borer, 
prodenia litura, thrips and mole cricket are the most frequent 
pests that attack plants. In order to prevent a large amount of 
loss and boost crop yields, it is necessary to identify these 
pests at all phases of their life cycles, whether they are nascent 
or advanced. Understanding and classifying insects is the 
initial step in preventing crop damage caused by insect pests. 
This will allow us to distinguish between harmless insects and 
dangerous ones. In recent times, there has been a rise in 

awareness of automated pests’ classification because this 
activity necessitates ongoing, intensive monitoring [1]. It is 
commonly known that distinct insect species may have 
phenotypes that are similar to one another and that due to 
various habitats and growth cycles, insects can have  intricate 
morphologies [2] [3]. An outstanding method for 
recognizing insect images has been made possible by the 
development of machine learning techniques. Vehicle 
recognition and motion detection have seen considerable 
success utilizing computer vision as well as machine learning 
techniques [4] [5]. A sizable pest dataset of 40 high-grade pest 
categories was labeled using a multi-level classification 
framework of alignment-pooling method [6]. A dataset with 
563 pest images partitioned into 10 categories was used. To 
classify the dataset, training was done on a Support Vector 
Machine for custom features [7]. Various image processing 
techniques to detect and retrieve insect pests by developing a 
machine-driven detection and removal system for evaluating 
pest concentration in paddy crops [8]. To identify the pest 
from a dataset of pest images K mean segmentation technique 
was implemented. In order to classify the pests, the discrete 
cosine transform method was implemented and the pest 
images were classified using an artificial neural 
network. Images were validated for five pests and obtained an 
accuracy of 94.00 % [9]. Deep learning techniques like 
convolutional neural networks have lately been used in 
agricultural production as a viable approach for fully 
automated pest classification [10]. The convolutional neural 
networks exert a significant influence on image elements and 
has their own feature extractor, which makes them superior to 
conventional image processing techniques and machine 
learning. Additionally, in several applications of medical 
image analysis, convolutional neural networks demonstrated 
their ability to manage picture noise and illumination change 
[11]. In this study, a Faster R-CNN framework to detect and   
classify insect pests is investigated. 

The main contributions of this work are as follows: 

1) To detect and classify crop pests, a Faster R-CNN 

framework with Efficient Net is used. In order to improve the 

performance of the model the network drop connects is used 

to prevent over fitting and to increase regularization effect a 

swish function is utilized for Efficient Net. 

2) The Region Proposal Network module and the 

bounding box regression can accurately predict the classes and 
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locations of various crop pests. The computational time 

required for detecting the insect pests is less. 

3) Compared to other methods, the evaluation results of 

insect pest classification using the proposed Faster R-CNN 

framework demonstrated superior performance. 

II. RELATED WORK 

Several deep learning techniques have been used recently 
to categorize pests and develop cutting-edge outcomes in 
several applications for pest identification. Convolutional 
neural network and saliency techniques were used 
for classifying insect pests. Image processing algorithms 
known as saliency approaches emphasize the most important 
areas of an image.  These techniques are based on the 
realization that the observer accurately distinguishes between 
the portions of its field of vision that are important and those 
that are not useful, rather than focusing on the entire range of 
vision. They obtained an accuracy of 92.43 % for the smaller 
dataset [12]. To classify the defected wheat granules for a 
dataset of 300 images, an artificial bee colony, performance 
tuning artificial neural network, and extreme learning machine 
techniques are used [40]. A deep learning framework for 
multi-class fruit detection which includes fruits images along 
with data augmentation based on Faster RCNN was proposed 
and the performance was evaluated [41]. For identifying pests 
and plant diseases in video content, a deep learning-based 
Faster RCNN was investigated along with video based 
performance metrics [42]. A survey paper of current 
innovations in image processing methods for automated leaf 
pest and disease recognition [43]. Adao et al. collected a 
dataset of cotton field images and implemented a deep 
residual design and classified the pests. F1-score of 0.98 was 
achieved by using Resnet 34 model [44]. A metric for 
accuracy degradation was utilized to analyze machine learning 
algorithms by enhancing benign samples [24]. The natural 
statistics model was applied to create saliency maps and 
identify regions of interest in an insect pest image. Further 
work was done on the bio-inspired Hierarchical model and X 
(HMAX) method in the accompanying areas to retrieve 
invariant features for representing pest appearance [13]. 
Convolutional neural network-based frameworks, such as 
attention, feature pyramid, and fine-grained modeling 
techniques for the IP102 dataset were implemented and 
obtained an accuracy of 74.00 % [14]. Chen. H. C et al. 
implemented the AlexNet-modified architecture-based 
convolutional neural network model on the mobile application 
in order to identify tomato diseases utilizing leaf images. For a 
9-class disease, the Alexnet model had a precision of 80.3% 
[15]. Pest detection for 10 pest classes using an efficient 
system for deep learning achieved an average accuracy of 70.5 
%. Yolov5-S model was used for the detection of pests and the 
dataset used was IP102 [16]. A comparison of KNN, SVM, 
Multilayer Perceptron, Faster R-CNN, and Single Shot 
Detector classifiers in distinguishing Bemisia Tabacii embryo 
and Trialeurodes Vaporariorum embryo tomato pest classes 
was implemented [17]. K. Thenmozhi used three types of the 
dataset which include NBAIR, Xie1, and Xie2 for insect 
classification for 40 classes and 24 classes. Pre-trained deep 
learning techniques like AlexNet, ResNet, and VGGNet were 
used for insect classification and fine-tuned with pre-trained 

