
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

529 | P a g e
www.ijacsa.thesai.org

Deep Q-learning Approach based on CNN and
XGBoost for Traffic Signal Control

Nada Faqir, Chakir Loqman, Jaouad Boumhidi
Department of Computer Science, Faculty of Sciences Dhar El Mehraz

Sidi Mohammed Ben Abdellah University of Fes, Fes, Morocco

Abstract—Traffic signal control is a way for reducing traffic
jams in urban areas, and to optimize the flow of vehicles by
minimizing the total waiting times. Several intelligent methods
have been proposed to control the traffic signal. However, these
methods use a less efficient road features vector, which can lead
to suboptimal controls. The objective of this paper is to propose
a deep reinforcement learning approach as the hybrid model that
combines the convolutional neural network with eXtreme
Gradient Boosting to traffic light optimization. We first
introduce the deep convolutional neural network architecture for
the best features extraction from all available traffic data and
then integrated the extracted features into the eXtreme Gradient
Boosting model to improve the prediction accuracy. In our
approach; cross-validation grid search was used for the hyper-
parameters tuning process during the training of the eXtreme
Gradient Boosting model, which will attempt to optimize the
traffic signal control. Our system is coupled to a microscopic
agent-based simulator (Simulation of Urban MObility).
Simulation results show that the proposed approach improves
significantly the average waiting time when compared to other
well-known traffic signal control algorithms.

Keywords—Convolutional neural network; extreme gradient;
traffic control; traffic optimization; urban mobility

I. INTRODUCTION
Congestion causes serious social problems such as long

distance travel, fuel consumption, and air pollution. Factors
that contribute to traffic congestion include the proliferation of
vehicles, poor road infrastructure, and poor signal control. But
it doesn't stop people from buying cars, and building new road
infrastructure is expensive. A relatively simple solution is to
improve the efficiency of traffic light control. Approaches to
reduce congestion are still priority topics for researchers from
different disciplines. There have been several technological
developments to help solve these problems; but there is a real
need for further study and analysis of the impact of this
problem on the daily lives of millions of people.

According to World Bank statistics released in 2017, 64%
of the world's oil is consumed in the transportation sector. The
sector also contributes 27% of his CO2 emissions globally.
According to the same source, according to 2022 statistics,
domestic and international transport already accounts for 20%
of global greenhouse gas emissions. It could rise as much as
60% by 2050 [1].

Artificial intelligence plays a very important role in this
topic; agent-based simulations have attained a sufficient degree
of complexity and scalability and have shown their ability to

manage traffic in the urban environment with other means to
improve the quality of life of users.

Some researchers have proposed an optimization method
for dynamic routing systems. Although this technique has
proven effective in improving computation time, it is rarely
used nowadays. Another technique for improving dynamic
routing systems is to predict traffic conditions, like in [2]
where, a machine learning approach for short-term traffic
forecasting was proposed. This approach uses common
conditions such as traffic volume, speed, and road segment
occupancy to forecast short-term traffic volumes.

Our work presents a contribution to this line of research;
and more precisely we will study a simple and always
interesting situation: an isolated intersection regulated by
traffic lights, which we want to manage by means of an agent
capable of exploiting the experience acquired from its learning,
possibly representing the admissible traffic conditions. We
describe a Convolutional eXtreme Gradient Boosting
(ConvXGB) algorithm as a deep reinforcement learning
algorithm that automatically extracts all useful functions for
adaptive traffic light control from raw real-time traffic data and
learns the optimal policy for traffic light control instead of
using human-crafted functions. We model the control problem
as a reinforcement learning problem. A deep convolutional
neural network is then used to extract useful features from the
raw real-time traffic data (vehicle positions, velocities, waiting
times of each vehicle on the road, traffic light status, etc.) to
output the optimal traffic signal control decision. ConvXGB
combines the performance of a Convolutional Neural Network
(CNN) and eXtreme Gradient Boosting (XGBoost). A key
feature of ConvXGB is a systematic strategy for choosing
between these two models: XGBoost, widely used by data
scientists, is a scalable machine learning system for tree
boosting that avoids overfitting. It works well on its own and
has proven its prowess in many machine learning competitions.
Adding machine learning with CNN, a deep learning class that
involves hierarchical learning at multiple different levels,
brings clarity.

The simulations are carried out using SUMO (urban
mobility simulation tool) of [3] in which we can see the results
of the potential regulation of the actions carried out. A
considerable reduction in waiting times and vehicle delays is
achieved by using the proposed method.

