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Abstract—Traffic signal control is a way for reducing traffic 
jams in urban areas, and to optimize the flow of vehicles by 
minimizing the total waiting times. Several intelligent methods 
have been proposed to control the traffic signal. However, these 
methods use a less efficient road features vector, which can lead 
to suboptimal controls.  The objective of this paper is to propose 
a deep reinforcement learning approach as the hybrid model that 
combines the convolutional neural network with eXtreme 
Gradient Boosting to traffic light optimization. We first 
introduce the deep convolutional neural network architecture for 
the best features extraction from all available traffic data and 
then integrated the extracted features into the eXtreme Gradient 
Boosting model to improve the prediction accuracy. In our 
approach; cross-validation grid search was used for the hyper-
parameters tuning process during the training of the eXtreme 
Gradient Boosting model, which will attempt to optimize the 
traffic signal control. Our system is coupled to a microscopic 
agent-based simulator (Simulation of Urban MObility). 
Simulation results show that the proposed approach improves 
significantly the average waiting time when compared to other 
well-known traffic signal control algorithms. 

Keywords—Convolutional neural network; extreme gradient; 
traffic control; traffic optimization; urban mobility 

I. INTRODUCTION 
Congestion causes serious social problems such as long 

distance travel, fuel consumption, and air pollution. Factors 
that contribute to traffic congestion include the proliferation of 
vehicles, poor road infrastructure, and poor signal control. But 
it doesn't stop people from buying cars, and building new road 
infrastructure is expensive. A relatively simple solution is to 
improve the efficiency of traffic light control. Approaches to 
reduce congestion are still priority topics for researchers from 
different disciplines. There have been several technological 
developments to help solve these problems; but there is a real 
need for further study and analysis of the impact of this 
problem on the daily lives of millions of people. 

According to World Bank statistics released in 2017, 64% 
of the world's oil is consumed in the transportation sector. The 
sector also contributes 27% of his CO2 emissions globally. 
According to the same source, according to 2022 statistics, 
domestic and international transport already accounts for 20% 
of global greenhouse gas emissions. It could rise as much as 
60% by 2050 [1]. 

Artificial intelligence plays a very important role in this 
topic; agent-based simulations have attained a sufficient degree 
of complexity and scalability and have shown their ability to 

manage traffic in the urban environment with other means to 
improve the quality of life of users. 

Some researchers have proposed an optimization method 
for dynamic routing systems. Although this technique has 
proven effective in improving computation time, it is rarely 
used nowadays. Another technique for improving dynamic 
routing systems is to predict traffic conditions, like in [2] 
where, a machine learning approach for short-term traffic 
forecasting was proposed. This approach uses common 
conditions such as traffic volume, speed, and road segment 
occupancy to forecast short-term traffic volumes. 

Our work presents a contribution to this line of research; 
and more precisely we will study a simple and always 
interesting situation: an isolated intersection regulated by 
traffic lights, which we want to manage by means of an agent 
capable of exploiting the experience acquired from its learning, 
possibly representing the admissible traffic conditions. We 
describe a Convolutional eXtreme Gradient Boosting 
(ConvXGB) algorithm as a deep reinforcement learning 
algorithm that automatically extracts all useful functions for 
adaptive traffic light control from raw real-time traffic data and 
learns the optimal policy for traffic light control instead of 
using human-crafted functions. We model the control problem 
as a reinforcement learning problem. A deep convolutional 
neural network is then used to extract useful features from the 
raw real-time traffic data (vehicle positions, velocities, waiting 
times of each vehicle on the road, traffic light status, etc.) to 
output the optimal traffic signal control decision. ConvXGB 
combines the performance of a Convolutional Neural Network 
(CNN) and eXtreme Gradient Boosting (XGBoost). A key 
feature of ConvXGB is a systematic strategy for choosing 
between these two models: XGBoost, widely used by data 
scientists, is a scalable machine learning system for tree 
boosting that avoids overfitting. It works well on its own and 
has proven its prowess in many machine learning competitions. 
Adding machine learning with CNN, a deep learning class that 
involves hierarchical learning at multiple different levels, 
brings clarity. 