models by utilizing transfer learning and obtained an accuracy 
of 96.75, 97.47, and 95.97% [18]. 

Wang et al. implemented a Multi-scale convolution 
capsule network for crop insect pest detection. The advantages 
of MSCCN are that it is able to extract the multi-scale 
discriminative features, encode the hierarchical structure of 
size-variant pests and for pest identification, softmax function 
was used to determine the probability. They obtained an 
accuracy of 89.6% for 9 classes of insect species [19]. Nour et 
al. worked on the AlexNet model to recognize the pests for an 
IP102 dataset. The model accuracy was fine-tuned by data 
augmentation to obtain an accuracy of 89.6 % for an eight-
class insect pest [20]. Balakrishnan et al. implemented a real-
time IOT-based environment to detect pests using a faster 
RCNN ResNet50 model for object detection framework. The 
model used 150 test images for each class of insects, 8 classes 
of the IP102 dataset. The model average accuracy achieved for 
eight-class insects is around 94.00 % [21]. Kasinathan et al. 
implemented machine learning techniques such as ANN, 
SVM, KNN, Naïve Bayes, and the CNN model for pest 
detection and classification. The model achieved an accuracy 
of 91.5 % and 93.9 % for nine class and five class pests. The 
drawback of this model they have used 50 images for each 
class even though more images of the pests were available in 
the dataset of  IP102 [22]. 

Mohamed et al. developed a mobile application that uses 
deep learning to automatically classify pests and for the 
identification of insect pests, they used a Faster R-CNN 
model. The model achieved an average accuracy of 98 % for 
five pests. The drawback of this work, in training the image 
pests they have used a total of 500 image pests which results 
in poor approximation, and few test data will result in an 
optimistic and high variance estimation of prediction accuracy 
[23]. In order to overcome the above approach, the proposed 
work was implemented by using a Faster R-CNN for detection 
and classification of pests for around 1449 pest images for 
testing of five pest classes, similarly for 10 classes is 2921 
images and 15 classes are 4321 pest images of IP102 dataset. 

A. Insect Pests 

The proposed work,  includes 15 classes of crop insect 
pests namely aphids, cicadellidae, flax budworm, flea beetle, 
cabbage butterfly, peachtree borer, prodenia litura, thrips, bird 
cherry-oat aphid, mole cricket, grub, wireworm, ampelophaga, 
lycoma delicatula and xylotrechus. Each class in the IP102 
dataset is highly unbalanced, each class pest that contains 
more images in the dataset is taken into consideration for the 
study. The following insect pests framework cause 
considerable damage to the crops leading to a loss in crop 
productivity. 