The paper morphology will be as follows: the second
section provides a literature research on the applications of
Reinforcement Learning (RL) algorithms dedicated to traffic

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

530 | P a g e
www.ijacsa.thesai.org

light control. The third section, we briefly present an
explanation of the different techniques used. In the fourth
section, we present the studied environment and its concepts.
The fifth section describes the structure of the proposed model
architecture. The simulation results and performance compared
to other reference models are presented in the sixth section and
the concluding remarks are given in the last section.

II. RELATED WORK
In general, traffic signals are based on repeated "cycles",

where a cycle is a full rotation of all information provided at
the intersection, and consisting of a number of phases.
According [4] the "phase" is a group of traffic movements
through the intersection; undergoing a "green" time interval,
followed by "yellow" time and then "red" time. The dedicated
time for each phase follows a fixed plan according to [5]
method, or by adopting an adaptive green time scenario for
each phase according to the traffic dynamics. The RL method
applied to adaptive traffic light control has been proven
effective in many papers. Multi-agent systems for solving
many traffic management and control problems as in [6]
research, a challenge in multi-agent environments is whether to
approach traffic control as a collaborative problem/domain. In
other words, the local optimum usually competes with the
global optimum (the entire road network). Dimensional
problems related to learning in multi-agent systems. Each
implicitly influences the decisions of other agents. Co-
evolution and the role of driver behavior in transport networks.
The reference [7] introduced Q-learning algorithm for a single
isolated intersection, we know that it is a tabular algorithm
dealing with a restricted modeling of the environment based on
a finite number of states and actions, which only works for this
kind of problem and which will suffer from the curse of
dimensionality if we ever think of expanding the state space
and giving more details on the traffic state. The reference [8],
the authors introduced a RL method with context detection for
traffic signal control optimization, the detection of the change
of context requires the installation of very sophisticated
sensors, which is not at all acquired in various road networks
throughout the world. The authors of [8] used a variety of RL
algorithms to define the impact of the representation of state
and action spaces, as well as the choice of actions and the
definition of rewards on traffic models for a real-world
intersection, and proved the effectiveness of the phasing
variable, especially in large and dynamic traffic models. Most
of the works deal with the problem of traffic signal control
based on human-designed characteristics such as vehicle queue
length and average vehicle delay. Human-designed features are
abstractions of raw traffic data that ignore useful traffic
information and result in suboptimal signal control. For
example, vehicle queue length does not take into account
vehicles that are not in the queue but are due to arrive soon.
This is also useful information for traffic light control. Average
vehicle delay reflects only historical traffic data, not real-time
traffic demand.

In this work, we draw on the work of [9] and [10] by
establishing a more detailed representation of the state space of
the studied environment in order to provide more information
of the intersection state. In addition, in this paper we propose a
new deep learning model for reinforcement learning problems,

called "ConvXGB" which is a combination of CNN and
XGBoost.

The ConvXGB model does not use human features, nor
does it use vehicle queue lengths, instead it automatically
extracts all useful features from the raw traffic data. Our
algorithm works efficiently at realistic intersections. Our
ConvXGB consists of several stacked layers of convolutions
that learn the properties of the input and can learn the
properties automatically. Then XGBoost predicts the class
labels in the last layer. The ConvXGB model is simplified by
reducing the number of parameters under suitable conditions,
as it does not require readjusting the weight values in the
backpropagation cycle.

III. METHODOLOGY

A. Deep Reinforcement Learning
The treatment of a problem by reinforcement learning (RL)

using Deep Neural Networks (DNN) is called deep
reinforcement learning (DRL). RL is a goal-oriented machine-
learning algorithm aimed at achieving it by interacting with the
environment. For a problem handled by RL, the environment is
iteratively observed by the agent (in our case the road
network), and it takes an action (by changing the phase or the
duration of the phase of the signal). As a result, it receives from
the environment a reward (in the case of traffic light control:
waiting time …) for the chosen action, the reward will be
cumulated with its long-term goal (minimize delay, minimize
stops …). Then according to its rules and the state transition
probability, the environment switches to the next state.

The RL agent tries to optimize the correspondence between
the state space and the action space called policy, by analyzing
the rewards discounted, and accumulated in the long run, and
from the application of different action sequences. The agent's
policy can be adjusted to converge to an optimal policy, by
maximizing the expectation of the long-term reward during the
learning process. Fig. 1 shows an RL-agent for traffic signal
control.

The value function of the reinforcement-learning problem
is the estimate of the reward of each pair of state-action in the
long run. The value of environment state is the estimated long-
run reward discounted by a factor following the policy, as
defined in the Bellman equation as follows:

v(s) = ∑P(s′, r|s, a)[r + γVπ (s′)] (1)

Fig. 1. Reinforcement Learning Agent for Traffic Signal Control.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

531 | P a g e
www.ijacsa.thesai.org

Where s represent the environment state, a the chosen
action, r the reward received from the environment, P the state
transition probability, 𝛾 the discount factor, π the agent policy
and 𝑠′ the next state according the probability P.

