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Abstract—The production flexibility required by the new 

industrial revolutions is largely based on heterogeneous Cyber-

Physical Production Systems models that cooperate with each 

other to perform complex tasks. To accomplish tasks at an 

acceptable pace, CPPSs should be based on appropriate 

cooperation mechanisms. To this end a CPPS must be able to 

provide services in the form of functionalities to other CPPSs, 

and also to use functionalities of other CPPSs. The cooperation of 

two CPPS systems is done by co-simulating the two models that 

allow the partial or total access of the functionalities of one 

system, by the other system. Requests from one CPPS to another 

CPPS create connection moments of the two models that can only 

be performed in certain states of the two models. Also, the 

answers to these requests create connections between the two 

models in other subsequent states. Optimal aggregation of the 

behaviors of the two models, by co-simulation, is essential 

because otherwise it can lead to very long waiting times and can 

cause major problems if not done correctly. We will see in this 

paper that the behavior of such a simulation model can be 

represented by a category, and the co-simulation of two models 

can be defined by a monad determined by two adjoint functors 

between the simulation categories of the two models. 
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I. INTRODUCTION 

The new industrial revolutions ("Industry 4.0", "Industry 
5.0"), respond to the needs of individualization of production 
by the widespread introduction of Cyber-Physical Production 
Systems (CPPS) as central elements in making production 
flexible at all levels. In essence, CPPSs are complex systems 
made up of heterogeneous entities and subsystems that 
cooperate with each other depending on the context in which 
they evolve at all levels of production. 

CPPSs are composable systems, that is, they are systems of 
systems. The composition operation is determined by the 
interactions between the subsystems in all the phases of the life 
cycle of the production process. CPPSs are of overwhelming 
importance in the production process because they implement 
the interaction between physical and cybernetic components in 
distributed networks and therefore represent the fusion between 
the real and the virtual world as a whole. 

In this context, it is obvious the importance of approaches 
for the optimal design and implementation of CPPS. Modeling 
and simulation are the most common approaches in the process 
of designing these systems. Modeling makes it possible to 

simulate and analyze production processes as well as make 
decisions before the actual construction of the manufacturing 
line [7] [8]. Also, after the construction of the production line, 
the models can be used for its optimization and diagnosis. 

The primary artifact in the process of designing and 
implementing a CPPS is the model. In such a model the 
emphasis falls, most of the time, on the interaction and 
cooperation between the heterogeneous components of the 
system, and not on the internal functionality of these 
components [20]. Therefore, classical approaches, from 
systems theory, cannot satisfactorily respond to these 
interaction modeling requirements [9,22]. Our approach is 
motivated by the finding of a deficit of sufficiently strong 
mathematical mechanisms to be an adequate support for such 
models [14]. This vacuum of remarkable results is even more 
accentuated in the field of coupling simulators in dynamic 
structure scenarios at the level of states [21]. 

We will see further in this paper that category theory, 
which, unfortunately, is not used enough in modeling, provides 
all the ingredients needed to specify such models. Thus, in 
section 2 we will specify a categorical model of a CPPS, in 
section 3 we will specify the behavior of a model through a 
category we call Model Simulation Category, and in section 4 
we will see that the co-simulation of two models can be 
defined by a monad determined by two adjoint functors 
between the simulation categories of the two models. The 
paper ends with conclusions. 

II. CATEGORICAL MODELING OF CPPS 

An essential phase of the process of developing a model is 
the conceptualization of the domain [4]. A model is an artifact 
recognized by an observer as an abstract representation of a 
real system [1]. This artifact is a syntactic and semantic 
specification of the real system from the point of view pursued. 

The conceptualization of the modeling domain begins with 
the identification of the generic atomic concepts of the domain 
that will represent classes of entities in the modeling domain 
[5]. The state of these atomic concepts is generally specified by 
the values of some associated attributes. This process continues 
with the specification of the interaction rules of these atomic 
concepts in models. We will consider in the following that the 
models are structured as graphs that have as nodes atomic 
concepts and as arcs interactions between these atomic 
concepts. The elementary components of the modeling domain 
will become atomic concepts in models. The behavior of 
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atomic concepts is dependent on the state in which they are and 
the context in which they evolve, i.e., the graph structure in 
which they are integrated. 

The specification of a model involves two specification 
mechanisms, namely a model specification paradigm through 
the hierarchical assembly of components and a mathematical 
model that mimics the behavior of the system. The first 
mechanism must reflect the static dimension of the model and 
the second the behavioral dimension of it. Therefore, both the 
syntax and the semantics of a model are characterized by two 
dimensions, namely a static dimension and a behavioral 
dimension. 