The simulations are carried out using SUMO (urban 
mobility simulation tool) of [3] in which we can see the results 
of the potential regulation of the actions carried out. A 
considerable reduction in waiting times and vehicle delays is 
achieved by using the proposed method. 

The paper morphology will be as follows: the second 
section provides a literature research on the applications of 
Reinforcement Learning (RL) algorithms dedicated to traffic 
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light control. The third section, we briefly present an 
explanation of the different techniques used. In the fourth 
section, we present the studied environment and its concepts. 
The fifth section describes the structure of the proposed model 
architecture. The simulation results and performance compared 
to other reference models are presented in the sixth section and 
the concluding remarks are given in the last section. 

II. RELATED WORK 
In general, traffic signals are based on repeated "cycles", 

where a cycle is a full rotation of all information provided at 
the intersection, and consisting of a number of phases. 
According [4] the "phase" is a group of traffic movements 
through the intersection; undergoing a "green" time interval, 
followed by "yellow" time and then "red" time.  The dedicated 
time for each phase follows a fixed plan according to [5] 
method, or by adopting an adaptive green time scenario for 
each phase according to the traffic dynamics. The RL method 
applied to adaptive traffic light control has been proven 
effective in many papers. Multi-agent systems for solving 
many traffic management and control problems as in [6] 
research, a challenge in multi-agent environments is whether to 
approach traffic control as a collaborative problem/domain. In 
other words, the local optimum usually competes with the 
global optimum (the entire road network). Dimensional 
problems related to learning in multi-agent systems. Each 
implicitly influences the decisions of other agents. Co-
evolution and the role of driver behavior in transport networks. 
The reference [7] introduced Q-learning algorithm for a single 
isolated intersection, we know that it is a tabular algorithm 
dealing with a restricted modeling of the environment based on 
a finite number of states and actions, which only works for this 
kind of problem and which will suffer from the curse of 
dimensionality if we ever think of expanding the state space 
and giving more details on the traffic state. The reference [8], 
the authors introduced a RL method with context detection for 
traffic signal control optimization, the detection of the change 
of context requires the installation of very sophisticated 
sensors, which is not at all acquired in various road networks 
throughout the world. The authors of [8] used a variety of RL 
algorithms to define the impact of the representation of state 
and action spaces, as well as the choice of actions and the 
definition of rewards on traffic models for a real-world 
intersection, and proved the effectiveness of the phasing 
variable, especially in large and dynamic traffic models. Most 
of the works deal with the problem of traffic signal control 
based on human-designed characteristics such as vehicle queue 
length and average vehicle delay. Human-designed features are 
abstractions of raw traffic data that ignore useful traffic 
information and result in suboptimal signal control. For 
example, vehicle queue length does not take into account 
vehicles that are not in the queue but are due to arrive soon. 
This is also useful information for traffic light control. Average 
vehicle delay reflects only historical traffic data, not real-time 
traffic demand. 

In this work, we draw on the work of [9] and [10] by 
establishing a more detailed representation of the state space of 
the studied environment in order to provide more information 
of the intersection state. In addition, in this paper we propose a 
new deep learning model for reinforcement learning problems, 

called "ConvXGB" which is a combination of CNN and 
XGBoost. 

The ConvXGB model does not use human features, nor 
does it use vehicle queue lengths, instead it automatically 
extracts all useful features from the raw traffic data. Our 
algorithm works efficiently at realistic intersections. Our 
ConvXGB consists of several stacked layers of convolutions 
that learn the properties of the input and can learn the 
properties automatically. Then XGBoost predicts the class 
labels in the last layer. The ConvXGB model is simplified by 
reducing the number of parameters under suitable conditions, 
as it does not require readjusting the weight values in the 
backpropagation cycle. 