B. Q-learning
Tabular Q-learning according to [11] is a widely used off-

policy RL algorithm. Where the chosen action a ϵ A
corresponds to the largest Q-value taken from a grid called Q-
table. All discrete values of states and actions s ϵ S and a ϵ A
will match in this grid. At each time step, Q-learning improves
its policy according to the following equation:

𝑄𝑡(𝑠, 𝑎) =
(1 − 𝛼)𝑄𝑡−1(𝑠,𝑎) + 𝛼(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′∈𝐴 𝑄𝑡−1(𝑠′, 𝑎′)) (2)

At time step t when the agent chooses to execute action a
on states it receives a reward r, the parameters α and γ
represent respectively the learning rate and the discount factor
defining the importance of the upcoming state.

Tabular Q-learning needs a grid to store the Q-values of all
pairs (s, a). The learning process suffers from the curse of
dimensionality using [11], [12] and [13] approaches, if the sets
of states S and actions A increase and if, in addition, the
representation of the state is very detailed, so that the grid of Q
values becomes giant. Therefore, the function approximation
Q(s, a; θ) introduced (where θ is the hyper-parameter of the
approximator) aimed at the generalization of the function from
an example to estimate the correspondence. In this paper, we
used this method by convolutional neural networks while
adopting a continuous state representation.

C. Deep Q-Network
The Deep Q-Network (DQN) is a RL algorithm that uses

Deep Neural Networks (DNN) as function approximators. Its
effectiveness in handling the large state-action space in RL
problems as in [14] and in [15] is very significant. In addition,
it uses two very important mechanisms to solve instability and
divergence problems: experience replay and target network as
introduced in [10]. At each learning step, the agent stores the
quadruplet (s,a,r,s') in the replay memory, then it takes a
random samples as a mini-batch from the memory to update
the weights θ. Thus, it eliminates strong correlations between
consecutive states. The target network mechanism, which is a
neural network identical to the original one, but where weights
are updated less frequently, also reduces the correlation
problem.

D. XGBoost
XGBoost (Extreme Gradient Boosting) as explained in [16]

is a trendy model widely used in several machine-learning
challenges. Indeed, it runs faster than other model and is
popular for its scalability in all scenarios discussed in [17].
There are many other boosting algorithms such as parallel
boosting, regression tree boosting, stochastic gradient boosting,
but in [16], the XGBoost model is one of the leading boosting
algorithms.

The performance of many machine-learning algorithms
depends on their hyper parameter tuning, it is important to tune
a hyper-parameter; we used the cross-validation grid search

technique to tune the hyper-parameters of XGBoost in this
paper. Our results show that this step helped our model achieve
impressive scores and consequently beat older methods.

E. Cross-validation Grid Search Tuning Hyper-parameters
XGBoost is a powerful and flexible machine learning

algorithm and also it performs very well in general, but there
are some problems. Notably the large number of hyper-
parameters it has, as well as the fact that different combinations
of parameters generate different evaluation scores. Hence it is
essential to find the optimal hyper-parameters to get the most
out of it. Grid search is method to find optimal hyper-
parameters by testing every combination of them. In our case,
we choose to tune three common parameters to prevent over
fitting: learning rate, minimum child weight and maximum
depth.

F. ConvXGB Model
As a fresh deep learning model for categorization issues,

we introduce the Convolutional eXtreme Gradient Boosting
(ConvXGB) technique. ConvXGB combines the strengths of a
Convolutional Neural Network (CNN) with eXtreme Gradient
Boosting (XGBoost) [16], resulting in a state-of-the-art
performance and high accuracy, as we will demonstrate. The
ConvXGB architecture consists of three sub-CNN-networks
each containing three stacked convolutional layers, the outputs
of which are merged and reshaped, thus serving as the input to
the XGBoost which is the final layer of the model. They differ
from conventional CNN in that there is neither a pooling couch
nor a fully connected (FC) couch. This adds simplicity and
reduces the number of calculation parameters because it is not
necessary to adjust the weight in the FC couches in order to
adjust the weight in the preceding couches.

IV. DESCRIPTION OF THE REINFORCEMENT LEARNING
ENVIRONMENT FOR TRAFFIC LIGHTS CONTROL

A. Intersection Model
The environment, on which the agent operates, is a four-

armed intersection shown in Fig. 2. Each arm is 500 meters
long, the maximum speed is 70km/h and the adopted traffic
scenario handles an average of 1000 vehicles per hour. There
are three lanes on each arm defining the possible directions of a
vehicle: the rightmost lane allows vehicles to turn strictly right,
the middle lane allows the driver to go straight only, while on
the leftmost lane the driver can turn left or make a U-turn.

