
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

552 | P a g e

www.ijacsa.thesai.org

A Monadic Co-simulation Model for Cyber-physical

Production Systems

Daniel-Cristian Crăciunean

Computer Science and Electrical Engineering Department

Lucian Blaga University of Sibiu

Sibiu, Romania

Abstract—The production flexibility required by the new

industrial revolutions is largely based on heterogeneous Cyber-

Physical Production Systems models that cooperate with each

other to perform complex tasks. To accomplish tasks at an

acceptable pace, CPPSs should be based on appropriate

cooperation mechanisms. To this end a CPPS must be able to

provide services in the form of functionalities to other CPPSs,

and also to use functionalities of other CPPSs. The cooperation of

two CPPS systems is done by co-simulating the two models that

allow the partial or total access of the functionalities of one

system, by the other system. Requests from one CPPS to another

CPPS create connection moments of the two models that can only

be performed in certain states of the two models. Also, the

answers to these requests create connections between the two

models in other subsequent states. Optimal aggregation of the

behaviors of the two models, by co-simulation, is essential

because otherwise it can lead to very long waiting times and can

cause major problems if not done correctly. We will see in this

paper that the behavior of such a simulation model can be

represented by a category, and the co-simulation of two models

can be defined by a monad determined by two adjoint functors

between the simulation categories of the two models.

Keywords—Models; metamodels; co-simulation; adjoint

functors; monads; cyber-physical production systems

I. INTRODUCTION

The new industrial revolutions ("Industry 4.0", "Industry
5.0"), respond to the needs of individualization of production
by the widespread introduction of Cyber-Physical Production
Systems (CPPS) as central elements in making production
flexible at all levels. In essence, CPPSs are complex systems
made up of heterogeneous entities and subsystems that
cooperate with each other depending on the context in which
they evolve at all levels of production.

CPPSs are composable systems, that is, they are systems of
systems. The composition operation is determined by the
interactions between the subsystems in all the phases of the life
cycle of the production process. CPPSs are of overwhelming
importance in the production process because they implement
the interaction between physical and cybernetic components in
distributed networks and therefore represent the fusion between
the real and the virtual world as a whole.

In this context, it is obvious the importance of approaches
for the optimal design and implementation of CPPS. Modeling
and simulation are the most common approaches in the process
of designing these systems. Modeling makes it possible to

simulate and analyze production processes as well as make
decisions before the actual construction of the manufacturing
line [7] [8]. Also, after the construction of the production line,
the models can be used for its optimization and diagnosis.

The primary artifact in the process of designing and
implementing a CPPS is the model. In such a model the
emphasis falls, most of the time, on the interaction and
cooperation between the heterogeneous components of the
system, and not on the internal functionality of these
components [20]. Therefore, classical approaches, from
systems theory, cannot satisfactorily respond to these
interaction modeling requirements [9,22]. Our approach is
motivated by the finding of a deficit of sufficiently strong
mathematical mechanisms to be an adequate support for such
models [14]. This vacuum of remarkable results is even more
accentuated in the field of coupling simulators in dynamic
structure scenarios at the level of states [21].

We will see further in this paper that category theory,
which, unfortunately, is not used enough in modeling, provides
all the ingredients needed to specify such models. Thus, in
section 2 we will specify a categorical model of a CPPS, in
section 3 we will specify the behavior of a model through a
category we call Model Simulation Category, and in section 4
we will see that the co-simulation of two models can be
defined by a monad determined by two adjoint functors
between the simulation categories of the two models. The
paper ends with conclusions.

II. CATEGORICAL MODELING OF CPPS

An essential phase of the process of developing a model is
the conceptualization of the domain [4]. A model is an artifact
recognized by an observer as an abstract representation of a
real system [1]. This artifact is a syntactic and semantic
specification of the real system from the point of view pursued.