III. METHODOLOGY 

A. Deep Reinforcement Learning 
The treatment of a problem by reinforcement learning (RL) 

using Deep Neural Networks (DNN) is called deep 
reinforcement learning (DRL). RL is a goal-oriented machine-
learning algorithm aimed at achieving it by interacting with the 
environment. For a problem handled by RL, the environment is 
iteratively observed by the agent (in our case the road 
network), and it takes an action (by changing the phase or the 
duration of the phase of the signal). As a result, it receives from 
the environment a reward (in the case of traffic light control: 
waiting time …) for the chosen action, the reward will be 
cumulated with its long-term goal (minimize delay, minimize 
stops …). Then according to its rules and the state transition 
probability, the environment switches to the next state. 

The RL agent tries to optimize the correspondence between 
the state space and the action space called policy, by analyzing 
the rewards discounted, and accumulated in the long run, and 
from the application of different action sequences. The agent's 
policy can be adjusted to converge to an optimal policy, by 
maximizing the expectation of the long-term reward during the 
learning process. Fig. 1 shows an RL-agent for traffic signal 
control. 

The value function of the reinforcement-learning problem 
is the estimate of the reward of each pair of state-action in the 
long run. The value of environment state is the estimated long-
run reward discounted by a factor following the policy, as 
defined in the Bellman equation as follows: 

v(s) = ∑P(s′, r|s, a)[r + γVπ (s′)]            (1) 

 
Fig. 1. Reinforcement Learning Agent for Traffic Signal Control. 
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Where s represent the environment state, a the chosen 
action, r the reward received from the environment, P the state 
transition probability, 𝛾 the discount factor, π the agent policy 
and 𝑠′ the next state according the probability P. 

B. Q-learning 
Tabular Q-learning according to [11] is a widely used off-

policy RL algorithm. Where the chosen action a ϵ A 
corresponds to the largest Q-value taken from a grid called Q-
table. All discrete values of states and actions s ϵ S and a ϵ A 
will match in this grid. At each time step, Q-learning improves 
its policy according to the following equation: 

𝑄𝑡(𝑠, 𝑎) =
(1 − 𝛼)𝑄𝑡−1(𝑠,𝑎) + 𝛼(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′∈𝐴 𝑄𝑡−1(𝑠′, 𝑎′))          (2) 

At time step t when the agent chooses to execute action a 
on states it receives a reward r, the parameters α and γ 
represent respectively the learning rate and the discount factor 
defining the importance of the upcoming state. 

Tabular Q-learning needs a grid to store the Q-values of all 
pairs (s, a). The learning process suffers from the curse of 
dimensionality using [11], [12] and [13] approaches, if the sets 
of states S and actions A increase and if, in addition, the 
representation of the state is very detailed, so that the grid of Q 
values becomes giant. Therefore, the function approximation 
Q(s, a; θ) introduced (where θ is the hyper-parameter of the 
approximator) aimed at the generalization of the function from 
an example to estimate the correspondence. In this paper, we 
used this method by convolutional neural networks while 
adopting a continuous state representation. 

C. Deep Q-Network 
The Deep Q-Network (DQN) is a RL algorithm that uses 

Deep Neural Networks (DNN) as function approximators. Its 
effectiveness in handling the large state-action space in RL 
problems as in [14] and in [15] is very significant. In addition, 
it uses two very important mechanisms to solve instability and 
divergence problems: experience replay and target network as 
introduced in [10]. At each learning step, the agent stores the 
quadruplet (s,a,r,s') in the replay memory, then it takes a 
random samples as a mini-batch from the memory to update 
the weights θ. Thus, it eliminates strong correlations between 
consecutive states. The target network mechanism, which is a 
neural network identical to the original one, but where weights 
are updated less frequently, also reduces the correlation 
problem. 

D. XGBoost 
XGBoost (Extreme Gradient Boosting) as explained in [16] 

is a trendy model widely used in several machine-learning 
challenges. Indeed, it runs faster than other model and is 
popular for its scalability in all scenarios discussed in [17]. 
There are many other boosting algorithms such as parallel 
boosting, regression tree boosting, stochastic gradient boosting, 
but in [16], the XGBoost model is one of the leading boosting 
algorithms. 