In the center of the intersection, the agent controls an
adaptive traffic light system. Pedestrians, pavements and
pedestrian crossings are not included in our environment.

Fig. 2. Intersection Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

532 | P a g e
www.ijacsa.thesai.org

B. State Representation
A detailed representation of the state of the environment is

provided for the RL agent. The state is provided in the form of
three matrices on each incoming road: a matrix of the vehicle's
position and the matrix of the vehicle's speed used in [10], [18],
[19] and [20]; and a waiting time matrix of the vehicle's, and
also the last traffic lights status [21]. To create the three
matrices Pi, Vi and Wi, we will need to consider two
parameters the segment length l and the cell length c for each
road i = 0, 1, 2, 3; Fig. 3.

In this paper hot coding has been used to define the position
matrix of the road i, the result is the matrix Pi. The speed
matrix Vi is calculated by normalizing each vehicle’s speed by
the edge maximum allocated speed. In our case, we consider
the waiting time from the moment the vehicle enters the
incoming route i of the network, and the result is recorded at
the corresponding entry in the matrix Wi. The waiting time of a
vehicle is defined as the amount of time during which a vehicle
has been in the "waiting" state.

From the state of the last activated traffic lights, a matrix L
is generated, where: L = [1, 0] is a value that defines green
lights on horizontal roads whereas L = [0, 1] represents green
lights on vertical roads as used in [10]. In this way, the state
representation of the intersection at each time step t provided to
the RL agent will be St = (P, V, W, L) ∈ S, where S is the
entire state space.
C. Action Definition

In Fig. 4, at each time step the agent observes the state of
the intersection then chooses and executes either action (At =
0): “0” setting green lights on for horizontal roads or action(At
= 1): “1” setting green lights on for vertical roads. A transition
phase is required if the action taken at time step t is different
from the one chosen at time step t+1, it will be executed as
follows:

1) Switching the lights for straight ahead vehicles to
yellow.

2) Switching the lights for straight ahead vehicles to red.
3) Switching the lights for left-turning vehicles to yellow.
4) Switching the traffic lights for vehicles turning left to

red.

The times allocated for the yellow and green lights are
fixed and are worth six seconds and ten seconds respectively.

D. Reward Definition
In reinforcement learning, the feedback that the agent

receives from the environment as a result of his choice of
action is called a reward. This crucial concept of the training
process is used to measure the effectiveness of the choice of
action and thus allows the RL agent to improve future choices
of his actions.

The reward can generally take positive or negative values.
The positive value is the result of the right choice of actions;
whereas a negative value is due to the wrong choice of actions.
In our case, the objective is to minimize the total waiting times
of all vehicles in the intersection. So that the RL agent can
measures the effect of the action taken on the effectiveness of

the adaptive control of traffic lights at the intersection in terms
of reduction or increase, the reward must be derived from a
performance measure of traffic efficiency, so the goal will be
met. The intersection is observed for two times, once at the
beginning of the time step and then at the end of the time step.

The waiting times in the arrival lanes are noted for each
observation and for all vehicles present in the intersection. The
formula for the total reward Rt also used in [10] is therefore:

𝑅𝑡 = 𝑟1 − 𝑟2 (3)

The values of 𝑟1 and 𝑟2 are respectively the sum of the
waiting times recorded at the beginning and at the end of the
green light interval according to [10]. The agent will only be
rewarded if the value of 𝑟2 decreases; in case a transition phase
is mandatory (𝐴𝑡 ≠ 𝐴𝑡+1), the two values 𝑟1 and 𝑟2 will be
saved at the end of the execution of the transition phase
discussed in section IV.C.

Fig. 3. Illustration of One Arm of the Intersection and the Three Matrices

Position (a), Speed (b) and Waiting Time (c) of each Vehicle in the Incoming
Lane.

Fig. 4. Chronological Sequence of Events of the Agent: State Observation,

Action Choosing, Executing, Getting Rewards and Training Model
According.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

533 | P a g e
www.ijacsa.thesai.org

V. ADAPTATIVE SIGNAL CONTROL ALGORITHM DESIGN
BASED ON CONVXGB

The ConvXGB agent, which is a RL agent, long-term
objective is to reduce congestion at the intersection. After
making a series of decisions (actions) in accordance with a
policy, we consider St, the intersection's status at the start of
time step t, into consideration. A sequence of rewards Rt, Rt+1,
Rt+2, Rt+3... is given to the agent, after taking a sequence of
actions by adopting a policy π for a state St of the environment
at the beginning of each time step t. The action At should
maximize the reward Rt shown in equation (4) to allow the
agent to reduce the total waiting times of all vehicles at the
intersection at time step t. The agent is supposed to find an
optimal policy for choosing actions, denoted π∗ defined in (5)
that maximizes the cumulative future reward (Q-values) and
that helps it achieve its goal.

