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Abstract—The rising performance demands in modern 

technology devices see the need to pack more functionality per 

area and are made possible with the advent of technology scaling. 

The extremely down-scaled, high-density processors used in such 

technology devices functioning at high frequencies and greater 

temperatures expedite various aging effects which impact the 

reliable lifetime of computing systems. Electromigration is 

considered to be an important intrinsic aging effect that reduces 

the useful lifetime of modern microprocessors. The objective of 

this work is to use machine learning methods to develop an 

electromigration-aware scheduler for assigning workloads to 

cores based on reliability and performance requirements. Aging 

estimation of the processor cores is performed based on the 

proposed computationally efficient and accurate regression-

based thermal prediction models. According to experimental 

findings, the suggested technique can significantly extend the 

lifetime of multi-core architectures while allowing performance 

to degrade gracefully. The maximum error in the prediction of 

the lifetime of the cores using the proposed methodology is 

estimated to be 2.85%. 
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I. INTRODUCTION 

The computing requirements of modern embedded systems 
in application areas including automotive, storage, networking, 
and 5G, among others, necessitate the use of high-performance 
processors. To deliver higher functionality per area demand for 
such applications, manufacturers create dense integrated multi-
core processor chips operating at higher speeds [1]. Increased 
power density and operating temperature of processor cores 
can expedite aging phenomena including electromigration, 
lowering the processor's quality and reliability [2]. Runtime 
task execution management is a pressing research topic to 
minimize such aging effects in processor cores [2], [3], [4]. A 
rise of 10 - 15°C in the operating temperature could reduce the 
processor lifespan to half [5]. The lifetime of multi-core 
processors can be improved by estimating the aging effects of 
tasks that are ready for execution. The workload assignment to 
cores and frequency adjustments can be done at runtime to 
minimize the effect of aging of the cores. Such strategies need 
to be computationally precise and quick for real-time 
implementation. 

Transistor aging is considered an important phenomenon 
that affects the reliability and lifetime of modern CMOS 
integrated circuits [6]. Time-Dependent Dielectric Breakdown 

(TDDB), Hot Carrier Injection (HCI), and Negative Bias 
Temperature Instability (NBTI) are the key aging effects that 
challenge the reliable operation of modern integrated circuits. 
The intrinsic effects, Electromigration (EM) and Stress 
migration (SM), which are due to the interconnect aging, are 
also significant in present CMOS technology devices [7]. New 
methods for investigating and predicting degradation effects 
are important for enhancing the lifetime reliability of modern 
CMOS technology devices. 

The suggested method to increase the multi-core 
processors' lifespan reliability is presented in two sections. In 
the first section, machine learning models based on regression 
to predict the processor cores' steady state temperature for the 
incoming jobs are proposed. A fine-grained approach is 
followed in this work for predicting the thermal properties of 
the cores' processing components. The fine-grained approach is 
more suitable for understanding the localized characteristics of 
the cores. In the second section, a scheme for mitigating the 
aging effects of processor cores by implementing a runtime 
frequency control policy is presented, which takes the 
temperature estimates of the proposed machine learning 
models as input. The operating speeds of the cores are decided 
to take into account the aging effects and the performance 
requirements. Our experimental results show that the proposed 
aging-aware scheduler, which is guided by the developed 
machine learning models could predict the core's lifetime with 
a maximum error of 2.85 %. The average error in temperature 
estimation is assessed, for each of the proposed models, and 
the maximum value is observed as 0.492 oC. 

The rest of the paper's contents are arranged in the order 
mentioned below. A number of the significant efforts on 
thermal prediction and the regulation of thermal challenges of 
the processor cores are discussed in Section II. Linear 
regression and polynomial regression schemes for the 
estimation of the core temperature and the concept of the 
proposed aging-aware scheduler for enhancing processor core 
lifetime reliability are presented in Section III. An analysis of 
the results obtained for the proposed schemes are mentioned in 
Section IV. Finally, Section V concludes the work and 
mentions the possibilities for further research in the field. 

II. LITERATURE REVIEW 

The increasing performance demands of current technology 
gadgets have prompted various studies to concentrate on 
optimal job scheduling methods in multi-core systems 
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operating under real-time constraints. A significant body of 
published works focuses on techniques for a better 
performance-power trade-off of multi-core processors [8], [9], 
[10]. The effect of using different styles of coding for 
balancing between performance and energy consumption of the 
processing cores is presented in [11]. A core allocation 
technique to lower the energy usage of mobile devices by 
engaging the LITTLE cores to a maximum extent and ensuring 
the performance of the device is proposed in [12]. The 
execution time of complex programs can be minimized and 
thus the performance of the applications can be improved by 
the use of today’s high-performance computing systems 
employing multi-core processors. Parallelization schemes [13] 
can be employed for converting the serial execution of 
programs into a hybrid parallel mode to take the advantage of 
the processing capability of multi-core processors. Reliability-
aware scheduling techniques [14] can be used to reduce soft 
errors of heterogeneous chip-multiprocessors. The performance 
and power efficiency in heterogeneous multi-core CPUs can be 
enhanced with smart workload schedulers [15]. 