The performance of many machine-learning algorithms 
depends on their hyper parameter tuning, it is important to tune 
a hyper-parameter; we used the cross-validation grid search 

technique to tune the hyper-parameters of XGBoost in this 
paper. Our results show that this step helped our model achieve 
impressive scores and consequently beat older methods. 

E. Cross-validation Grid Search Tuning Hyper-parameters 
XGBoost is a powerful and flexible machine learning 

algorithm and also it performs very well in general, but there 
are some problems. Notably the large number of hyper-
parameters it has, as well as the fact that different combinations 
of parameters generate different evaluation scores. Hence it is 
essential to find the optimal hyper-parameters to get the most 
out of it. Grid search is method to find optimal hyper-
parameters by testing every combination of them. In our case, 
we choose to tune three common parameters to prevent over 
fitting: learning rate, minimum child weight and maximum 
depth. 

F. ConvXGB Model 
As a fresh deep learning model for categorization issues, 

we introduce the Convolutional eXtreme Gradient Boosting 
(ConvXGB) technique. ConvXGB combines the strengths of a 
Convolutional Neural Network (CNN) with eXtreme Gradient 
Boosting (XGBoost) [16], resulting in a state-of-the-art 
performance and high accuracy, as we will demonstrate. The 
ConvXGB architecture consists of three sub-CNN-networks 
each containing three stacked convolutional layers, the outputs 
of which are merged and reshaped, thus serving as the input to 
the XGBoost which is the final layer of the model. They differ 
from conventional CNN in that there is neither a pooling couch 
nor a fully connected (FC) couch. This adds simplicity and 
reduces the number of calculation parameters because it is not 
necessary to adjust the weight in the FC couches in order to 
adjust the weight in the preceding couches. 

IV. DESCRIPTION OF THE REINFORCEMENT LEARNING 
ENVIRONMENT FOR TRAFFIC LIGHTS CONTROL 

A. Intersection Model 
The environment, on which the agent operates, is a four-

armed intersection shown in Fig. 2. Each arm is 500 meters 
long, the maximum speed is 70km/h and the adopted traffic 
scenario handles an average of 1000 vehicles per hour. There 
are three lanes on each arm defining the possible directions of a 
vehicle: the rightmost lane allows vehicles to turn strictly right, 
the middle lane allows the driver to go straight only, while on 
the leftmost lane the driver can turn left or make a U-turn. 

In the center of the intersection, the agent controls an 
adaptive traffic light system. Pedestrians, pavements and 
pedestrian crossings are not included in our environment. 

 
Fig. 2. Intersection Model. 
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B. State Representation 
A detailed representation of the state of the environment is 

provided for the RL agent. The state is provided in the form of 
three matrices on each incoming road: a matrix of the vehicle's 
position and the matrix of the vehicle's speed used in [10], [18], 
[19] and [20]; and a waiting time matrix of the vehicle's, and 
also the last traffic lights status [21]. To create the three 
matrices Pi, Vi and Wi, we will need to consider two 
parameters the segment length l and the cell length c for each 
road i = 0, 1, 2, 3; Fig. 3. 

In this paper hot coding has been used to define the position 
matrix of the road i, the result is the matrix Pi. The speed 
matrix Vi is calculated by normalizing each vehicle’s speed by 
the edge maximum allocated speed. In our case, we consider 
the waiting time from the moment the vehicle enters the 
incoming route i of the network, and the result is recorded at 
the corresponding entry in the matrix Wi. The waiting time of a 
vehicle is defined as the amount of time during which a vehicle 
has been in the "waiting" state. 

