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Abstract—The challenge of proving autonomous landing in 
practical situations is difficult and highly risky. Adopting 
autonomous landing algorithms substantially minimizes the 
probability of human-involved mishaps, which may enable the 
use of drones in populated metropolitan areas to their full 
potential. This paper proposes an Unmanned Aerial Vehicles 
(UAV) vertical safe landing & navigation pipeline that relies on 
lightweight computer vision modules, able to execute on the 
limited computational resources on-board a typical UAV. In this 
work, a grid-based mask technique is proposed for selecting the 
safe landing zones where each grid is parameterizable based on 
the size of the UAVs, which is implemented using OpenCV. A 
custom trained YOLOv5 model is the underlying building block 
for safe landing algorithm which is trained for aerial views of 
pedestrians, cars & bikes to identify as obstacles. The nearest 
obstacle-free zone algorithm is applied over the YOLOv5 output 
where boundary box locations are identified using Hue 
Saturation Value (HSV) filtering and then split into grids for safe 
landing zones where maximum coverage is taken into account 
while analyzing each scene. It performs a 2-level operation to 
prevent collisions while descending at different altitudes. Since 
UAV is expected to be processing only at predetermined 
altitudes, which will shorten the processing time, generating a 
PID signal for UAV actuators to navigate to the required safe 
zone with utmost safety and accuracy. 

Keywords—Autonomous UAV system; computer vision 
algorithm; YOLOv5; safe landing site selection; Haversine 
equations 

I. INTRODUCTION 
Unmanned Aerial Vehicles (UAVs) is that uses navigation 

and control software powered by artificial intelligence (AI) and 
do not need a human pilot to fly them. These aircraft carry out 
activities and make decisions on their own, from takeoff and 
landing to conducting aerial site inspections and surveys. The 
utility of an autonomous UAV hinges on its ability to navigate 
with acceptable positional inaccuracy. The term "autonomous 
UAV" means a UAV that can fly without external guidance 
with help of onboard sensors and processors. The main 
problem is to build UAVs strong enough to fly independently 
and land safely in open fields without harming people, as in 
automated package delivery applications [17]. 

The law prohibits UAV operation over a crowd, but in 
practice, UAVs may fly over an unwary crowd, compromising 

people's safety in the event of a failure, such as a 
communication loss, a power shortage, or a human error. 
Providing every UAV with safety rules to prevent injuring 
people in an emergency and to select landing zones 
autonomously is vital. If every UAV had an emergency 
autonomous landing system [15], it would minimize harming 
people during drone accidents and enhance their urban 
deployment potential, especially in crowded circumstances. 

Different drones use obstacle avoidance sensors such as 
stereo vision, ultrasonic (Sonar), time-of-flight, lidar, infrared, 
and monocular vision, either singly or in combination, thus 
fusing data for complex computations [18]. The data from 
these numerous obstacle avoidance sensors is fed back to the 
flight controller, which further uses algorithms and software to 
detect obstacles. The role of the flight controller is diverse, one 
of which is the real-time processing of visual data from the 
environment that is scanned by the obstacle detection sensors 
that will be employed in our model. 

UAVs' limited processing capability owing to weight and 
battery power limits is one major challenge and developing 
UAV-compatible algorithms is difficult too. Also, Deep Neural 
Networks (DNNs) attaining state-of-the-art computer vision 
results demands a lot of processing resources for real-time 
operation. Utilization of single-stage object detection algorithm 
[8] like YOLOv5 along with OpenCV functions in the 
proposed architecture aids in surpassing the above concerns 
thus maximizing the desired outcome with minimal resources. 

This paper is organized as follows. Section II described the 
related work for this study. In Section III, a proposed 
architecture for autonomous UAV safe landing algorithm is 
discussed. Simulation results are described in Section IV and 
Section V concludes the paper. 

II. RELATED WORK 
Human recognition based on live input is crucial to the 

safety of autonomous UAV flying [1]. In order to avoid hurting 
people in the event of a failure, UAV safe landing demands 
that the UAV visually detect people [2] nearby the landing 
place; airspace above/near humans should be treated as a no-fly 
zone. Such detectors place a properly sized rectangular 
bounding box around each item they find on the image feed 
and assign it a discrete class label. 