An aging-aware scheduler needs an accurate thermal 
estimate of the various logical components to make run-time 
decisions when a workload gets executed in a processor core. 
Several research works have looked into the feasibility of using 
model-based methodologies to determine the CPU core 
temperature characteristics [16], [17], [18]. An architectural 
level thermal behavioral modeling technique known as 
Thermsid [19] builds temperature models from the observed 
temperature and power statistics. Multiple scheduling schemes 
based on the efficient and simple thermal model are used [20] 
for managing the operations of homogeneous processor 
platforms. Thermal Estimation Accelerator (TEA) [21], a 
processing element level monitoring scheme for the 
temperature at runtime using hardware accelerators can serve 
as a benchmark for Dynamic Thermal Management (DTM) 
methods. 

For the development of thermal models, it is required to 
estimate thermal profiles of the benchmark tasks executing on 
selected cores at defined operating frequencies. HotSpot [22] is 
a popular tool used in the temperature estimation of processor 
cores and is helpful in architectural studies. Various logical 
components in the processor architecture are represented as its 
equivalent thermal resistor and capacitor values along with the 
thermal package information [23]. Information about the floor 
design and power estimations for the logical components are 
supplied to HotSpot to determine the temperature profile. The 
power estimation of the logical components can be done with 
the tool McPAT (Multi-core Power, Area, and Timing) [24]. 
Based on high-level data, such as the frequency of operation of 
the core, McPAT can predict the architectural level power 
usage of the processor core containing caches and memory 
controllers. A McPAT-monolithic framework is presented in 
[25] for the architecture modeling of 3-D hybrid monolithic 
multi-core systems. The work in [26] proposes a micro-
architectural framework to estimate the performance and 
energy consumption of cores in a multi-core processor. A 
detailed validation of McPAT’s power models done with the 
help of a toolchain used in industrial practice is presented in 
[27]. In this study, McPAT is utilized to calculate the dynamic 

power of the core's logical subsystems. McPAT requires the 
operation statistics of the applications and micro-architectural 
characteristics as its inputs to calculate the power consumption 
of every system component. The operation statistics of the 
tasks can be evaluated using the gem5 simulator [28]. CPU 
models with different types of memory configurations and 
cache organizations can be defined for the analysis. The current 
generation of widely used commercial Instruction Set 
Architectures (ISAs) including ARM and x86 are supported by 
gem5. A significant number of these simulators are utilized in 
the relevant fields of research since they are useful in analyzing 
the performance and power consumption of various processor 
models and can be used to validate various design options. A 
study of the basics of several multiprocessor simulation 
methodologies and a summary of the correctness of six 
architecture simulators including gem5 are presented in [29]. 
Gem5-X, a framework for system-level simulation based on 
gem5 [30] may be employed to assess the potential benefits of 
the architectural extensions for many image processing-related 
applications. 

Computer architecture simulators can be used to closely 
examine the execution properties of applications that run in a 
processing core. Regression-based models with high 
computational efficiency and accuracy may well be constructed 
by relating the thermal figures estimated with HotSpot to the 
application characteristics estimated using gem5. 
Representative applications in open-source benchmark 
MiBench [31] can be used to develop and validate thermal 
models of typical workloads running in embedded processors. 
MiBench presents a collection of 35 embedded programs 
organized in six categories, each of which focuses on a specific 
segment of the embedded market. Workloads belonging to the 
application areas: network, security, telecommunication, and 
consumer from MiBench suite are used in this work. The 
characteristics of the tasks jpeg encode/decode, 32-bit Cyclic 
Redundancy Check (CRC), Dijkstra, and Secure Hash 
Algorithm (SHA), representing the mentioned application 
areas, running on x86 architecture-based processing cores are 
analyzed using gem5 and are used to train the regression 
models. The MiBench suite's consumer device benchmarks are 
designed to simulate the consumer device applications found in 
products including Personal Digital Assistants (PDAs), 
scanners, and digital cameras. This category largely focuses on 
image processing, and one of the representative image 
compression and decompression technologies is JPEG 
encoding/decoding. The telecommunications category of 
applications stands close to consumer applications because of 
the increased demand for consumer devices with wireless 
communication capability. Cyclic redundancy checks (CRC) 
are often used in data transmission for the detection of errors. 
A 32-bit cyclic redundancy check is performed on a sound file 
from the adaptive differential pulse code modulation 
benchmark as part of the CRC32 test. 