A. The Static Dimension of CPPS Models 

To specify the syntax of the static dimension of CPPS 
models we use the categorical sketch (Fig. 1.) which is defined 
as a tuple 𝓢=(𝓖, 𝓒(𝓢)), where 𝓖 is a graph with typed nodes 
and arcs, and 𝓒(𝓢) is a set of constraints on the elements of the 
graph that specify in categorical terms the conditions that a 
model must meet. Thus, the categorical sketch becomes a 
metamodel of the static dimension of our model. 

The atomic concepts identified in the conceptualization 
phase of the domain become nodes of the graph 𝓖 of this 
sketch. Thus, the metamodel that specifies the static dimension 
of CPPS models is the graph 𝓖, which respects the constraints 
𝓒(𝓢), and which has as nodes the atomic concepts and as arcs 
the rules of aggregation of these concepts in models. 

Therefore, in the metamodel 𝓢 of the static dimension of 
CPPS models, 𝓖 is a graph whose nodes specify the types of 
atomic concepts they represent and whose arcs specifies the 
types of connections between these concepts. 

The (𝓢) component is defined at the metamodel level by a 
diagram predicate signature [13,15], which maps a set of 
predicates to a set of special graphs called shape graph arity. 
These special graphs, called shape graph arity, are then mapped 
by a set of functors, called diagrams, to the components of the 
graph of the sketch and therefore receive the types of these 
components. The set of models of the sketch 𝓢 is represented 
by the set of functors defined on the graph 𝓖 of the sketch 𝓢, 
with values in the category of sets and functions (Set), and 
which respects the constraints defined by 𝓒(𝓢) (Fig. 1.). These 
models are, from a syntactic point of view, also graphs that 
inherit from the graph of the sketch the type of components. 

The components, of the graph 𝓖 of the sketch 𝓢, are 
endowed with attributes that are mapped to data domains. The 
semantics of the static dimension of a model is given by the 
graph structure of the model and by the values of the attributes 
of the atomic components. 

In our approach, the set of static models represents the set 
of states in the behavioral model. Such a state is characterized 
by the graph structure of the model and the values of the 
attributes. 

 

Fig. 1. Generalized Sketch and Models. 

B. The Behavioral Dimension of CPPS Models 

The behavior of a CPPS is shaped by the multitude of states 
in which the CPPS model can be found and by the multitude of 
transitions that ensure the transition from one state to another. 
In our approach, the set of states is represented by the set of 
static models and the set of transitions by a set of 
transformations of the model that we have called behavioral 
rules. We associated these behavioral rules with the dynamic 
components of the model, such as workstation or transport 
machine components. 

We defined the behavioral rules by a tuple =(p,), formed 

by a graph transformation p and a behavioral action . A 

behavioral action , is a mathematical function that modifies 
the values of the attributes associated with the graph 
components in a certain area of the graph structure of the static 
model. The role of the graph transformation p is to locate the 
definition area of the behavioral action and to transform the 
graph structure from this area of the graph model into another 
graph structure, provided that the resulting graph structure is 
also a static model of the categorical sketch. 

The syntax of a behavioral rule , is composed of the 
syntax of the two components, namely the syntax of the graph 

transformation p, and the syntax of the behavioral action . 

Syntactically a graph transformation is a tuple p = (L, R), 
where L is a source graph to be transformed and R is the target 
graph in which the graph L is to be transformed. To define the 
semantics of a graph transformation we used the categorical 
mechanism called double-pushout (DPO) [16,17,18,19]. The 
DPO mechanism defines a graph transformation as a span 

p=(LK→R), where K is a common part of the graphs L and 
R, and therefore there are two total inclusion morphisms 

pL:K→L and pR:K→R. 

We defined the syntax of a behavioral action by a signature 
of a behavioral rule that maps a mathematical function to the 
components of the L and R graphs of the graph transformation. 
Thus, a signature of a behavioral rule is a tuple 

=(p,CL,Act,CR,), where p is a graph transformation, Act is a 
mathematical function, CL is a precondition, CR is a 

postcondition and :{CL,Act,CR}→p is an application that 
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maps the parameters of the Act action and of the preconditions 
CL and CR to the nodes of the graphs L and R. 