The conceptualization of the modeling domain begins with
the identification of the generic atomic concepts of the domain
that will represent classes of entities in the modeling domain
[5]. The state of these atomic concepts is generally specified by
the values of some associated attributes. This process continues
with the specification of the interaction rules of these atomic
concepts in models. We will consider in the following that the
models are structured as graphs that have as nodes atomic
concepts and as arcs interactions between these atomic
concepts. The elementary components of the modeling domain
will become atomic concepts in models. The behavior of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

553 | P a g e

www.ijacsa.thesai.org

atomic concepts is dependent on the state in which they are and
the context in which they evolve, i.e., the graph structure in
which they are integrated.

The specification of a model involves two specification
mechanisms, namely a model specification paradigm through
the hierarchical assembly of components and a mathematical
model that mimics the behavior of the system. The first
mechanism must reflect the static dimension of the model and
the second the behavioral dimension of it. Therefore, both the
syntax and the semantics of a model are characterized by two
dimensions, namely a static dimension and a behavioral
dimension.

A. The Static Dimension of CPPS Models

To specify the syntax of the static dimension of CPPS
models we use the categorical sketch (Fig. 1.) which is defined
as a tuple 𝓢=(𝓖, 𝓒(𝓢)), where 𝓖 is a graph with typed nodes
and arcs, and 𝓒(𝓢) is a set of constraints on the elements of the
graph that specify in categorical terms the conditions that a
model must meet. Thus, the categorical sketch becomes a
metamodel of the static dimension of our model.

The atomic concepts identified in the conceptualization
phase of the domain become nodes of the graph 𝓖 of this
sketch. Thus, the metamodel that specifies the static dimension
of CPPS models is the graph 𝓖, which respects the constraints
𝓒(𝓢), and which has as nodes the atomic concepts and as arcs
the rules of aggregation of these concepts in models.

Therefore, in the metamodel 𝓢 of the static dimension of
CPPS models, 𝓖 is a graph whose nodes specify the types of
atomic concepts they represent and whose arcs specifies the
types of connections between these concepts.

The (𝓢) component is defined at the metamodel level by a
diagram predicate signature [13,15], which maps a set of
predicates to a set of special graphs called shape graph arity.
These special graphs, called shape graph arity, are then mapped
by a set of functors, called diagrams, to the components of the
graph of the sketch and therefore receive the types of these
components. The set of models of the sketch 𝓢 is represented
by the set of functors defined on the graph 𝓖 of the sketch 𝓢,
with values in the category of sets and functions (Set), and
which respects the constraints defined by 𝓒(𝓢) (Fig. 1.). These
models are, from a syntactic point of view, also graphs that
inherit from the graph of the sketch the type of components.

The components, of the graph 𝓖 of the sketch 𝓢, are
endowed with attributes that are mapped to data domains. The
semantics of the static dimension of a model is given by the
graph structure of the model and by the values of the attributes
of the atomic components.

In our approach, the set of static models represents the set
of states in the behavioral model. Such a state is characterized
by the graph structure of the model and the values of the
attributes.

Fig. 1. Generalized Sketch and Models.

B. The Behavioral Dimension of CPPS Models

The behavior of a CPPS is shaped by the multitude of states
in which the CPPS model can be found and by the multitude of
transitions that ensure the transition from one state to another.
In our approach, the set of states is represented by the set of
static models and the set of transitions by a set of
transformations of the model that we have called behavioral
rules. We associated these behavioral rules with the dynamic
components of the model, such as workstation or transport
machine components.

We defined the behavioral rules by a tuple =(p,), formed

by a graph transformation p and a behavioral action . A

behavioral action , is a mathematical function that modifies
the values of the attributes associated with the graph
components in a certain area of the graph structure of the static
model. The role of the graph transformation p is to locate the
definition area of the behavioral action and to transform the
graph structure from this area of the graph model into another
graph structure, provided that the resulting graph structure is
also a static model of the categorical sketch.

The syntax of a behavioral rule , is composed of the
syntax of the two components, namely the syntax of the graph

transformation p, and the syntax of the behavioral action .