B. Faster R-CNN 

Faster R-CNN requires an image to be scaled to a certain 
length and width so that noise can be avoided and with the 
introduction of a region proposal network the detection speed 
of insect pests is vastly improved [37]. The feature map is 
generated by the convolution neural network layers for 
processing the images and the identified object undergoes 
location regression and classification. We evaluate the three 
important steps which are involved in Faster R-CNN. Feature 
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maps were obtained from a pre-trained convolutional neural 
networks framework in particular Efficient Net [25], Resnet 
50 [21], and Dense convolutional neural networks [38]. Next, 
the Region Proposal network generates the region proposals to 
detect the pest's locations in the image. The regression box 
provides the exact location of the insect pests. The insect pest 
image processed by the region generative proposal is sent to 
the region of interest pooling to identify and predict the 
accurate location of the insect pest image. Fig. 3 depicts the 
proposed Faster R-CNN framework for detection and 
classification. 

III. MATERIALS AND METHODS 

Efficient Net is a unique scaling method that uniformly 
scales all depth/width/resolution dimensions using a 
compound coefficient. Neural architecture search is used to 
generate a brand-new baseline network and scale it up to 
create the Efficient Nets family of modeling techniques, which 
outperform prior convolutional networks in both efficiency 
and accuracy, reducing parameter size and FLOPS [39]. Width 
scaling is the process of changing the width of an input image. 
The larger the image, the more feature maps/channels are 
possible, and thus the more information is available to process 
[36]. Resolution scaling is the process of changing the 
resolution of an image. The higher an image's Dots per inch, 
the higher its resolution. Better resolution is simply an 
augmentation in the number of pixels in an image. To scale 
the three dimensions, a baseline model called Efficient Net B0 
was introduced. There are seven Efficient Net models ranging 
from B0-B7, where B0 is the baseline model. The size of the 
incoming image varies between models. As the model level 
increases, so does the image's input size. This flexible scaling 
strategy can be utilized to effectively scale Convolutional 
Neural Networks and enhance the accuracy with a variety of 
frameworks. 

The input image is processed by MBConv bottlenecks in 
which direct connections are used because between 
bottlenecks with significantly fewer channels than expansion 
layers in inverted residual blocks as shown in Fig. 1. MB 
Conv has an attention blocks and are made up of a layer that 
expands and then compresses the channels, mechanism that 
allows it to optimize channel features that contain the 
highest information while restricting less significant channel 
features. The gradient of MBConv does not quickly vanish 
when the network depth is more thereby improving the model 
performance. The regularization effect can be increased by 
using a swish function with no upper limit wherein gradient 
saturation will not occur [25]. In order to improve the 
performance, the network drop connect is used to prevent 
over-fitting. The Efficient Net B4 and Efficient Net B7 model 
consists of nine phases with respect to Blocks. Blocks provide 
effective layers and their feature map is connected to the 
Region Proposal network and Region of Interest pooling as 
shown in Fig. 3. 

 

Fig. 1. Efficient B7 Architecture. 

A. Dataset 

Capturing pest images is a difficult task although all insect 
pests go through several phases during their entire life, based 
on the species and category of pest. IP102 dataset is 
commonly used to test the insect pest for classification and 
detection based on deep learning methods [22]. As a result, we 
utilized pest images from the public IP102 dataset. The dataset 
has around 75000 images pertaining to 102 insect pest species. 
For detection and classification, we have chosen 5, 10, and 15 
classes of insect pests. Dataset of 14490 pest images for the 
training of five pest classes, 29210 images for 10 pest classes, 
and 43210 images for 15 pest classes. The pest images were 
split in the ratio of 80 % training, 10 % validation, and 10 % 
for testing. Sample images of insect pests are shown in Fig. 2. 

B. Proposed Framework  for Detection and Classification 

The pest images of the IP102 dataset are passed to 
Efficient Net network and are pre-trained on ImageNet to 
generate feature map. In order to improve the performance, 
network Drop connect and Swish function is utilised in 
Efficient Net. The feature map is passed to the RPN network 
to generate the bounding box and proposal score for the pest 
images. The output of RPN network and feature map obtained 
from the Efficient Net algorithm is passed to ROI pooling for 
detection and classification of pest images. Further the flow of 
the Proposed Faster R-CNN framework for Pest detection and 
Classification is explained in detail in the below following 
Section 3C and 3D. 