The L and R components of the graph transformation play 
in this case the role of shape graphs for the signature of the 
behavioral action and will be mapped, by means of diagrams, 
to the graph components of the categorical sketch, mechanism 
by which they will receive the types of these components. The 
semantics of behavioral actions will be defined by 
mathematical functions that recalculate the values of the 
attributes associated with the graph components L and R. 

The application of a behavioral rule is preceded by the 
finding of a total morphism, called a match, from shape graph 
L to the static model. If a match is found, the precondition CL 
is checked. If this precondition is verified, the corresponding 
graph transformation is performed using the DPO algorithm 
and then the Act action is executed. Finally, the postcondition 
is checked. If the post-condition is not verified, the behavioral 
rule cannot be applied and, therefore, we will have to cancel all 
the effects produced by the partial execution of the behavioral 
rule. As we can see, a behavioral rule must be applied by an 
indivisible instruction. We must also note that the behavioral 
rule must be endogenous, i.e., it must transform a static model 
of the categorical sketch into another static model of the same 
sketch. It is obvious that the application of behavioral rules can 
be done in parallel as long as this application is not conflicting 
[Ehrig2015]. 

III. MODEL SIMULATION CATEGORY 

The problem of CPPS optimization is a complex, multi-
objective problem, which involves dynamic behavior 
accompanied by elements of their uncertainty, and therefore 
cannot be solved by optimization models from classical 
mathematics. The saving solution to this problem is simulation, 
which allows the study of the behavior of these complex 
systems in order to optimize them and eliminate deficiencies 
from the design phase. 

We will understand by simulation the process of imitating 
the behavior of a materialized system through a multitude of 
possible trajectories through which it can evolve. Therefore, 
the simulation can be described as a language on the set of 
states through which the system can pass. We define an 
execution of the behavioral model as a word of this language. 

In our approach, a state of the behavioral model is 
represented by a static model of the categorical sketch 
𝓢=(𝓖,𝓒(𝓢)), and the transition between these states is made by 
the behavioral rules. A static model of the sketch 𝓢 is the 
image of a functor 𝕴:𝓢→Set that maps the nodes of the typed 
graph 𝓖 of the sketch to sets of components in the category Set 
and the arcs of the graph 𝓖 to functions in Set. Next, we will 
call the image of the sketch 𝓢 by a functor 𝕴, instance and we 
will also denote it with 𝕴. The component 𝓒(𝓢) of the sketch 
imposes restrictions on the image 𝕴(𝓢) in set, which will also 
be respected. Each node x of the graph 𝓖 represents a type of 
component of the system, and 𝕴(x) is a set of components of 
type x. We will consider that these components also contain 
values for the associated attributes. Also, each arc of the graph 
𝓖, represents an operator of the sketch and is mapped to a 

function in the Set category. These functions are constitutive 
elements of the constraints (𝓢). 

If we have an instance 𝕴1 and a behavioral rule , which 

transforms 𝕴1 into 𝕴2, then  must be endogenous, i.e., 𝕴2, 
must also be a static model of the same sketch 𝓢, this is a 
condition that must be respected by any behavioral rule. We 

will denote this by 𝕴1 

→  𝕴2. 

With these notations, an execution of a behavioral model, 

in an initial state 𝕴0, is a chain of behavioral rules: 𝕴0 
0

→  𝕴1 
1

→  

… 𝕴n 
n

→   …, where 𝕴k, k0 are instances and k, k0 are 
behavioral rules. 

We can introduce a partial operation of composing two 

behavioral rules. If we have two behavioral rules 1=(p1,1) and  

2=(p2,2) then the behavioral rule =1∘2 is defined by 

composing the components (p1∘p2, 1∘2). Since, 1 and 2 are 
mathematical functions, their composition is specific to these 
functions. For graph transformations, we have a theoretical 
result that demonstrates that any two sequential graph 
transformations can be composed into a single equivalent 
graph transformation that accumulates the effect of both 
transformations. 

Therefore, the set of behavioral rules is endowed with a 
composition operation. Obviously, this composition operation 
is associative and to the set of behavioral rules we can add the 
identity transformation which does nothing. It follows from 
these considerations that the set of instances together with the 
set of behavioral rules form a category that we call category of 
instances and behavioral rules (CIBR). The objects of this 
category are instances and its arrows are behavioral rules. 