Syntactically a graph transformation is a tuple p = (L, R),
where L is a source graph to be transformed and R is the target
graph in which the graph L is to be transformed. To define the
semantics of a graph transformation we used the categorical
mechanism called double-pushout (DPO) [16,17,18,19]. The
DPO mechanism defines a graph transformation as a span

p=(LK→R), where K is a common part of the graphs L and
R, and therefore there are two total inclusion morphisms

pL:K→L and pR:K→R.

We defined the syntax of a behavioral action by a signature
of a behavioral rule that maps a mathematical function to the
components of the L and R graphs of the graph transformation.
Thus, a signature of a behavioral rule is a tuple

=(p,CL,Act,CR,), where p is a graph transformation, Act is a
mathematical function, CL is a precondition, CR is a

postcondition and :{CL,Act,CR}→p is an application that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

554 | P a g e

www.ijacsa.thesai.org

maps the parameters of the Act action and of the preconditions
CL and CR to the nodes of the graphs L and R.

The L and R components of the graph transformation play
in this case the role of shape graphs for the signature of the
behavioral action and will be mapped, by means of diagrams,
to the graph components of the categorical sketch, mechanism
by which they will receive the types of these components. The
semantics of behavioral actions will be defined by
mathematical functions that recalculate the values of the
attributes associated with the graph components L and R.

The application of a behavioral rule is preceded by the
finding of a total morphism, called a match, from shape graph
L to the static model. If a match is found, the precondition CL
is checked. If this precondition is verified, the corresponding
graph transformation is performed using the DPO algorithm
and then the Act action is executed. Finally, the postcondition
is checked. If the post-condition is not verified, the behavioral
rule cannot be applied and, therefore, we will have to cancel all
the effects produced by the partial execution of the behavioral
rule. As we can see, a behavioral rule must be applied by an
indivisible instruction. We must also note that the behavioral
rule must be endogenous, i.e., it must transform a static model
of the categorical sketch into another static model of the same
sketch. It is obvious that the application of behavioral rules can
be done in parallel as long as this application is not conflicting
[Ehrig2015].

III. MODEL SIMULATION CATEGORY

The problem of CPPS optimization is a complex, multi-
objective problem, which involves dynamic behavior
accompanied by elements of their uncertainty, and therefore
cannot be solved by optimization models from classical
mathematics. The saving solution to this problem is simulation,
which allows the study of the behavior of these complex
systems in order to optimize them and eliminate deficiencies
from the design phase.

We will understand by simulation the process of imitating
the behavior of a materialized system through a multitude of
possible trajectories through which it can evolve. Therefore,
the simulation can be described as a language on the set of
states through which the system can pass. We define an
execution of the behavioral model as a word of this language.

In our approach, a state of the behavioral model is
represented by a static model of the categorical sketch
𝓢=(𝓖,𝓒(𝓢)), and the transition between these states is made by
the behavioral rules. A static model of the sketch 𝓢 is the
image of a functor 𝕴:𝓢→Set that maps the nodes of the typed
graph 𝓖 of the sketch to sets of components in the category Set
and the arcs of the graph 𝓖 to functions in Set. Next, we will
call the image of the sketch 𝓢 by a functor 𝕴, instance and we
will also denote it with 𝕴. The component 𝓒(𝓢) of the sketch
imposes restrictions on the image 𝕴(𝓢) in set, which will also
be respected. Each node x of the graph 𝓖 represents a type of
component of the system, and 𝕴(x) is a set of components of
type x. We will consider that these components also contain
values for the associated attributes. Also, each arc of the graph
𝓖, represents an operator of the sketch and is mapped to a

function in the Set category. These functions are constitutive
elements of the constraints (𝓢).

If we have an instance 𝕴1 and a behavioral rule , which

transforms 𝕴1 into 𝕴2, then must be endogenous, i.e., 𝕴2,
must also be a static model of the same sketch 𝓢, this is a
condition that must be respected by any behavioral rule. We

will denote this by 𝕴1

→ 𝕴2.