𝑄𝜋(𝑠, 𝑎) = 𝐸[∑ 𝛾𝑘 𝑅𝑡+𝑘∞
𝑘=0 | 𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] (4)

𝜋∗𝑎𝑟𝑔𝑚𝑎𝑥𝜋 𝑄𝜋(𝑠, 𝑎) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴 (5)

To avoid infinite returns in cyclical processes, rewards
must be discounted. Thus at each time step the reward is
weighted by a reduction (or discounting) factor γ ϵ [0, 1]. This
discount factor means that the further into the future one is, the
less important the rewards become. We denote the optimal
values of Q under policy 𝜋∗ as 𝑄∗(𝑠, 𝑎) = 𝑄𝜋∗(𝑠, 𝑎) . Our
model extract useful traffic features, and predict the Q-values
while trying to find the optimal policy π∗ and thus find the
optimal Q-values 𝑄∗(𝑠, 𝑎). Bellman's optimality equation (6),
gives a recursive relation for the optimal Q-values 𝑄∗(𝑠, 𝑎).

𝑄∗(𝑠, 𝑎) = 𝐸[𝑅𝑡 + 𝛾𝑄∗(𝑆𝑡+1,𝐴𝑡+1)| 𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎] (6)

In order to calculate (6), we would need to have complete
knowledge of the underlying system mode (state transition
probabilities and associated rewards), which is actually not
feasible. Due to the complexity and size of the intersection
traffic space, ConvXGB model is used to approximatively
determine the optimal Q-values. It receives as input the state
representation St = (P, V, W, L). Based on this traffic data, the
CNN sub-networks extract useful features, which they then

input to XGBoost to forecast the estimated Q(St, a) for all
actions a ∈ A given the observed condition St.

A. Proposed ConvXGB Architecture
Our paper is based on a new deep learning model,

dedicated to reinforcement learning problems called
"ConvXGB". It is a hybridization between convolutional
neural network and an XGBoost model. The architecture of
ConvXGB is shown in Fig. 5. The model has five layers: 1)
input layer, 2) three identical CNN sub-networks each
containing three stacked convolutional layers, 3) reshape layer,
4) Q-values prediction layer and 5) output layer. These layers,
each of which has unique talents and duties, are crucial to the
model's success. Further, the model can be divided into two
parts: one for feature learning and the other for Q-values
prediction.

These three identical sub-networks having respectively as
inputs the matrices (P, V, W). The outputs of these three sub-
networks is flattened, and then we merge them with the vector
L (last state of the traffic lights) to provide the result to the
third layer for reshaping, Table I shows all the CNN
parameters.

The second part of the ConvXGB model is an XGBoost
model, with tuned parameters using GridSearchCV technique,
to predict the Q-values. XGBoost are optimized by a cross-
validation grid search.

The performance of the hybrid ConvXGB model is
compared to the classical DQN model using only convolutional
networks to show its robustness. ConvXGB effectively uses
features learning and predicts Q-values, thus significantly
reducing the total waiting times for all vehicles in the
intersection, which will be detailed in the results section.

TABLE I. PARAMETERS OF THE CNN LAYERS

CNN Layers Number
of filters Stride Activation

function
Conv1 16 of 4x4 2 ReLU
Conv2 32 of 2x2 1 ReLU

Conv3 64 of 2x2 1 ReLU

Fig. 5. Architecture of the ConvXGB Model.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

534 | P a g e
www.ijacsa.thesai.org

B. Algorithm and Training Process
The algorithm in Fig. 6 summarizes the process of forming

the ConvXGB model used. We use a hybrid model composed
of three identical CNN sub-networks to extract useful features
from an environment representation (state). In the prediction
phase, we use XGBoost to make Q-values predictions given
the features extracted by CNN sub-networks. We also used the
experience replay used in [10] to break correlations and
improve agent performance during the training phase. The
replay memory provides to the RL agent a set of random
experiences for its learning, called a mini-batch. Each
experience is represented as a quadruplet { St, At, Rt+1, St+1},
collected and stored in memory M during the learning phase,
after choosing and applying the action At from the state St, the
agent receive Rt+1 as reward.