 

Fig. 2. Samples of Pests Images from the IP102 Dataset. 
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Fig. 3. Proposed Faster R-CNN Framework for Pest Detection and Classification. 

C. Image Preprocessing and Augmentation 

Images are transformed to (600,600) in the pre-processing 
stage phase to retain the same aspect ratio, and images are 
normalized to maintain the standardized data distribution [25]. 
The importance of data augmentation for image classification 
analysis has previously been proven due to insufficient 
datasets. The categories of each insect pest in the IP102 
dataset are highly unbalanced. To increase the data while 
avoiding the over-fitting problem, various data augmentation 
techniques such as rescaling, zooming, and horizontal flipping 
have been used. Gaussian filter is first used to smooth the 
image. The images were rescaled, created a mask for every 
image, and then applied segmentation to each sample. Each 
image in the dataset is subjected to the processing pipelining 
by a function. 

D. Insect Pest Detection & Classification 

The above-proposed learning architecture is used for 
image processing and to detect and classify pests using the 
Efficient Net and Faster R-CNN approach as shown in Fig. 3. 
The convolutional neural network layers of Efficient Net B4 
and Efficient Net B7 has been used as feature extractor in this 
research and for Faster R-CNN because of their added 
advantage of lightweight and its processing speed which is 
critical for our end application. The pre-trained weights of 
Efficient Net were trained on the Image Net dataset. The size 
of the input image for this methodology is fixed at 224 x 
224. Hence using the EfficientNet model we generate feature 
maps for an input image and pass it to the RPN. 

The RPN takes these feature maps as an input to it and 
provides a set of rectangular proposals (bounding box) 
identifying the object i.e, a pest in the convolutional neural 
network feature map as an output along with the objectness 
score. Grid-anchor having aspect ratio [0.25, 0.5, 1.0, 2.0] is 
started with a 16x16 pixel size during this stage. These 
anchors point to available objects of different sizes and aspect 
ratios at the corresponding location. Intersection over Union 
determines how well the bounding box matches with the 
ground truth of the insect pest image, where A and B are two 

sections of region proposals as given in (1). To improve the 
performance of the model and to reduce the noise, non-
maximum suppression is utilized for identifying the bounding 
boxes with the highest confidence so that the small overlaps 
are ignored. The thresholds were kept at 0.7. 

𝐼𝑜𝑈 =  
𝐴∩𝐵

𝐴∪𝐵
               (1) 

To create the proposals for the object, the Faster R-CNN 
architecture is utilized. It has a specialized and unique 
architecture that has got classifier and regressor. The Faster R-
CNN is robust against translations, it’s one of the important 
properties that it is translational invariant. 

When multi-scale anchors are present, Faster R-CNN 
creates a "Pyramid of Anchors" rather than a "Pyramid of 
Filters," which consumes less time and is more cost efficient 
compared to various other architecture. The next step is to 
pass the proposals to Region of Interest pooling layers. To 
create a single feature map for each of the proposals provided 
by RPN in a single pass, Region of Interest pooling is utilized. 
It is implemented to address the issue of fixed image size 
difficulties with object detection. ROI pooling is utilized to 
create fixed-size feature maps against non-uniform inputs by 
applying max-pooling across the inputs. This layer needs two 
inputs: (i) A feature map obtained from a backbone of 
EfficientNet B4 or EfficientNet B7 used in our research 
methodology after multiple convolutions and pooling layers. 
(ii) ‘N’ proposals or Region of Interests from region proposal 
network (RPN). 

The benefit of Region of Interest pooling is that we can 
utilize the corresponding feature map across all proposals, 
allowing us to pass the whole image to the convolutional 
neural networks rather than passing each proposal 
separately. The sub-windows have a size of (N, 7, 7, 512) 
which has been created by the Region of Interest pooling layer 
by applying max pooling over the next stage, where N 
represents the number of region proposals obtained by the 
RPN network. The features are moved into the classifier and 
regression sections after moving via two fully connected 
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layers. Using the softmax function, the classification division 
evaluates the probability of a region proposal comprising an 
insect pest. Additionally, Intersection over Union values are 
used to evaluate the accuracy of the bounding box generated 
surrounding the insect pest. The anchor box coordinates are 
provided by the bounding box regression. 