From the state of the last activated traffic lights, a matrix L 
is generated, where: L = [1, 0] is a value that defines green 
lights on horizontal roads whereas L = [0, 1] represents green 
lights on vertical roads as used in [10]. In this way, the state 
representation of the intersection at each time step t provided to 
the RL agent will be St = (P, V, W, L) ∈ S, where S is the 
entire state space. 
C. Action Definition 

In Fig. 4, at each time step the agent observes the state of 
the intersection then chooses and executes either action (At = 
0): “0” setting green lights on for horizontal roads or action(At 
= 1):  “1” setting green lights on for vertical roads. A transition 
phase is required if the action taken at time step t is different 
from the one chosen at time step t+1, it will be executed as 
follows: 

1) Switching the lights for straight ahead vehicles to 
yellow. 

2) Switching the lights for straight ahead vehicles to red. 
3) Switching the lights for left-turning vehicles to yellow. 
4) Switching the traffic lights for vehicles turning left to 

red. 

The times allocated for the yellow and green lights are 
fixed and are worth six seconds and ten seconds respectively. 

D. Reward Definition 
In reinforcement learning, the feedback that the agent 

receives from the environment as a result of his choice of 
action is called a reward. This crucial concept of the training 
process is used to measure the effectiveness of the choice of 
action and thus allows the RL agent to improve future choices 
of his actions. 

The reward can generally take positive or negative values. 
The positive value is the result of the right choice of actions; 
whereas a negative value is due to the wrong choice of actions. 
In our case, the objective is to minimize the total waiting times 
of all vehicles in the intersection. So that the RL agent can 
measures the effect of the action taken on the effectiveness of 

the adaptive control of traffic lights at the intersection in terms 
of reduction or increase, the reward must be derived from a 
performance measure of traffic efficiency, so the goal will be 
met. The intersection is observed for two times, once at the 
beginning of the time step and then at the end of the time step. 

The waiting times in the arrival lanes are noted for each 
observation and for all vehicles present in the intersection. The 
formula for the total reward Rt also used in [10] is therefore: 

𝑅𝑡 = 𝑟1 − 𝑟2               (3) 

The values of 𝑟1  and 𝑟2  are respectively the sum of the 
waiting times recorded at the beginning and at the end of the 
green light interval according to [10]. The agent will only be 
rewarded if the value of 𝑟2 decreases; in case a transition phase 
is mandatory (𝐴𝑡  ≠ 𝐴𝑡+1), the two values  𝑟1  and 𝑟2  will be 
saved at the end of the execution of the transition phase 
discussed in section IV.C. 

 
Fig. 3. Illustration of One Arm of the Intersection and the Three Matrices 

Position (a), Speed (b) and Waiting Time (c) of each Vehicle in the Incoming 
Lane. 

 
Fig. 4. Chronological Sequence of Events of the Agent: State Observation, 

Action Choosing, Executing, Getting Rewards and Training Model 
According. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 9, 2022 

533 | P a g e  
www.ijacsa.thesai.org 

V. ADAPTATIVE SIGNAL CONTROL ALGORITHM DESIGN 
BASED ON CONVXGB 

The ConvXGB agent, which is a RL agent, long-term 
objective is to reduce congestion at the intersection. After 
making a series of decisions (actions) in accordance with a 
policy, we consider St, the intersection's status at the start of 
time step t, into consideration. A sequence of rewards Rt, Rt+1, 
Rt+2, Rt+3... is given to the agent, after taking a sequence of 
actions by adopting a policy π for a state St of the environment 
at the beginning of each time step t.  The action At should 
maximize the reward Rt shown in equation (4) to allow the 
agent to reduce the total waiting times of all vehicles at the 
intersection at time step t.  The agent is supposed to find an 
optimal policy for choosing actions, denoted π∗ defined in (5) 
that maximizes the cumulative future reward (Q-values) and 
that helps it achieve its goal. 