The environment undergoes a transition from the state St to
the state St+1. This is why the observations extracted from this
environment are correlated. This correlation can limit the
learning capacity of the RL agent and prove the need to use the
replay memory. The oldest experiments are erased if the
memory is full during learning. The agent needs training data:
input data set X = {(St, At): t ≥ 1} and the corresponding
targets y = {𝑄∗(St, At) : t ≥ 1}. For input data set, (St, At) can
be retrieved from replay memory M. However, target
𝑄∗(St, At) is not known. This formula Rt + γ maxa′ Q (St + 1,
a′) is used to estimate the optimal Q-values. Thus, targets y = {
Rt + γ maxa′ Q (St + 1, a′) : t ≥ 1}.

The RL agent randomly takes 32 quadruples ({ St, At, Rt +

1, St + 1}) of the replay memory used to form training data X =
{(St, At): t ≥ 1} and also to tune and update XGBoost
parameters using GridSearchCV technique to efficiently
estimate optimal Q-values (Q*).

Fig. 6. ConvXGB Algorithm for Adaptative Traffic Light Control using Q-

Learning.

The exploration / exploitation problem is a frequent
problem facing the policy of choice of actions in reinforcement
learning; exploration, where we seek more information to
improve future decisions; or exploitation, where the decision is
made based on current information. In this paper, we have
adopted a ε-greedy exploration policy as used in [18]; given in
equation (7). For the current episode e we have the probability
ε of an exploratory action, and the probability 1 - ε of an
exploiting action.

𝜀𝑒 = 1 − 𝑒
𝑇𝑜𝑡𝑎𝑙_𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

 (7)

At the start of his training, the agent only explores his
environment, which is logical and obvious; he begins to use the
information received during his training; an exclusive
exploitation of the knowledge acquired by the agent takes place
towards the end of his training.

VI. EXPERIMENT AND EVALUATION

A. Simulation Settings
In this study, we used the SUMO simulator [1], to generate

urban traffic simulations. It allowed us to implement and
customize road infrastructure functionalities. Moreover,
subsequently extract useful data during the traffic simulation.

1) Intersection: We have an intersection of four roads,
each road having three lanes, as shown in Fig. 2. The length of
the road is 500 meters, the maximum speed is 19.44 m/s (i.e.
70 km/h), and the length of the vehicles is 5 meters with a
minimum distance between vehicles of 2.5 meters. Moreover,
the flow of vehicles (an average of 1000 per hour) is uniformly
distributed.

2) Traffic: Vehicles, while selecting their route in advance
make the choice of entry routes randomly. Horizontal roads
will be heavily used while vertical roads, which will be less
frequented, we also increase the frequency for left deviating
roads compared to right deviating roads. Specially, P1 = 1/7
(for horizontal roads), P2 = 1/11 (for vertical roads), P3 = 1/30
(for roads deviating to the right), P4 = 1/25 (for roads deviating
to the left). The setting of the traffic lights and the transition
phase used in this paper are detailed in Section IV.

3) Agent parameters: The training process takes place over
2000 episodes. Where each episode corresponds to two hours
of traffic and 7000 time steps, simulating the same traffic load
at peak hours. For ε-greedy method in Algorithm 1, parameter
ε is set to be 1 and the discount factor γ = 0.95. Learning rate of
RMSProp α is set to 0.0002 and the replay memory can store
the experiences of 200 episodes. The training of the hybrid
agent took a few days non-stop high-end laptop.

4) Simulation data: The time (in seconds) that a vehicle
takes to cross an intersection (between entering and exiting the
lanes) defines the delay that it can make. Therefore, the waiting
(stopping) time of a vehicle is closely related to its delay.
During the simulations, the total waiting time of all vehicles at
the intersection is recorded in a file for all episodes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

535 | P a g e
www.ijacsa.thesai.org

Fig. 7. ConvXGB Agent Improvement.

Our approach is based on a hybrid model as detailed in
Section V according to an architecture defined in Fig. 6 and
inputs (P, V, W, L) explained in Section IV. The results of our
contribution using used a tuned ConvXGB approach, shown in
Table II, are compared to the fixed time policy, in which the
phase cycle is fixed throughout the day, however the timing of
each phase is designed by an expert to accommodate traffic
volume ratios and to prioritize arterial traffic for green-waves,
and also compared to the approach of [10] that we simulated
for our intersection. Approach of [10] showed a clear
improvement over the fixed traffic light configuration, but the
hybrid ConvXGB agent we developed was able to outperform
the fixed time policy and the mentioned approach very well.
Fig. 7 presents the performance of the mentioned methods.

Using our agent, we obtain approximately 192k seconds as
average waiting times for all episodes, while for the agent in
[10] it was approximately 285k seconds. This proves that our
ConvXGB hybrid model with XGBoost hyper-parameter
tuning has significantly improved the problem of reducing
traffic congestion.