*Corresponding Author. 
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Early deep neural techniques [3] on human detection 
employed CNNs or R-CNN [4] object detection architecture, 
achieves a high-quality externally offered recommendations to 
attain good performance. In later efforts [5], such YOLOv2, 
employ single-stage detectors model. While speed is 
significantly increased by these detectors end-to-end 
construction in comparison to Faster R-CNN, accuracy is 
slightly decreased [6]. RetinaNet [7] is a different single-stage 
detector with detection performance relatively as good as to 
two-stage methods. A Feature Pyramid Network acts as the 
backbone on top of a ResNet architecture. Two separate sub-
networks classify anchor boxes and modify values in relation 
to the default anchors. In this study [8], most effective model 
for identifying the kind of vehicle, each algorithm went 
through a training dataset of cars and then examined its 
performance. According to a study, YOLO v3 has advantages 
in detection speed while maintaining certain MAP i.e. 80.17% 
MAP (Mean Average Precision) surpasses competing 
approaches such as Faster R-CNN, SSD where frames per 
second (FPS) was more than eight times than that of Faster R-
CNN. In [9], the author has conducted an experiment to check 
the viability of utilizing object detection methods to identify 
safe landing spots in case the UAV suffers an in-flight failure 
and compared different versions of YOLO model and it shows 
that YOLOv5l algorithm outperforms YOLOv4 [11]and 
YOLOv3 in terms of accuracy of detection while maintaining a 
slightly slower inference speed also a light-weight algorithm to 
execute worry-free procedure for power-limited UAVs. 

This paper [10] inspired the idea of employing HSV color 
space masking to avoid water bodies and dense vegetation. 
This technique has no restrictions compared to prior studies. 
The aerial photos are segmented using color and texture cues to 
determine acceptable landing places. 

A. Motivation 
The abundance of commercial camera drones served as the 

motivation for this study. These drones are capable of "return 
to home" (RTH) and vertical landing. A number of 
environmental conditions, such as a sudden break in 
connection between the drone and the controller, instability 
brought on by a strong wind when the drone is in flight, or lack 
of power between drone parts, can cause emergencies. In this 
research, a model is employed for landing camera enabled 
drones securely without using a target as a reference landing or 
flying the drones back to their home location, which would be 
difficult and power intensive. A drone can do a vertical landing 
using the suggested architecture. According to the survey, 
YOLOv5 appears to be the most appropriate for real-time 
processing with a lightweight model for object detection in 
case of power-limited applications and using grid-based 
architecture maximizes the area coverage for site selection, as 
opposed to SLZ candidates, which are obtained as circular 
regions [15], where valuable portions of an obstacle-free zone 
may be missed. Our main objective was to offer most 
commercial drones a stable dynamic landing approach without 
the use of additional hardware or sensors. 

III. METHODOLOGY 
In this paper, an architecture is proposed for autonomous 

UAV safe landing algorithm. In the event when drone is unable 
to reach its home location due to low power or emergency, the 
purpose of our algorithm is to choose a safe landing zone 
inside populated areas so that it does not cause injury to any of 
the people within vicinity of drone and also minimal impact to 
the drone. Specifically, a UAV with a camera mounted on it is 
being considered. First, the camera is used to detect obstacles 
using YOLOv5 model. Second, the location of the closest safe 
landing zone is determined using grid-based architecture. 
These decisions are then relayed to the PID control block, 
which generates PID signals for the drone actuators so that 
they can navigate to the desired location as shown in Fig. 1. 

 
Fig. 1. Block Diagram of Overall Safe Landing Algorithm. 