With these notations, an execution of a behavioral model,

in an initial state 𝕴0, is a chain of behavioral rules: 𝕴0
0

→ 𝕴1
1

→

… 𝕴n
n

→ …, where 𝕴k, k0 are instances and k, k0 are
behavioral rules.

We can introduce a partial operation of composing two

behavioral rules. If we have two behavioral rules 1=(p1,1) and

2=(p2,2) then the behavioral rule =1∘2 is defined by

composing the components (p1∘p2, 1∘2). Since, 1 and 2 are
mathematical functions, their composition is specific to these
functions. For graph transformations, we have a theoretical
result that demonstrates that any two sequential graph
transformations can be composed into a single equivalent
graph transformation that accumulates the effect of both
transformations.

Therefore, the set of behavioral rules is endowed with a
composition operation. Obviously, this composition operation
is associative and to the set of behavioral rules we can add the
identity transformation which does nothing. It follows from
these considerations that the set of instances together with the
set of behavioral rules form a category that we call category of
instances and behavioral rules (CIBR). The objects of this
category are instances and its arrows are behavioral rules.

Now we can define an execution of a behavioral model,

also as the image of the category : 0
0
→ 1

1
→ … k

𝑘
→ …

through a functor :→CIBR that specifies the evolution of

the model over time: (i)= 𝕴i for all i0; (i)= i for all i0
as can be seen in Fig. 2. Any execution of a model starting
from an initial state 𝕴0 produces a simulation trace that is a
word in a language defined on the set ob(CIBR) of objects of
the CIBR category, through the set of behavioral rules.

Thus, if 𝕴=ob(CIBR) then the set of simulation traces,

relative to the initial state 𝕴0, form a language L(𝕴) 𝕴*

defined as follows: L(𝕴)={ 𝕴o𝕴1… 𝕴n 𝕴*| 𝕴k=(𝕴j) for k1,

kj0 and is a behavioral rule}.

If L(𝕴) is the language of simulation traces over the

vocabulary 𝕴 =ob(CIBR), and = 𝕴o𝕴1… 𝕴n L(𝕴), we will

denote by () the set of instances involved in this trace,

()={ 𝕴o,𝕴1,…, 𝕴n}.

We now define a subcategory of the CIBR category, which
we call model simulation category (MSC), which has the

objects ob(MSC)= {𝖃|() L(𝕴) so that 𝖃()}, and as
arrows the coresponding behavioral rules. The PSC category
contains all the trajectories on which the CPPS model can
evolve. We denote this category by MSC(𝕴).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

555 | P a g e

www.ijacsa.thesai.org

Fig. 2. Execution of a Behavioral Model.

IV. MONADIC CO-SIMULATION

The essential role of CPPS in the production processes is to
make these processes more flexible in order to realize a lot of
individualized products or in small batches, adapted to the
customers’ requirements. These CPPS must also cover many
aspects of the production process. Therefore, there cannot be a
single CPPS, which can deal with this variety of requirements.
In order to carry out the tasks at an acceptable pace, the CPPS
must contain adequate cooperation mechanisms.

A CPPS is a fundamental component of a smart factory and
therefore must monitor the status of all participants in the
production process and be able to automatically react to any
event in order to achieve the objectives. For this purpose, a
CPPS must be able to offer services, in the form of
functionalities to other CPPSs, and also to use functionalities of
other CPPSs.

The cooperation of two CPPS systems is done by co-
simulating the two models, which allows partial or total access
to the functionalities of one system, by the other system. The
co-simulation control is realized by an orchestrator that
coordinates the system components according to a co-
simulation scenario.

However, in order to achieve a good cooperation, each
CPPS must know about the functionalities of the other CPPSs
with which it collaborates and how to extract and use the
knowledge from the specifications of these CPPSs with which
it cooperates in order to achieve the goal. This means that it
must encapsulate knowledge about the state and evolution of
the other CPPS with which it could cooperate.