TABLE II. TOTAL WAITING TIMES OF ALL VEHICLES FOR THE
IMPLEMENTED APPROACHES

Mean of total WT
of all vehicles in
seconds

Best total WT
of all vehicles in
seconds

Improvement
over the static
scenario

DQN agent
[10] 285503 231444 54%

ConvXGB
agent 192213 145425 72%

Fixed
time policy 505850

B. Training Evaluation Results and Discussion
The problem of this study was as follows: can a hybrid

model "Convolutional Neural Network-Extreme Gradient

Boosting" statistically outperform the "DQN" model in
optimizing the control of traffic lights in the urban
environment?

The quantitative and complete description of the traffic
situation provided to the agent helped a lot. It is clear that the
states are more complex but the agent gains in performance.
The inputs of our model were designed in a suitable way, in
contrast to [22] where the authors used binary position
matrices. They defined the binary matrix to cover the entire
rectangular area around the intersection instead of just covering
the area of the street relevant to traffic light control. Most
entries in the binary matrix are null and redundant, making the
binary matrix inefficient because the vehicle can't travel on
non-road areas. In our case the vehicle position matrix covers
only intersecting roads. This reduces the cost of training
computation. We were able to boost the performance of our
ConvXGB model by using the GridSearchCV technique for
fine-tuning the XGBoost model. And since the tests we were
able to do this step really helped our model to show better
results.

Based on the evaluation and comparison of the two models,
the results clearly showed the performance difference of the
ConvXGB hybrid model. As shown in Fig. 7, the results
obtained are significantly larger than the approach of [10]. The
ConvXGB-based Q-learning algorithm is an effective choice
over traditional traffic control methods, solving the problem of
traffic congestion in large cities.

In the future, a better prediction model could be developed
by using a heuristics methods for fine-tuning of the XGBoost
and experimenting with new hybrid algorithms is
recommended for future work.

VII. CONCLUSIONS
We have developed a new deep learning model for traffic

light control problems using reinforcement learning. ConvXGB
has two parts: one for useful feature extraction based on

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

536 | P a g e
www.ijacsa.thesai.org

detailed traffic situation definition and one for predicting Q
values according to Q learning algorithm. We evaluated
ConvXGB, on a single intersection, by adopting a traffic
scenario illustrating clear peak hour congestion. ConvXGB
was simplified by reducing the number of parameters needed
and did not require back-propagation in the fully connected
layer. ConvXGB based on CNN and XGBoost, was improved
by tuning the most common XGBoost hyper-parameters. Our
experimental results show that our model is significantly better
than the classic DQN model, which also performed well when
comparing it to the fixed time policy, but its performance is
clearly inferior to our ConvXGB.

REFERENCES
[1] “Transport overview.” [Online]. Available:

http://www.worldbank.org/en/topic/transport/overview#1. [Accessed:
23-sep-2022].

[2] O. Mohammed and J. Kianfar, “A Machine Learning Approach to Short-
Term Traffic Flow Prediction: A Case Study of Interstate 64 in
Missouri,” 2018 IEEE Int. Smart Cities Conf. ISC2 2018, pp. 1–7, 2019,
doi: 10.1109/ISC2.2018.8656924.

[3] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO--
simulation of urban mobility: an overview,” Proc. SIMUL 2011, Third
Int. Conf. Adv. Syst. Simul., 2011.

[4] S. Touhbi et al., “Adaptive Traffic Signal Control: Exploring Reward
Definition for Reinforcement Learning,” Procedia Comput. Sci., vol.
109, pp. 513–520, 2017, doi: 10.1016/j.procs.2017.05.327.

[5] Webster, “Traffic Signals Webster,” Road Res. Tech. Pap., no. 39, pp.
1–44, 1958.

[6] A. L. C. Bazzan, “Opportunities for multiagent systems and multiagent
reinforcement learning in traffic control,” Auton. Agent. Multi. Agent.
Syst., vol. 18, no. 3, pp. 342–375, 2009, doi: 10.1007/s10458-008-9062-
9.

[7] B. Abdulhai and L. Kattan, “Reinforcement learning: Introduction to
theory and potential for transport applications,” Can. J. Civ. Eng., vol.
30, no. 6, pp. 981–991, 2003, doi: 10.1139/l03-014.

[8] D. De Oliveira et al., “Reinforcement learning-based control of traffic
lights in non-stationary environments: A case study in a microscopic
simulator,” CEUR Workshop Proc., vol. 223, 2006.

[9] S. El-Tantawy and B. Abdulhai, “Comprehensive analysis of
reinforcement learning methods and parameters for adaptive traffic

signal control,”, Proc: Transportation Research Board 90th Annual
Meeting, Washington DC, USA, Jan. 23-27-2011.