𝑄𝜋(𝑠, 𝑎) = 𝐸[∑ 𝛾𝑘 𝑅𝑡+𝑘∞
𝑘=0 | 𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]           (4) 

𝜋∗𝑎𝑟𝑔𝑚𝑎𝑥𝜋 𝑄𝜋(𝑠, 𝑎) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴           (5) 

To avoid infinite returns in cyclical processes, rewards 
must be discounted. Thus at each time step the reward is 
weighted by a reduction (or discounting) factor γ ϵ [0, 1]. This 
discount factor means that the further into the future one is, the 
less important the rewards become. We denote the optimal 
values of Q under policy 𝜋∗  as  𝑄∗(𝑠, 𝑎) = 𝑄𝜋∗(𝑠, 𝑎) . Our 
model extract useful traffic features, and predict the Q-values 
while trying to find the optimal policy π∗ and thus find the 
optimal Q-values 𝑄∗(𝑠, 𝑎). Bellman's optimality equation (6), 
gives a recursive relation for the optimal Q-values  𝑄∗(𝑠, 𝑎). 

𝑄∗(𝑠, 𝑎) = 𝐸[𝑅𝑡 + 𝛾𝑄∗(𝑆𝑡+1,𝐴𝑡+1)| 𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎]          (6) 

In order to calculate (6), we would need to have complete 
knowledge of the underlying system mode (state transition 
probabilities and associated rewards), which is actually not 
feasible. Due to the complexity and size of the intersection 
traffic space, ConvXGB model is used to approximatively 
determine the optimal Q-values. It receives as input the state 
representation St = (P, V, W, L). Based on this traffic data, the 
CNN sub-networks extract useful features, which they then 

input to XGBoost to forecast the estimated Q(St, a) for all 
actions a ∈ A given the observed condition St. 

A. Proposed ConvXGB Architecture 
Our paper is based on a new deep learning model, 

dedicated to reinforcement learning problems called 
"ConvXGB". It is a hybridization between convolutional 
neural network and an XGBoost model. The architecture of 
ConvXGB is shown in Fig. 5. The model has five layers: 1) 
input layer, 2) three identical CNN sub-networks each 
containing three stacked convolutional layers, 3) reshape layer, 
4) Q-values prediction layer and 5) output layer. These layers, 
each of which has unique talents and duties, are crucial to the 
model's success. Further, the model can be divided into two 
parts: one for feature learning and the other for Q-values 
prediction. 

These three identical sub-networks having respectively as 
inputs the matrices (P, V, W). The outputs of these three sub-
networks is flattened, and then we merge them with the vector 
L (last state of the traffic lights) to provide the result to the 
third layer for reshaping, Table I shows all the CNN 
parameters. 

The second part of the ConvXGB model is an XGBoost 
model, with tuned parameters using GridSearchCV technique, 
to predict the Q-values. XGBoost are optimized by a cross-
validation grid search. 

The performance of the hybrid ConvXGB model is 
compared to the classical DQN model using only convolutional 
networks to show its robustness. ConvXGB effectively uses 
features learning and predicts Q-values, thus significantly 
reducing the total waiting times for all vehicles in the 
intersection, which will be detailed in the results section. 

TABLE I. PARAMETERS OF THE CNN LAYERS 

CNN Layers Number  
of filters Stride Activation 

function 
Conv1 16 of 4x4 2 ReLU 
Conv2 32 of 2x2 1 ReLU 

Conv3 64 of 2x2 1 ReLU 
 

 
Fig. 5. Architecture of the ConvXGB Model. 
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B. Algorithm and Training Process 
The algorithm in Fig. 6 summarizes the process of forming 

the ConvXGB model used. We use a hybrid model composed 
of three identical CNN sub-networks to extract useful features 
from an environment representation (state). In the prediction 
phase, we use XGBoost to make Q-values predictions given 
the features extracted by CNN sub-networks. We also used the 
experience replay used in [10] to break correlations and 
improve agent performance during the training phase. The 
replay memory provides to the RL agent a set of random 
experiences for its learning, called a mini-batch. Each 
experience is represented as a quadruplet { St, At, Rt+1, St+1}, 
collected and stored in memory M during the learning phase, 
after choosing and applying the action At from the state St, the 
agent receive Rt+1 as reward. 