Now we can define an execution of a behavioral model, 

also as the image of the category : 0 
0
→  1 

1
→  … k

𝑘
→  …  

through a functor :→CIBR that specifies the evolution of 

the model over time:  (i)= 𝕴i for all i0;  (i)= i for all i0 
as can be seen in Fig. 2. Any execution of a model starting 
from an initial state 𝕴0 produces a simulation trace that is a 
word in a language defined on the set ob(CIBR) of objects of 
the CIBR category, through the set of behavioral rules. 

Thus, if 𝕴=ob(CIBR) then the set of simulation traces, 

relative to the initial state 𝕴0, form a language L(𝕴) 𝕴* 

defined as follows: L(𝕴)={ 𝕴o𝕴1… 𝕴n 𝕴*| 𝕴k=( 𝕴j)  for k1, 

kj0 and  is a behavioral rule}. 

If L(𝕴) is the language of simulation traces over the 

vocabulary 𝕴 =ob(CIBR), and = 𝕴o𝕴1… 𝕴n L(𝕴), we will 

denote by () the set of instances involved in this trace, 

()={ 𝕴o,𝕴1,…, 𝕴n}. 

We now define a subcategory of the CIBR category, which 
we call model simulation category (MSC), which has the 

objects ob(MSC)= {𝖃|() L(𝕴) so that 𝖃()}, and as 
arrows the coresponding behavioral rules. The PSC category 
contains all the trajectories on which the CPPS model can 
evolve. We denote this category by MSC(𝕴). 
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Fig. 2. Execution of a Behavioral Model. 

IV. MONADIC CO-SIMULATION 

The essential role of CPPS in the production processes is to 
make these processes more flexible in order to realize a lot of 
individualized products or in small batches, adapted to the 
customers’ requirements. These CPPS must also cover many 
aspects of the production process. Therefore, there cannot be a 
single CPPS, which can deal with this variety of requirements. 
In order to carry out the tasks at an acceptable pace, the CPPS 
must contain adequate cooperation mechanisms. 

A CPPS is a fundamental component of a smart factory and 
therefore must monitor the status of all participants in the 
production process and be able to automatically react to any 
event in order to achieve the objectives. For this purpose, a 
CPPS must be able to offer services, in the form of 
functionalities to other CPPSs, and also to use functionalities of 
other CPPSs. 

The cooperation of two CPPS systems is done by co-
simulating the two models, which allows partial or total access 
to the functionalities of one system, by the other system. The 
co-simulation control is realized by an orchestrator that 
coordinates the system components according to a co-
simulation scenario. 

However, in order to achieve a good cooperation, each 
CPPS must know about the functionalities of the other CPPSs 
with which it collaborates and how to extract and use the 
knowledge from the specifications of these CPPSs with which 
it cooperates in order to achieve the goal. This means that it 
must encapsulate knowledge about the state and evolution of 
the other CPPS with which it could cooperate. 

The requests of a CPPS to another CPPS create moments of 
connection of the two models that can only be carried out in 
certain states of the two models. Also, the answers to these 
requests create connections between the two models between 
other subsequent states. This type of interaction between two 
models is realized between the simulation categories of the two 
models through co-simulation. The optimal aggregation of the 
behaviors of the two models, through co-simulation, is 
essential because, otherwise, it can lead to very long waiting 
times and can cause major problems if it is not done correctly 
[25]. We will further introduce a categorical modeling model 
of this type of connection based on the notion of monad 
specified by the adjunction of two functors. 

On the set 𝕴=ob(MSC), we introduce a relation ≼, defined 
as follows, 𝕴i≼𝕴j, if and only if in the category MSC(𝕴), there 
is a path from 𝕴i to 𝕴j, i.e. if 𝕴j can be obtained from 𝕴i 
through the successive application of a series of behavioral 
rules. Obviously, this relation is a partial preorder relation and 
therefore the set 𝕴 is a preordered set in reference to this 
relation. We observe that if L(𝕴) is the language of simulation 
traces over the vocabulary 𝕴=ob(MSC), then all simulation 

traces =𝕴o𝕴1… 𝕴n L(𝕴), respect the condition: 𝕴i≼𝕴j if and 

only if ij. 