The requests of a CPPS to another CPPS create moments of
connection of the two models that can only be carried out in
certain states of the two models. Also, the answers to these
requests create connections between the two models between
other subsequent states. This type of interaction between two
models is realized between the simulation categories of the two
models through co-simulation. The optimal aggregation of the
behaviors of the two models, through co-simulation, is
essential because, otherwise, it can lead to very long waiting
times and can cause major problems if it is not done correctly
[25]. We will further introduce a categorical modeling model
of this type of connection based on the notion of monad
specified by the adjunction of two functors.

On the set 𝕴=ob(MSC), we introduce a relation ≼, defined
as follows, 𝕴i≼𝕴j, if and only if in the category MSC(𝕴), there
is a path from 𝕴i to 𝕴j, i.e. if 𝕴j can be obtained from 𝕴i
through the successive application of a series of behavioral
rules. Obviously, this relation is a partial preorder relation and
therefore the set 𝕴 is a preordered set in reference to this
relation. We observe that if L(𝕴) is the language of simulation
traces over the vocabulary 𝕴=ob(MSC), then all simulation

traces =𝕴o𝕴1… 𝕴n L(𝕴), respect the condition: 𝕴i≼𝕴j if and

only if ij.

We now consider two model simulation categories MSC1,
MSC2 with 𝕴=ob(MSC1), 𝕷= ob(MSC2). The connection
points between the states of the two models, relative to the first
model, can be specified by two monotone functions; a request

function :𝕴→𝕷 and a response function :𝕷→𝕴. To ensure a
correct collaboration between the two models, without
deadlock situations in the co-simulation flow, it is necessary

that any two simulation traces 1=𝕴o𝕴1… 𝕴nL(𝕴) and

2=𝕷o𝕷1…𝕷mL(𝕷), where m,n0, to respect the conditions:

for each pair of states (𝕴i, 𝕷j), 𝕴i(1), 𝕷j(2) with the

property, 𝕷j=(𝕴i), there is a state 𝕷k(2), such that

(𝕴i)≼𝕷k, and 𝕴i≼(𝕷k). This condition is necessary to avoid
deadlock situations, in which the two simulations block each
other, because each is waiting for a response from the other.

This type of cooperation between two models in the

simulation process requires, therefore, that the functions and

 form a Galois connection [24]. A Galois connection between

the sets 𝕴 and 𝕷 is a pair of monotone mappings :→𝕷 and

:𝕷→𝕴 with the property: (𝕴i)≼𝕷j if and only if 𝕴i≼(𝕷j)

where 𝕴i𝕴 and 𝕷j𝕷 . The two applications, and are the
left adjunct and, respectively, the right adjunct of the Galois
connection.

A theoretical result [23,24] tells us that the condition in the
above definition of the Galois connection can be replaced by

the condition: 𝕴i((𝕴i)) and ((𝕷j))𝕷j. We will see, next,
that this condition has a generalization in category theory and
is called adjunction.

Since MSC1 and MSC2 are categories, we can replace the

applications and with two adjunct functors,

:MSC1→MSC2 and :MSC2→MSC1, and thus obtain an

adjunction between two functors, where and are the left
adjunct and, respectively, the right adjunct of the adjunction.

The adjunction of two functors and is denoted by ⊣,

where is the left adjunct and is the right adjunct. The
necessary and sufficient condition for two functors to be

adjoint is that between the two-variable functors Hom(-,-

):MSC1→ Set and Hom(-,-):MSC2→Set, there must be a
bijective natural transformation, i.e. we have the natural

isomorphism Hom(-,-)Hom(-,-), where we have denoted
with "-" the place of a variable. This condition generalizes the
condition from the Galois connection. In other words, in the

MSC1 and MSC2 categories, for each pair of objects 𝕴p𝕴 and

𝕷q𝕷, there is a behavioral transformation from (𝕴p) to 𝕷q in
the MSC2 category if and only if there is a transformation from

𝕴p to (𝕷q) in the MSC1 category. But this condition is exactly
the necessary and sufficient condition to be able to carry out a

: CIBR

0

1

2

0

1

2

𝓢

𝕴
0

𝕴
1

𝕴
2

0

1

2

•

•

•

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

556 | P a g e

www.ijacsa.thesai.org

co-simulation without deadlock on all the simulation traces
defined by the MSC1 and MSC2 categories.