The environment undergoes a transition from the state St to 
the state St+1. This is why the observations extracted from this 
environment are correlated. This correlation can limit the 
learning capacity of the RL agent and prove the need to use the 
replay memory. The oldest experiments are erased if the 
memory is full during learning. The agent needs training data: 
input data set X = {(St, At): t ≥ 1} and the corresponding 
targets y = {𝑄∗(St, At) : t ≥ 1}. For input data set, (St, At) can 
be retrieved from replay memory M. However, target 
𝑄∗(St, At)  is not known. This formula Rt + γ maxa′ Q (St + 1, 
a′) is used to estimate the optimal Q-values. Thus, targets y = { 
Rt + γ maxa′ Q (St + 1, a′) : t ≥ 1}. 

The RL agent randomly takes 32 quadruples ({ St, At, Rt + 

1, St + 1}) of the replay memory used to form training data X = 
{(St, At): t ≥ 1} and also to tune and update XGBoost 
parameters using GridSearchCV technique to efficiently 
estimate optimal Q-values (Q*). 

 
Fig. 6. ConvXGB Algorithm for Adaptative Traffic Light Control using Q-

Learning. 

The exploration / exploitation problem is a frequent 
problem facing the policy of choice of actions in reinforcement 
learning; exploration, where we seek more information to 
improve future decisions; or exploitation, where the decision is 
made based on current information. In this paper, we have 
adopted a ε-greedy exploration policy as used in [18]; given in 
equation (7). For the current episode e we have the probability 
ε of an exploratory action, and the probability 1 - ε of an 
exploiting action. 

𝜀𝑒 = 1 − 𝑒
𝑇𝑜𝑡𝑎𝑙_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

             (7) 

At the start of his training, the agent only explores his 
environment, which is logical and obvious; he begins to use the 
information received during his training; an exclusive 
exploitation of the knowledge acquired by the agent takes place 
towards the end of his training. 

VI. EXPERIMENT AND EVALUATION 

A. Simulation Settings 
In this study, we used the SUMO simulator [1], to generate 

urban traffic simulations. It allowed us to implement and 
customize road infrastructure functionalities. Moreover, 
subsequently extract useful data during the traffic simulation. 

1) Intersection: We have an intersection of four roads, 
each road having three lanes, as shown in Fig. 2. The length of 
the road is 500 meters, the maximum speed is 19.44 m/s (i.e. 
70 km/h), and the length of the vehicles is 5 meters with a 
minimum distance between vehicles of 2.5 meters. Moreover, 
the flow of vehicles (an average of 1000 per hour) is uniformly 
distributed. 

2) Traffic: Vehicles, while selecting their route in advance 
make the choice of entry routes randomly. Horizontal roads 
will be heavily used while vertical roads, which will be less 
frequented, we also increase the frequency for left deviating 
roads compared to right deviating roads. Specially, P1 = 1/7 
(for horizontal roads), P2 = 1/11 (for vertical roads), P3 = 1/30 
(for roads deviating to the right), P4 = 1/25 (for roads deviating 
to the left). The setting of the traffic lights and the transition 
phase used in this paper are detailed in Section IV. 

3) Agent parameters: The training process takes place over 
2000 episodes. Where each episode corresponds to two hours 
of traffic and 7000 time steps, simulating the same traffic load 
at peak hours. For ε-greedy method in Algorithm 1, parameter 
ε is set to be 1 and the discount factor γ = 0.95. Learning rate of 
RMSProp α is set to 0.0002 and the replay memory can store 
the experiences of 200 episodes. The training of the hybrid 
agent took a few days non-stop high-end laptop. 

4) Simulation data: The time (in seconds) that a vehicle 
takes to cross an intersection (between entering and exiting the 
lanes) defines the delay that it can make. Therefore, the waiting 
(stopping) time of a vehicle is closely related to its delay. 
During the simulations, the total waiting time of all vehicles at 
the intersection is recorded in a file for all episodes. 
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Fig. 7. ConvXGB Agent Improvement. 