[10] J. Gao, Y. Shen, J. Liu, M. Ito, and N. Shiratori, “Adaptive Traffic
Signal Control: Deep Reinforcement Learning Algorithm with
Experience Replay and Target Network,” pp. 1–10, 2017.

[11] C. Watkins and P. Dayan, “Q-learning,”, Machine learning, vol.8, pp.
279–292, 1992, doi:10.1007/BF00992698.

[12] C. El Hatri and J. Boumhidi, “Traffic management model for vehicle re-
routing and traffic light control based on multi-objective particle swarm
optimization,”, Intelligent Decision Technologies, vol.11, no.2, pp. 99-
208, 2017, doi:10.3233/IDT-170288.

[13] M. Tahifa, J. Boumhidi, and A. Yahyaouy, “Multi-agent reinforcement
learning-based approach for controlling signals through adaptation,” Int.
J. Auton. Adapt. Commun. Syst., vol. 11, no. 2, pp. 129–143, 2018, doi:
10.1504/IJAACS.2018.092019.

[14] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015, doi:
10.1038/nature14236.

[15] S. S. Mousavi, M. Schukat, and E. Howley, “Deep Reinforcement
Learning: An Overview,” Lect. Notes Networks Syst., vol. 16, pp. 426–
440, 2018, doi: 10.1007/978-3-319-56991-8_32.

[16] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-
Augu, pp. 785–794, 2016, doi: 10.1145/2939672.2939785.

[17] C. Bentéjac, A. Csörgö and G. Martínez-Muñoz, “A comparative
analysis of gradient boosting algorithms,”, Artificial Intelligence
Review, vol. 54, pp. 1937–1967 , 2021, doi: 10.1007/s10462-020-
09896-5.

[18] W. Genders and S. Razavi, “Evaluating reinforcement learning state
representations for adaptive traffic signal control,” Procedia Comput.
Sci., vol. 130, no. July, pp. 26–33, 2018, doi:
10.1016/j.procs.2018.04.008.

[19] W. Genders and S. Razavi, “Using a Deep Reinforcement Learning
Agent for Traffic Signal Control,” , ArXiv, vol. abs/1611.01142, pp. 1–
9, 2016.

[20] K. Shingate, J. Komal and D. Yohann,, “Adaptive Traffic Control
System using Reinforcement Learning,” Int. J. Eng. Res., vol. V9, no.
02, pp. 443–447, 2020, doi: 10.17577/ijertv9is020159.

[21] H. Wei, G. Zheng, V. Gayah, and Z. Li, “A Survey on Traffic Signal
Control Methods,” , arXiv learning ,vol. 1, no. 1, 2019.

[22] E. Van Der Pol, “Deep Reinforcement Learning for Coordination in
Traffic Light Control,” Master thesis, no. November 2015, p. 2016,
2016.

	I. Introduction
	II. Related Work
	III. Methodology
	A. Deep Reinforcement Learning
	B. Q-learning
	C. Deep Q-Network
	D. XGBoost
	E. Cross-validation Grid Search Tuning Hyper-parameters
	F. ConvXGB Model

	IV. Description of the Reinforcement Learning Environment for Traffic Lights Control
	A. Intersection Model
	B. State Representation
	C. Action Definition
	1) Switching the lights for straight ahead vehicles to yellow.
	2) Switching the lights for straight ahead vehicles to red.
	3) Switching the lights for left-turning vehicles to yellow.
	4) Switching the traffic lights for vehicles turning left to red.

	D. Reward Definition

	V. Adaptative Signal Control Algorithm Design based on ConvXGB
	A. Proposed ConvXGB Architecture
	B. Algorithm and Training Process

	VI. Experiment and Evaluation
	A. Simulation Settings
	1) Intersection: We have an intersection of four roads, each road having three lanes, as shown in Fig. 2. The length of the road is 500 meters, the maximum speed is 19.44 m/s (i.e. 70 km/h), and the length of the vehicles is 5 meters with a minimum distanc�
	2) Traffic: Vehicles, while selecting their route in advance make the choice of entry routes randomly. Horizontal roads will be heavily used while vertical roads, which will be less frequented, we also increase the frequency for left deviating roads compar�
	3) Agent parameters: The training process takes place over 2000 episodes. Where each episode corresponds to two hours of traffic and 7000 time steps, simulating the same traffic load at peak hours. For ε-greedy method in Algorithm 1, parameter ε is set to �
	4) Simulation data: The time (in seconds) that a vehicle takes to cross an intersection (between entering and exiting the lanes) defines the delay that it can make. Therefore, the waiting (stopping) time of a vehicle is closely related to its delay. During�

	B. Training Evaluation Results and Discussion

	VII. Conclusions