Therefore, the necessary and sufficient condition for the

functors and to form an adjunction is for the natural

isomorphism Hom(-,-)Hom(-,-) to exist. From here it

follows that in order to define the functors and so that

they form an adjunction ⊣, it is enough to define a one-to-
one relationship between the traces from the categories of
simulation models MSC1 and MSC2. This correspondence
between the simulation traces is reduced to a bijective natural
transformation defined on components

f:Hom(𝕴p,𝕷q)→Hom(𝕴p,𝕷q), between the behavioral rules

of the two behavioral models. Thus if 2Hom(𝕴p,𝕷q) then

(2)=f-1(2), and if 1Hom(𝕴p,𝕷q), then (1)=f(1). Also,

if in the state 𝕴p𝕴 of the MSC1 model, we have a request to
the MSC2 model, which is in the state 𝕷r, and we need an

answer in the 𝕴r𝕴 state, from the MSC2 model, in the 𝕷q𝕷

state, then we define 𝕴p= 𝕷r and 𝕷q = 𝕴t.

In the context of two adjunct functors we can define two
special natural transformations called unit and counit. [10, 12].

For the two adjunct functors ⊣, there is a natural

transformation :id1→○, where id1, is the identity functor

from the MSC1 category, so that for any object 𝕴k𝕴 and

𝕷l𝕷 and any arrow 1
𝑘𝑡:𝕴k→(𝕷l)=𝕴t, there is a unique arrow

2
𝑡𝑙:(𝕴k)=𝕷t→𝕷l so that the diagram in Fig. 3 commutes [10,

12]. The natural transformation is called unit adjunction.

Also, the adjunction property of the functors and
assumes the existence of a dual natural transformation

:○→id2, where id2 is the identity functor from the category

MSC2, so that for any arrow 2
𝑡𝑙 :(𝕴k)=𝕷t→𝕷l, there is a

unique arrow 1
𝑘𝑡:𝕴k→(𝕷l)= 𝕷t, so that the diagram in Fig. 4

commutes. The natural transformation is called counit
adjunction.

The adjunction of two functors ⊣ is unambiguously

specified by the tuple (,,,), where is the adjunction unit

and is the adjunction counit.

The adjunction unit :id1→○ is also called the insertion
of generators and has the role of transforming each object

𝕴k𝕴 into the format of an object ((𝕴k)). This function is
executed in the MSC1 model and can be calculated on
components starting from the adjunction condition which says

that there is a natural isomorphism f:Hom(𝕴p,𝕷q)→

Hom(𝕴p,𝕷q). If in this natural isomorphism we make

𝕷q=𝕴p, then we have the natural isomorphism

f:Hom(𝕴p,𝕴p)→Hom(𝕴p,𝕴p) and therefore we can

calculate on the 𝕴p component, according to the formula:

ℑ𝑝

=f(idℑ𝑝 where idℑ𝑝:(𝕴p)→(𝕴p) is the identity functor

in MSC2.

Similarly, we have the natural isomorphism

f:Hom(𝕷q,𝕷q)→ Hom(𝕷q,𝕷q) and therefore we can also

calculate the adjunction counit :○→id2 on components
according to the formula: 𝔏𝑘 = f-1(id𝔏𝑘) where

id𝔏𝑘 :(𝕷k)→(𝕷k) is the identity functor in MSC1. This

function is executed in the MSC2 model and represents, in our

case, the process of generating the response of the MSC2 model
to the request of the MSC1 model.

The adjoint of two functors defined by the tuple (,,,),

where and are adjoint functors, is the adjoint unit and
is the adjoint counit, determines a monad [11]. An endofunctor

T:MSC1→MSC1, together with two natural transformations

:id →T, called "return", and :T2→T, called "join", which
make the diagrams in Fig. 5 and Fig. 6 commutative is a
monad in category MSC1, which is specified by a tuple

(T,,).