Our approach is based on a hybrid model as detailed in 
Section V according to an architecture defined in Fig. 6 and 
inputs (P, V, W, L) explained in Section IV. The results of our 
contribution using used a tuned ConvXGB approach, shown in 
Table II, are compared to the fixed time policy, in which the 
phase cycle is fixed throughout the day, however the timing of 
each phase is designed by an expert to accommodate traffic 
volume ratios and to prioritize arterial traffic for green-waves, 
and also compared to the approach of [10] that we simulated 
for our intersection. Approach of [10] showed a clear 
improvement over the fixed traffic light configuration, but the 
hybrid ConvXGB agent we developed was able to outperform 
the fixed time policy and the mentioned approach very well. 
Fig. 7 presents the performance of the mentioned methods. 

Using our agent, we obtain approximately 192k seconds as 
average waiting times for all episodes, while for the agent in 
[10] it was approximately 285k seconds. This proves that our 
ConvXGB hybrid model with XGBoost hyper-parameter 
tuning has significantly improved the problem of reducing 
traffic congestion. 

TABLE II. TOTAL WAITING TIMES OF ALL VEHICLES FOR THE 
IMPLEMENTED APPROACHES 

 
Mean of total WT 
of all vehicles in 
seconds 

Best total WT 
of all vehicles in 
seconds 

Improvement 
over the static 
scenario 

DQN agent 
[10] 285503 231444 54% 

ConvXGB 
agent 192213 145425 72% 

Fixed 
time policy 505850 

B. Training Evaluation Results and Discussion 
The problem of this study was as follows: can a hybrid 

model "Convolutional Neural Network-Extreme Gradient 

Boosting" statistically outperform the "DQN" model in 
optimizing the control of traffic lights in the urban 
environment? 

The quantitative and complete description of the traffic 
situation provided to the agent helped a lot. It is clear that the 
states are more complex but the agent gains in performance. 
The inputs of our model were designed in a suitable way, in 
contrast to [22] where the authors used binary position 
matrices. They defined the binary matrix to cover the entire 
rectangular area around the intersection instead of just covering 
the area of the street relevant to traffic light control. Most 
entries in the binary matrix are null and redundant, making the 
binary matrix inefficient because the vehicle can't travel on 
non-road areas. In our case the vehicle position matrix covers 
only intersecting roads. This reduces the cost of training 
computation. We were able to boost the performance of our 
ConvXGB model by using the GridSearchCV technique for 
fine-tuning the XGBoost model. And since the tests we were 
able to do this step really helped our model to show better 
results. 

Based on the evaluation and comparison of the two models, 
the results clearly showed the performance difference of the 
ConvXGB hybrid model. As shown in Fig. 7, the results 
obtained are significantly larger than the approach of [10]. The 
ConvXGB-based Q-learning algorithm is an effective choice 
over traditional traffic control methods, solving the problem of 
traffic congestion in large cities. 

In the future, a better prediction model could be developed 
by using a heuristics methods for fine-tuning of the XGBoost 
and experimenting with new hybrid algorithms is 
recommended for future work. 

VII. CONCLUSIONS 
We have developed a new deep learning model for traffic 

light control problems using reinforcement learning. ConvXGB 
has two parts: one for useful feature extraction based on 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 13, No. 9, 2022 

536 | P a g e  
www.ijacsa.thesai.org 

detailed traffic situation definition and one for predicting Q 
values according to Q learning algorithm. We evaluated 
ConvXGB, on a single intersection, by adopting a traffic 
scenario illustrating clear peak hour congestion. ConvXGB 
was simplified by reducing the number of parameters needed 
and did not require back-propagation in the fully connected 
layer. ConvXGB based on CNN and XGBoost, was improved 
by tuning the most common XGBoost hyper-parameters. Our 
experimental results show that our model is significantly better 
than the classic DQN model, which also performed well when 
comparing it to the fixed time policy, but its performance is 
clearly inferior to our ConvXGB. 
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