A. Camera FOV Distance Calculation 
To calculate aerial view coverage of drone using fixed 

Field of View (FOV) camera is given below. 

tan �𝐹𝑂𝑉
2
� × 𝐷 × 2 = N             (1) 

The coverage, denoted by "N," is obtained by using the 
field of view (FOV) of the camera and the working distance of 
the drone, "D". Keeping image formats as 1:1 aspect ratio, this 
results in a 1:1 ratio for the working distance and coverage as 
shown in Fig. 2(a). The fundamental highlight is the ability to 
determine the coverage distance based on the height of the 
drone. Scene 1 in Fig. 2(b) indicates that level-1 operation is 
being considered at an altitude of 27 meters, and coverage is 
27m ×27m. Similarly, at level-2 operation at an altitude of 9m 
is considered will have a coverage of 9m×9m shown as scene 
2. The aforementioned equation (1) is verified using the 
practical specifications of a drone camera listed in Table I. 

B. Object Detection – YOLOv5 
Object detecting methods like the single-stage detectors 

YOLOv5 model are utilized to avoid people, cars, and bikes on 
metropolitan areas. This model is trained using VisDrone 
datasets [12] and the Stanford Drone Dataset (SDD) [13]. 
Basically, YOLO models have three architectural blocks [14]. 

• YOLOv5 Backbone: It is used to extract image 
features. YOLO v5 uses CSP (Cross Stage Partial 
Networks) to obtain useful features from an input 
image. 
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• YOLOv5 Neck: It is used to construct feature 
pyramids. Feature pyramids help scaling models 
generalize. It helps identify objects in different sizes 
and scales. Feature pyramids help models perform well 
on new data. FPN, BiFPN, and PANet use feature 
pyramids. PANet generates a feature pyramids network 
to aggregate features and passes it to Head for 
prediction. 

• YOLOv5 Head: Responsible for final detection. It 
employs anchor boxes to construct class probabilities, 
objectness scores, and bounding boxes. 

 
(a) 

 
(b) 

Fig. 2. (a) Drone Representation of Working Distance, (b) Working 
Distance Calculation. 

TABLE I. PARAMETERS FOR DRONE CAMERA 

Parameters Value 

Image sensor 1/4" 

Image format 1:1 aspect ratio (square) 

Image Pixel 1024x1024 

FOV 53° 

Focal length 3.2 mm 

working distance 27m 

Converge 27m x 27m 

C. Avoidance and Identification of Safe Landing Location 
The YOLOv5 output image is then provided to the 

avoidance system after object detection is done. Here, the 
image is converted to the HSV format in order to identify 
YOLO boundary boxes, green vegetation, water bodies such as 
pool, lake etc. HSV green threshold is then applied as a mask 
to represent the green vegetation and boundary boxes, while 
HSV blue represents the water bodies. The HSV range is fine-
tuned using threshold of dominant color of image. The area 
within the boundary boxes is filled to represent an obstacle and 
then the image is inverted to show obstacles as being black. 

The flow diagram as shown in Fig. 3, to determine the safe 
landing zone, a 3×3 grid is applied over the inverted image 
(scene-1), and at an altitude of 27 meters, each grid has a 
sufficient area of 9m×9m for level-1 operation as show in 
Fig. 2(b). After a set of safe landing zones (SLZ) are 
determined and stored in LUT for subsequent use. Therefore, 
the nearest safe landing area is considered. The geolocation is 
then determined by doing a pixel to distance mapping and then 
converting the distance to GPS coordinates. The PID control 
block receives these GPS coordinates and uses them to provide 
the necessary signals for the drone actuators to navigate to the 
specified safe landing site. After descending to 9m from an 
altitude of 27m, the above set of steps are repeated to locate a 
sub-zone for the drone to land securely. At altitude 9m with a 
3×3 grid applied over the scene-2, the drone still has a 
sufficient space of 3m×3m for each grid to land safely. This 
can be dynamically modified depending on the size or class of 
the drone. 

The below Table II shows that the algorithm is flexible 
enough to reconsider the decisions while descending to verify 
if the SLZ selected are truly obstacle free at lower altitudes. 