Based on the adjunction (,,,), we can calculate the

monad components as follows: the endofunctor T=○, is

the adjunct unit, and = [11]. Monads are frequently used
in functional languages that offer in this way facilitates for
inserting imperative code into the functional code. Therefore,
in a similar way, mechanisms for specifying monads can be
introduced in domain specific modeling languages [6].

Fig. 3. Definition of Unit Adjunction.

Fig. 4. Definition of Counit Adjunction.

Fig. 5. First Constraint.

𝕴k

(𝕷l)

(𝕴k) ((𝕴k))

 𝕷l

1
𝑘𝑡 ! 2

𝑡𝑙
(2

𝑡𝑙)

MSC1 MSC
2

𝕴k

(𝕷l)

(𝕴k)

((𝕷l)) 𝕷l

! 1
𝑘𝑡 2

𝑡𝑙 (1
𝑘𝑡)

MSC1 MSC
2

T3

T2

T2

T

 T

T

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 9, 2022

557 | P a g e

www.ijacsa.thesai.org

Fig. 6. Second Constraint.

Most of the time, the co-simulation control is realized by an
orchestrator that coordinates the system components according
to a co-simulation scenario [3,25]. In this case, the two models
must be encapsulated in software units that implement a
standard interface [2]. The interaction between two CPPS
models can be specified by defining shared variables between
the two models or by passing data to the orchestrator. In the

case of our approach, the adjunction unit is executed in the
MSC1 model and has the role of preparing the data, in the

appropriate format, to be transmitted to the orchestrator. The
application is executed in the MSC1 model, and specifies the
operations to be executed by this model. Connecting the
models through monads makes it possible to analyze the
composite system resulting from co-simulation.

V. ORIGINAL CONTRIBUTIONS AND CONCLUSIONS

The most important finding, in our proposal, is simplicity
and conceptual clarity. Thus, the static dimension of a model is
the image of a categorical sketch through a functor. The
behavioral dimension of a model is specified by a set of
functors and a set of behavioral rules. The simulation space of
a model is defined by a category. The co-simulation space of
two models is specified by a monad induced by two adjunct
functors. All the mechanisms involved in these definitions are
generic and can be implemented at the metamodel level.
Mechanisms for specifying monads can be included in the
modeling language at the metamodel level, as happens in
functional languages that offer such mechanisms especially to
allow imperative specifications. Most of the times the
interaction between two CPPS models can be specified by
defining shared variables. Connecting the models through
monads makes it possible to analyze the composite system
resulting from co-simulation. To our knowledge, co-simulation
through monads, which is the main objective of this work, has
not been addressed until now.

REFERENCES

[1] Henderik A. Proper and Giancarlo Guizzardi, “On Domain
Conceptualization” Advances in Enterprise Engineering XIV, EEWC
2020, Bozen-Bolzano, Italy, September 28, October 19, and November
9–10, 2020 ; Springer 2021.

[2] Functional Mock-up Interface for Model Exchange and Co-
Simulation,Document version: 2.0.1 October 2nd 2019, https://fmi-
standard.org/.

[3] INTO-CPS Tool Chain User Manual, Deliverable Number: D4.3a
Version: 1.0 Date: December, 2017 Public Document, http://into-
cps.au.dk.

[4] D. Karagiannis, H.C. Mayr, J. Mylopoulos, “Domain-Specific
Conceptual Modeling Concepts, Methods and Tools” Springer
International Publishing Switzerland (2016).

[5] Dominik Bork, Dimitris Karagiannis, Benedikt Pittl, “A survey of
modeling language specification techniques”, Information Systems 87
(2020) 101425, journal homepage: www.elsevier.com/locate/is.

[6] M. Fowler, R. Parsons, “Domain Specific Languages”, 1st ed. Addison-
Wesley Longman, Amsterdam, 2010.