E. Classification Performance Metrics 

The performance for identifying the insects is measured by 
using rotation estimation for validating the insect pests of 
tested images with predicted classification results of the Faster 
R-CNN technique [26]. The Confusion Metrics are evaluated 
by True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN). The TP indicates the current 
predicted insect pest class category that is correctly classified. 
The TN pertains to other groups that do not belong to the 
existing insect pest class category. The FP pertains to other 
insect pest class category incorrectly classified as the current 
insect pest class type. The FN relates to the current insect pest 
class category that was incorrectly classified and did not 
belong to the existing class. Precision metric indicates out of 
all points that are predicted to be positive, how many are 
actually Positive. The recall metric indicates out of all positive 
points, how many are actually positive. The classification 
metrics is given below. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑓𝑝+𝑡𝑛+𝑓𝑛
                       (2) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑡𝑝

𝑡𝑝+𝑓𝑝
                       (3) 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝+𝑓𝑛
              (4) 

𝑓1𝑠𝑐𝑜𝑟𝑒 =
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
            (5) 

IV. RESULTS AND DICUSSIONS 

For this experiment, we have used an i7 processor with 
GPU (Nvidia RTX 3080 Ti) along with other supporting tools 
such as Keras and Tensor flow for the detection and 
classification analysis of insect pest images of the IP102 
dataset. The performance of the insect detection and 
classification method was implemented on 5, 10 and 15 
classes of insects. The insect pest images were split into the 
ratio of 80% training, 10% validation, and 10 % for testing. 
The proposed Faster R-CNN model is trained using Stochastic 
Gradient Descent as an optimizer with 0.9 momentum value, 
region proposal network weights, and the last fully connected 
layer weights. The learning rate tells about the learning 
progress and updates with weight parameters to reduce the 
loss. The learning rate is varied from 0.0005, 0.0001, 
0.001.The maximum no of epochs trained to 40 steps. The 
detection and classification results are shown in Fig. 4 based 
on Faster RCNN. The proposed Faster R-CNN technique can 
correctly detect insect pests in the image and identify the 
categories. For all test datasets of pest species, classification 
accuracy ranged from 97.0 to 100.00%. 

 

Fig. 4. Sample of Pest Detection Results for the IP102 Dataset. 

The performance indicator for Pest detection is shown in 
Fig. 5, such as the two methods' average inferential speed. As 
shown in Fig. 5, Faster R-CNN Efficient Net B7 speed along 
with accuracy takes around 19.5 frames per second compared 
to the other model which takes 20.7 frames per second. 

 

Fig. 5. Speed for Insect Pest Detection based on Faster-RCNN. 
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The model performance for five pest classes based on 
Faster R-CNN Efficient Net B7 and Faster R-CNN Efficient 
Net B4 model is shown in Fig. 6 and Fig. 7. The learning rate 
was reduced by a factor of 0.5 when the improvement during 
training went negative. The model continued to be trained 
with a stop patience of seven, i.e, if for seven continuous 
epochs there was a negative improvement, the training was 
halted automatically. The Validation accuracy of around 99.00 
% was achieved during training, and the validation loss 
decreased progressively up to 0.4 % for the Faster R-CNN 
Efficient Net B7 model. Similarly, the Validation accuracy of 
98.00 % and loss of 0.6 % are obtained for the Faster R-CNN 
Efficient Net B4 model. 

 

Fig. 6. Model Performance for 5 Pest Classes based on Faster R-CNN 

Efficient Net B7. 

 

Fig. 7. Model Performance for 5 Pest Classes based on Faster R-CNN 

Efficient Net B4. 

The model performance for 10 pest classes based on Faster 
R-CNN Efficient Net B7 and Faster R-CNN Efficient Net B4 
model is shown in Fig. 8 and Fig. 9. The Validation accuracy 
of around 96.00 % was achieved during training and the 
validation loss decreased progressively up to 0.6 % for the 
Faster R-CNN Efficient Net B7 model. Similarly, the 
validation accuracy of 95.00 % and loss of 0.7 % are obtained 
for the Faster R-CNN Efficient Net B4 model. 