TABLE II. SAFE LANDING DECISION MODES 

Mode No. of SLZ27m 
(At level - 1) 

No. of SLZ9m 
(At level - 2) 

Response 

1 SLZ == 0 Don’t care TRAVERSE to New Site 

2 SLZ == 1 SLZ == 0 
ASCEND to Level -1; 
Then TRAVERSE to New 
Site 

3 SLZ > 1 SLZ == 0 
ASCEND to Level -1; 
Then TRAVERSE to Next 
nearest SLZ 

4 SLZ > 0 SLZ > 0 LANDING 

D. Pixel to GPS Coordinates 
• Considering the captured scene is of 1:1 aspect ratio 

selected for computation. Firstly, a distance of 27 
meters is mapped onto an image of 1024 pixels by 
using the map function in Python. Secondly, find the 
distance from the reference point (center of image) to 
the desired safe landing zone and calculate the 
destination GPS coordinate based on the distance to be 
travelled. 
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• For distance to GPS coordinates, GPRMC was utilized 
from the GPS NEMA sentence to obtain coordinates 
(longitude and latitude information) which decimal 
degree (DD) format.  

• The following formula can be used to convert GPS data 
in the form of degrees, minutes, and seconds (DMS) to 
signed decimal degree (DD). 

GPS coordinate = degrees + minutes
60

+ seconds
3600

           (2) 

The GPS waypoint distance is calculated using distance 
module in python using Algorithm 1. 
Algorithm 1 Distance to GPS coordinate Mapping 

Input: origin: latitude and longitude of current location  

 D: Distance from origin to detestation 

 sel: To select latitude or longitude  

 dir: Direction in either West/East or North/South 

Output:  

1: Find destination GPS coordinate lat2 or lon2. 

 2: Set radius of earth in km, radius = 6371 

 3: Compute central angle, c = D/radius of earth 

 4: if (sel is longitude) then 

5: Compute, 

𝑑𝑙𝑜𝑛 = 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 �cos−1 �1 −  
2 × tan�𝑐2�

2

cos(𝑙𝑎𝑡1)2 �1 + tan �𝑐2�
2
�
�� 

 6: if (dir == North) 

 7:  lon2 = dlon + lon1 

 8: else if (dir == South) 

 9:  lon2 = lon1 – dlon 

 10: coordinate = lon2 

 11: else if (sel is latitude) then 

 12: Compute, 

 𝑑𝑙𝑎𝑡 = 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 �cos−1 �1 −  
2 × tan�𝑐

2
�
2

�1+ tan�𝑐
2
�
2
�
�� 

 13: if (dir == East) 

 14:  lat2 = dlat + lat1 

 15: else if (dir == West) 

 16:  lat2 = lat1 – dlat 

 17:  coordinate = lat2 

10: return coordinate 

This algorithm is inspired using the Haversine equations 
[16]. This helps to create pre-defined points in grid to send 
drone to desired location as the scene captured is static. 

origin = [lat1, lon1]             (3) 

destination = [lat2, lon2]             (4) 

δlat = radian(lat1) − radian(lat2)            (5) 

δlon = radian(lon2)−radian(lat2)            (6) 

Using haversine formula, 

α = sin2(δlat/2)+ cos(lat1)∗cos(lat2)sin2(δlon/2);          (7) 

φ = 2 ∗atan�� 𝛼
1 − 𝛼

 �             (8) 

δ = radius ∗ φ              (9) 

 
Fig. 3. Functional Flow Diagram of Safe Landing Algorithm. 

E. Generate PID Signals 
The command to send the drone to the desired location is 

done using only roll (x) and pitch (y) parameters. The current 
GPS location is assumed and motor control command is 
initiated upon receiving the safe landing zone GPS coordinates 
as shown in Fig. 4. In practice, drone angle is calculated from 
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the gyro rates of the IMU sensor and sent to the PID module to 
check the angle error to be corrected in the (x,y) region and 
calculate motor input speed. Then, PWM signals sent to the 
appropriate drone motors to perform actions such as roll or 
pitch to cruise to the desired location until the GPS coordinates 
latitude and longitude matches with destination coordinates. 
Once the drone reaches the target point, it descends to level-2 
height (9m) and repeats the avoidance and location operation 
for scene 2. 

 
Fig. 4. Functional Flow Diagram of PID Control Block. 