[7] D.C. Crăciunean, D. Karagiannis, ”Categorical Modeling Method of
Intelligent WorkFlow” in: Groza A., Prasath R. (eds) Mining
Intelligence and Knowledge Exploration. MIKE Lecture Notes in
Computer Science, vol 11308. Springer, Cham (2018).

[8] D.C. Crăciunean, “Categorical Grammars for Processes Modeling”,
International Journal of Advanced Computer Science and
Applications(IJACSA), 10(1), (2019).

[9] D.C. Crăciunean, D. Karagiannis, “A categorical model of process co-
simulation”, Journal of Advanced Computer Science and
Applications(IJACSA), 10(2), (2019).

[10] Michael Barr And Charles Wells, “Category Theory For Computing
Science- Reprints in Theory and Applications of Categories”, No. 22,
2012.

[11] Michael Barr Charles Wells. “Toposes, Triples and Theories”
November 2002.

[12] R. F. C. Walters, “Categories and Computer Science, Cambridge Texts
in Computer Science”, Edited by D. J. Cooke, Loughborough
University, 2006.

[13] Zinovy Diskin, Tom Maibaum- “Category Theory and Model-Driven
Engineering: From Formal Semantics to Design Patterns and Beyond”,
ACCAT 2012.

[14] Diskin Z., König H., Lawford M., „Multiple Model Synchronization
with Multiary Delta Lenses” in: Russo A., Schürr A. (eds) Fundamental
Approaches to Software Engineering. FASE 2018. Lecture Notes in
Computer Science, vol 10802. Springer, Cham.

[15] Uwe Wolter, Zinovy Diskin, “The Next Hundred Diagrammatic
Specification Techniques, A Gentle Introduction to Generalized
Sketches”, 02 September 2015 :
https://www.researchgate.net/publication/253963677,

[16] D. Plump, “Computing by graph transformation: 2018/19”, Department
of Computer Science, University of York, UK, Lecture Slides, 2019.

[17] G. Campbell, B. Courtehoute and D. Plump, “Linear-time graph
algorithms in GP2”, Department of Computer Science, University of
York, UK, Submitted for publication, 2019. [Online]. Available:
https://cdn.gjcampbell.co.uk/2019/Linear-Time-GP2-Preprint.pdf.

[18] D. Plump, “Checking graph-transformation systems for confluence”,
ECEASST, vol. 26, 2010. DOI: 10.14279/tuj.eceasst.26.367.

[19] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, Frank Hermann, “Graph
and Model Transformation General Framework and Applications”,
Springer-Verlag Berlin Heidelberg 2015.

[20] R. Milner, “The Space and Motion of Communicating Agents”,
Cambridge University Press, (2009).

[21] C. Gomes, C. Thule, D. Broman, P.G. Larsen, H. Vangheluwe, “Co-
simulation: State of the art”, ACM Computing Surveys, Vol. 1, No. 1,
Article 1. Publication date: January (2016).

[22] Claudio Gomes, Casper Thule, Levi Lucio, Hans Vangheluwe, and Peter
Gorm Larsen, “Generation of Co-simulation Algorithms Subject to
Simulator Contracts”, https://sites.google.com/view/cosimcps19.

[23] David I. Spivak, “Category Theory for the Sciences”, The MIT Press
Cambridge, Massachusetts London, England, 2014 Massachusetts
Institute of Technology.

[24] Brendan Fong and David I. Spivak, “Seven Sketches in
Compositionality” An Invitation to Applied Category Theory; 2018.

[25] Bottaccioli, Lorenzo; Estebsari, Abouzar; Pons, Enrico; Bompard,
Ettore; Macii, Enrico; Patti, Edoardo; Acquaviva, Andrea, “A Flexible
Distributed Infrastructure for Real-Time Co-Simulations in Smart
Grids” in: IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, vol. 13 n. 6, pp. 3265-3274. - ISSN 1551-3203,
(2017).

T2 T T

T

id id

T T