 

Fig. 8. Model Performance for 10 Pest Classes based on Faster R-CNN 

Efficient Net B7. 

 

Fig. 9. Model Performance for 10 Pest Classes based on Faster R-CNN 

Efficient Net B4. 

Similarly, we investigated the model performance for 15 
pest classes based on Faster R-CNN Efficient Net B7 and the 
Faster R-CNN Efficient Net B4 models as shown in Fig. 10 
and Fig. 11. The Validation accuracy of around 93.00 % was 
achieved during training and the validation loss decreased 
progressively up to 0.67 % for the Faster R-CNN Efficient Net 
B7 model. The validation accuracy of 86.00 % and loss of 
0.72 % are obtained for the Faster RCNN Efficient Net B4 
model. 

Fig. 12, Fig. 13, and Fig. 14 shows the confusion matrix 
for 5, 10, and 15 Pest classes of the IP102 dataset during 
testing for the Faster R-CNN Efficient Net B7 model. For 
insect pests, aphids 0.006 %, cabbage butterfly 0.019 %, 
cicadelliade 0.006 % and flea beetle 0.042 % of images is 
incorrectly classified for five pest class. Flax budworm is 
correctly classified with a ratio of one for a five pest insect 
classification. 

 

Fig. 10. Model Performance for 15 Pest Classes based on Faster R-CNN 

Efficient Net B7. 

 

Fig. 11. Model Performance for 15 Pest Classes based on Faster R-CNN 

Efficient Net B4. 
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Fig. 12. Confusion Matrix for 5 Pest Classes for Faster R-CNN Efficient Net 

B7 Model. 

 

Fig. 13. Confusion Matrix for 10 Pest Classes for Faster R-CNN Efficient Net 

B7 Model. 

 

Fig. 14. Confusion Matrix for 15 Pest Classes for Faster R-CNN Efficient Net 

B7 Model. 

Fig. 15 to 17, show the confusion matrix for 5, 10, and 15 
Pest classes during testing for the Faster R-CNN Efficient Net 
B4 model. For insect pest aphids 0.016 %, cabbage butterfly 
0.027 %, cicadellidae 0.006 % and flea beetle 0.084 % of 
images is incorrectly classified for a five pest class. Flax 
budworm is correctly classified with a ratio of 1 for a 5 pest 
insect classification. 

Fig. 18, illustrates the classification report for the test 
dataset for 5, 10 and 15 pest classes using Faster R-CNN 
Efficient Net B7 for IP102 dataset. Classification Accuracy of 
99.00 %, 96.00 %, and 93.00 % is achieved for 5, 10, and 15 

pest classes based on Faster R-CNN Efficient Net B7. For the 
five pest classes, the accuracy ranges from 98 % to 100 %. 
The Precision, recall, the F1 score is 99.00 % for 5 classes and 
of 10 class pests test data it is around 96.00 % and for 15 class 
pests test data is 93.00 %. 

 

Fig. 15. Confusion Matrix for 5 Pest Classes for Faster R-CNN Efficient Net 

B4 Model. 

 

Fig. 16. Confusion Matrix for 10 Pest Classes for Faster R-CNN Efficient Net 

B4 Model. 

 

Fig. 17. Confusion Matrix for 5 Pest Classes for Faster R-CNN Efficient Net 

B4 Model. 
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Fig. 18. Classification Report for 5, 10 and 15 Pest Classes for Faster R-CNN Efficient Net B7. 

Fig. 19, illustrates the classification report for the test 
dataset for 5, 10 and 15 pest classes using Faster R-CNN 
Efficient Net B4. Classification Accuracy of 98.00 %, 95.00 
%, and 90.00 % is achieved for 5, 10, and 15 pest classes 
based on Faster R-CNN Efficient Net B4. The Precision, 
recall, and F1 score is 98.00 % for 5 classes, 10 class pest is 
around 95.00 % and 15 class pests is 90 %. 