IV. RESULTS 
Utilizing test datasets from VisDrone and SDD pictures as 

input feed, the proposed safe landing technique is simulated on 
PC. The following figures illustrate the intermediate results for 
achieving the safe landing control signals generated for the 
drone: 

A. Simulation Results of Avoidance and Safe Landing 
Location Algorithm 
The raw image is fed into YOLOv5 model such that the 

objects can be identified, and the output of YOLO is shown in 
Fig. 5 for the objects identified with boundary boxes(green). 

  
Fig. 5. YOLOv5 Output. 

In Fig. 6, it shows the output of YOLO is then converted 
from RGB to HSV image using OpenCV for further image 
processing. Later, to mask the range of green color a threshold 
set for HSV image to identify the YOLO’s Boundary boxes as 
well vegetation as shown in Fig. 6(b) where white indicates the 
masked colors which identifies the boundary boxes and 
vegetation locations within the captured scene. 

   
Fig. 6. (a) RGB to HSV Color Space (b) Identify Boundary Boxes. 

The next step is that identified contours of the boundary 
boxes are filled. Then image is inverted, such that to identify 
the obstacles in black color as shown in Fig. 7. 

  
Fig. 7. (a) Fill in Objects Identified (b) Invert Image. 

As shown in Fig. 8 the image is applied with grid such that 
to indicate each grid is sufficient area for drone to land in that 
select grid for safe landing area/zone. In this model, 3×3 grid is 
considered and size of each grid is dependent on the altitude of 
UAVs. At 27m altitude (level 1 scan), each grid will have as 
sufficient as 9m×9m grid space. And at 9m altitude (level 2 
scan), grid size of 3m×3m is given for safe landing zone. 
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Fig. 8. (a) Apply Grids (b) Safe Landing Zone. 

Each grid is split to identify if obstacles are present and is it 
safe to land. Here all the grids are taken individually and find if 
any obstacles are there by capturing the black pixels in each 
grid space and accordingly store all safe landing zones (SLZ) 
in LUT (Look-up-table). In Fig. 8(b) identifies the nearest SLZ 
indicated by blue spot which is the shortest distance from the 
reference point (red cross; resides at the center of image). 

B. Simulation Results of PID Control Signals 
The dimensions of image are taken as 1024 ×1024 and 

assuming that the drone is at 25m height and according to focal 
length to working distance ratio set to 1:1 ratio the Field of 
View will be 25m × 25m, and these values are mapped using 
map () function. A set of pre-defined values are given for 
roll/pitch angle (here, roll_angle = 12˚) which determines the 
speed of drone, and set until reaches destination waypoint. The 
below Fig. 9 shows output of each PID for drone motors i.e. 
roll (x) and pitch (y) plot which indicates that the drone will be 
navigated to desired safe landing zone location. 

  
(a) (b) 

Fig. 9. PID Control Signal – (a) x-axis(roll) (b) y-axis (Pitch). 

V. CONCLUSION 
In this paper, the proposed vision-based safe landing 

algorithm for UAVs intended for urban regions is simulated in 
Spyder IDE and has been verified using a real-life scene which 
is taken from SDD and VisDrone test datasets instead of a 
virtual environment. The custom YOLOv5 is trained for an 
aerial view of tiny objects such as humans, cars, and bikes and 
is carried out on a PC with an i9 processor and RTX 3060 GPU 
specification, which is identified successfully, especially for 
human detection. The grid-based decision nature of the 
algorithm for a safe landing will enable maximum coverage of 
area without missing valuable portions of obstacle-free zone. 

By feeding the real-life scenes, the model is verified and 
successfully works for all possible situations as shown in 
Table II where the algorithm is flexible enough to make re-
decisions if unexpected obstacles occur while descending. 

Since the YOLOv5 object detection model allows for the 
differentiation of objects, this model has a lot of potential for 
the future, as it can be implemented with a more intelligent 
system to choose and prioritize where the drone can land 
without creating any hazards to living beings. In addition, 
adequate data for tiny object detection allows the decision to be 
taken from higher altitudes, facilitating the selection of a 
suitable location for detection and landing. 
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