We now consider two model simulation categories MSC1, 
MSC2 with 𝕴=ob(MSC1), 𝕷= ob(MSC2). The connection 
points between the states of the two models, relative to the first 
model, can be specified by two monotone functions; a request 

function :𝕴→𝕷 and a response function :𝕷→𝕴. To ensure a 
correct collaboration between the two models, without 
deadlock situations in the co-simulation flow, it is necessary 

that any two simulation traces 1=𝕴o𝕴1… 𝕴nL(𝕴) and 

2=𝕷o𝕷1…𝕷mL(𝕷), where m,n0, to respect the conditions: 

for each pair of states (𝕴i, 𝕷j),  𝕴i(1), 𝕷j(2) with the 

property, 𝕷j=(𝕴i), there is a state 𝕷k(2), such that 

(𝕴i)≼𝕷k, and 𝕴i≼(𝕷k). This condition is necessary to avoid 
deadlock situations, in which the two simulations block each 
other, because each is waiting for a response from the other. 

This type of cooperation between two models in the 

simulation process requires, therefore, that the functions  and 

 form a Galois connection [24]. A Galois connection between 

the sets 𝕴 and 𝕷 is a pair of monotone mappings :→𝕷 and 

:𝕷→𝕴 with the property: (𝕴i)≼𝕷j if and only if 𝕴i≼(𝕷j) 

where 𝕴i𝕴 and 𝕷j𝕷 . The two applications,  and  are the 
left adjunct and, respectively, the right adjunct of the Galois 
connection. 

A theoretical result [23,24] tells us that the condition in the 
above definition of the Galois connection can be replaced by 

the condition: 𝕴i((𝕴i)) and ((𝕷j))𝕷j. We will see, next, 
that this condition has a generalization in category theory and 
is called adjunction. 

Since MSC1 and MSC2 are categories, we can replace the 

applications  and  with two adjunct functors, 

:MSC1→MSC2 and :MSC2→MSC1, and thus obtain an 

adjunction between two functors, where  and  are the left 
adjunct and, respectively, the right adjunct of the adjunction. 

The adjunction of two functors  and  is denoted by ⊣, 

where  is the left adjunct and  is the right adjunct. The 
necessary and sufficient condition for two functors to be 

adjoint is that between the two-variable functors Hom(-,-

):MSC1→ Set and Hom(-,-):MSC2→Set, there must be a 
bijective natural transformation, i.e. we have the natural 

isomorphism Hom(-,-)Hom(-,-), where we have denoted 
with "-" the place of a variable. This condition generalizes the 
condition from the Galois connection. In other words, in the 

MSC1 and MSC2 categories, for each pair of objects 𝕴p𝕴 and 

𝕷q𝕷, there is a behavioral transformation from (𝕴p) to 𝕷q in 
the MSC2 category if and only if there is a transformation from 

𝕴p to (𝕷q) in the MSC1 category. But this condition is exactly 
the necessary and sufficient condition to be able to carry out a 
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co-simulation without deadlock on all the simulation traces 
defined by the MSC1 and MSC2 categories. 

Therefore, the necessary and sufficient condition for the 

functors  and  to form an adjunction is for the natural 

isomorphism Hom(-,-)Hom(-,-) to exist. From here it 

follows that in order to define the functors  and  so that 

they form an adjunction ⊣, it is enough to define a one-to-
one relationship between the traces from the categories of 
simulation models MSC1 and MSC2. This correspondence 
between the simulation traces is reduced to a bijective natural 
transformation defined on components 

f:Hom(𝕴p,𝕷q)→Hom(𝕴p,𝕷q), between the behavioral rules 

of the two behavioral models. Thus if 2Hom(𝕴p,𝕷q) then 

(2)=f-1(2), and if 1Hom(𝕴p,𝕷q), then (1)=f(1). Also, 

if in the state 𝕴p𝕴 of the MSC1 model, we have a request to 
the MSC2 model, which is in the state 𝕷r, and we need an 

answer in the 𝕴r𝕴 state, from the MSC2 model, in the 𝕷q𝕷 

state, then we define 𝕴p= 𝕷r and 𝕷q = 𝕴t. 

In the context of two adjunct functors we can define two 
special natural transformations called unit and counit. [10, 12]. 

For the two adjunct functors ⊣, there is a natural 

transformation :id1→○, where id1, is the identity functor 

from the MSC1 category, so that for any object 𝕴k𝕴 and 

𝕷l𝕷 and any arrow 1
𝑘𝑡:𝕴k→(𝕷l)=𝕴t, there is a unique arrow 

2
𝑡𝑙:(𝕴k)=𝕷t→𝕷l so that the diagram in Fig. 3 commutes [10, 

12]. The natural transformation  is called unit adjunction. 