F. Comparative Analysis 

Y. Liu et al. investigated using Back-propagation Neural 
Network for five pest class dataset of IP102 dataset and 
achieved an accuracy of 63 %, 50 %, and 43.5 % of 
classification accuracy for 10 %, 20 %, and 30 % test data set 
[34]. When compared to BP Neural Network, the Single shot 
Multi-box detector performed better for identifying the crop 
pests and achieved an accuracy of 90.6 % for a five pest class 
[35]. Kasinathan et al. proposed a CNN model for five pest 
classes and obtained an accuracy of 93.9 % [22]. Our Faster-
CNN model outperformed when compared with the other two 
models for recognizing the pests and obtained a classification 
accuracy of 99.00 % for 10 % of test data, 98.4 % for 20 % of 
test data, and 95.5 % for test data. When the training of the 

pest images is increased by 70 % to 90 %, the classification 
accuracy improves. When compared to 30 % of test data our 
Faster R-CNN model has an accuracy of 95.5.%, whereas for 
BP Neural Network and SSD Mobile Net is around 43.5 % 
and 85.70 % as shown in Fig. 20. 

Comparison was done for the other existing methods for 9 
and 10-class crop pests as shown in Fig. 21. Among all these 
models, bio-inspired methods achieved an accuracy score of 
92.50 % [12], with inference we can say that these models 
used deep learning methodology to detect crop pests. Our 
proposed Faster R-CNN model outperforms other existing 
methods and achieved an average accuracy score of 96.00 % 
for a 10-class crop pest test dataset. 

The performance of the proposed method Faster R-CNN 
Efficient Net B7 and Faster R-CNN Efficient Net B4 is 
compared with existing methods for the IP102 dataset as 
shown in Table I. From Table I we can infer that the proposed 
Faster R-CNN Efficient Net B7 method outperforms the latest 
competitive approaches in terms of Accuracy for 5 and 10 
class crop pests. 

 

Fig. 19. Classification Report for 5, 10 and 15 Pest Classes for Faster R-CNN Efficient Net B4. 
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Fig. 20. Comparison of 5 Pest Classes with Existing Methods. 

 

Fig. 21. Comparison of 10 Pest Classes with Existing Methods. 

TABLE I. MODEL COMPARISON ON IP102 DATASET FOR CROP PESTS 

Research Technique Accuracy  Classes 

Y. Liu et.al (2016) [34] BP Neural Network 63.00% 5 

W. Liu et.al (2016) [35] SSD Mobile Net 90.60% 5 

Iandola et al. (2016) [27] SqueezeNet 67.51% 8 

Ning et al. (2017) [28] 
SSD MobileNet 

SSD Inception 

92.12% 

93.47% 

8 

8 

Li et al. (2018) [29] CapsNet 82.4% 9 

Thenmozhi and Reddy (2019) [18] DCNNT 84.7% 9 

Cui et al. (2019) [30] Yolov2 87.66% 8 

Wang et al. (2019) [19] MS-CapsNet 89.6% 9 

Yan et al. (2020) [31] ResNet50 85.5% 9 

Noor et al. (2020) [20] GoogleNet 88.80% 8 

Nanni et al. (2020) [12] Bio-inspired Model 92.4% 10 

Balakrishnan et al. (2020) [21] Faster-RCNN ResNet50 96.06% 8 

Kasinathan et al. (2021) [22] CNN 
91.5% 

93.9% 

9 

5 

Chen et al. (2022) [32] AlexNet 80.3% 9 

Xu et al. (2022) [33] MSCC 92.4% 9 
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V. CONCLUSION 

In this study, the investigation was done on the Faster R-
CNN method to detect and classify different insect pests for 5, 
10, and 15 classes, and the results were compared. To improve 
the performance and accuracy, each one of the pest images has 
been resized, pre-processed, and augmented to increase the 
dataset. When the image background is more challenging and 
the insect classes are more numerous, as in the IP102 dataset, 
our proposed Faster R-CNN Efficient B7 model achieved an 
average classification accuracy of 99.00 %, 96.00 %, and 
93.00 % for 5, 10, and 15 class insect pests outperforming 
other existing models such as SSD Mobile Net, Bio-inspired 
method and Faster R-CNN ResNet 50. In future work, the 
proposed Faster R-CNN model will be used for higher number 
of insect classes and subclasses of insect pests that will be 
useful for farmers to detect insect pests for detection and 
classification. 
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