Also, the adjunction property of the functors  and  
assumes the existence of a dual natural transformation 

:○→id2, where id2 is the identity functor from the category 

MSC2, so that for any arrow 2
𝑡𝑙 :(𝕴k)=𝕷t→𝕷l, there is a 

unique arrow 1
𝑘𝑡:𝕴k→(𝕷l)= 𝕷t, so that the diagram in Fig. 4 

commutes. The natural transformation  is called counit 
adjunction. 

The adjunction of two functors ⊣ is unambiguously 

specified by the tuple (,,,), where  is the adjunction unit 

and  is the adjunction counit. 

The adjunction unit :id1→○ is also called the insertion 
of generators and has the role of transforming each object 

𝕴k𝕴 into the format of an object ((𝕴k)). This function is 
executed in the MSC1 model and can be calculated on 
components starting from the adjunction condition which says 

that there is a natural isomorphism f:Hom(𝕴p,𝕷q)→ 

Hom(𝕴p,𝕷q). If in this natural isomorphism we make 

𝕷q=𝕴p, then we have the natural isomorphism 

f:Hom(𝕴p,𝕴p)→Hom(𝕴p,𝕴p) and therefore we can 

calculate  on the 𝕴p component, according to the formula: 


ℑ𝑝

=f(idℑ𝑝  where idℑ𝑝:(𝕴p)→(𝕴p) is the identity functor 

in MSC2. 

Similarly, we have the natural isomorphism 

f:Hom(𝕷q,𝕷q)→ Hom(𝕷q,𝕷q) and therefore we can also 

calculate the adjunction counit :○→id2 on components 
according to the formula: 𝔏𝑘 = f-1( id𝔏𝑘 ) where  

id𝔏𝑘 :(𝕷k)→(𝕷k) is the identity functor in MSC1. This 

function is executed in the MSC2 model and represents, in our 

case, the process of generating the response of the MSC2 model 
to the request of the MSC1 model. 

The adjoint of two functors defined by the tuple (,,,), 

where  and  are adjoint functors,  is the adjoint unit and  
is the adjoint counit, determines a monad [11]. An endofunctor 

T:MSC1→MSC1, together with two natural transformations 

:id →T, called "return", and :T2→T, called "join", which 
make the diagrams in Fig. 5 and Fig. 6 commutative is a 
monad in category MSC1, which is specified by a tuple 

(T,,). 

Based on the adjunction (,,,), we can calculate the 

monad components as follows: the endofunctor T=○,  is 

the adjunct unit, and = [11]. Monads are frequently used 
in functional languages that offer in this way facilitates for 
inserting imperative code into the functional code. Therefore, 
in a similar way, mechanisms for specifying monads can be 
introduced in domain specific modeling languages [6]. 

 

Fig. 3. Definition of Unit Adjunction. 

 

Fig. 4. Definition of Counit Adjunction. 

 

Fig. 5. First Constraint. 
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Fig. 6. Second Constraint. 

Most of the time, the co-simulation control is realized by an 
orchestrator that coordinates the system components according 
to a co-simulation scenario [3,25]. In this case, the two models 
must be encapsulated in software units that implement a 
standard interface [2]. The interaction between two CPPS 
models can be specified by defining shared variables between 
the two models or by passing data to the orchestrator. In the 

case of our approach, the adjunction unit  is executed in the 
MSC1 model and has the role of preparing the data, in the 

appropriate format, to be transmitted to the orchestrator. The  
application is executed in the MSC1 model, and specifies the 
operations to be executed by this model. Connecting the 
models through monads makes it possible to analyze the 
composite system resulting from co-simulation. 

V. ORIGINAL CONTRIBUTIONS AND CONCLUSIONS 

The most important finding, in our proposal, is simplicity 
and conceptual clarity. Thus, the static dimension of a model is 
the image of a categorical sketch through a functor. The 
behavioral dimension of a model is specified by a set of 
functors and a set of behavioral rules. The simulation space of 
a model is defined by a category. The co-simulation space of 
two models is specified by a monad induced by two adjunct 
functors. All the mechanisms involved in these definitions are 
generic and can be implemented at the metamodel level. 
Mechanisms for specifying monads can be included in the 
modeling language at the metamodel level, as happens in 
functional languages that offer such mechanisms especially to 
allow imperative specifications. Most of the times the 
interaction between two CPPS models can be specified by 
defining shared variables. Connecting the models through 
monads makes it possible to analyze the composite system 
resulting from co-simulation. To our knowledge, co-simulation 
through monads, which is the main objective of this work, has 
not been addressed until now. 
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