Devices such as switches and routers have embedded 
applications that fall under the network category. Finding the 
shortest path through a graph is one of the methods used to 
illustrate the networking category. The Dijkstra benchmark 
determines the shortest route across each set of nodes of a 
graph by repeatedly applying Dijkstra's algorithm. In 
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applications related to e-commerce, data security is a key 
factor. Security applications frequently employ a variety of 
hashing, encryption, and decryption algorithms. The Secure 
Hash Algorithm (SHA) is frequently used to create digital 
signatures and transfer cryptographic keys in a secure manner. 
The secure hashing method, SHA benchmark in MiBench, 
generates a 160-bit code for an input. 

Estimating the temperature and power at runtime using the 
tools HotSpot and McPAT is computationally expensive and 
limits their implementation in real-time schedulers. A 
regression-based model can be developed based on the thermal 
and power profiles of the workloads estimated using HotSpot 
and McPAT. Such trained and created regression-based models 
can quickly and accurately estimate the temperature of the 
logical components, and they are suitable for the successful 
application of aging-aware scheduling methods. A method for 
constructing a compact machine learning-based thermal 
prediction system appropriate for fast decision-making is 
presented in [32]. A temperature control strategy based on 
machine learning to determine the appropriate core frequency 
and encoder configuration for High-Efficiency Video Coding 
(HEVC) is proposed in [33]. A machine learning and 
simulation-based approach can be employed [34] to estimate 
the temperature map of a chip using the power consumption, 
utilization of the core, and recorded sensor temperatures. As 
discussed, a significant amount of the related research works 
published in recent years propose different approaches for 
determining the critical parameters associated with the 
workloads using software tools. Many of these works 
emphasize the increasing need for runtime techniques to 
regulate the processor temperature by changing its operating 
behavior. Such recent research works propose many techniques 
for better performance-power trade-offs. But, in our 
understanding, the use of scheduling techniques to reduce 
aging with the help of computationally efficient runtime 
temperature estimation methods for high-performance 
applications running on multi-core processors is a largely 
unexplored topic. 

III. PROPOSED WORK 

The first part of the proposed work deals with thermal 
profile modeling problems. Here, a regression-based model is 
employed to predict the steady-state temperature of the 
processing elements in a multi-core architecture. The 
temperature estimation model is driven by the properties of the 
workload. In the second part, an aging-aware scheduler is 
presented, whose scheduling activities are based on the thermal 
estimates of the regression model proposed in the first part of 
the work. The scheduler utilizes the thermal estimations and 
the performance need of the workloads taking into account the 
operating speed of the cores and trying to minimize the effect 
of processor aging. 

A. Development of Regression-based Models 

Regression analysis is one of the powerful multivariate 
statistical techniques to infer and form a functional relationship 
in a population [35]. In this work, regression analysis is used to 
relate the workload characteristics with the thermal effects of 
the processing elements. Workloads in embedded applications 
are suitable for implementing the suggested scheme because 

they typically have high levels of predictability in their 
execution characteristics, such as the instruction execution 
behavior, memory operations, and the kind of information 
processing. The execution patterns of the MiBench 
applications running on a Hexa-deca homogenous multi-core 
architecture are analyzed using the gem5 simulator. The gem5 
can be set up to operate in either Syscall Emulation (SE) mode 
or Full System (FS) mode. In SE mode, gem5 can imitate 
system calls made by applications. When configured in the FS 
mode, gem5 creates a bare-metal context for executing an 
operating system. In this work, gem5 is configured in the SE 
mode for analyzing the patterns of execution of the benchmark 
applications. The cores of the multi-core processor are selected 
as having x86 architecture. The cache hierarchy is defined to 
be of two levels, with level 1 private cache and level 2 shared 
cache. A subset j of the workload parameters is employed in 
this study, which directly affects the thermal profiles of the 
various logical components of the core. i.e., j∈{W}, where W 
represents the complete set of workload characteristics 
analyzed using gem5. 

The above-mentioned workloads from the MiBench suite, 
which cover several embedded application areas, are used for 
model development and analysis. The selected applications are 
analyzed using the gem5 simulation tool and the characteristics 
are determined. The power usage of the various functional 
parts of the CPU architecture is calculated using McPAT. The 
thermal model of HotSpot is driven by the estimated power 
traces, and the chip and package characteristics. The 
configuration file specifies the parameters of the processor core 
for the HotSpot tool, which are shown in Table I. 

Linear Regression (LR) and Polynomial Regression (PR) 
are the two regression models used in this work for estimating 
the thermal values of the functional elements of the CPU. In 
the Linear Regression (LR) model, the steady-state temperature 
of a functional element is represented as a weighted sum of the 
selected workload characteristics. In the LR model, the 
predicted temperature is represented as in (1). 

 �̂�(𝑤, 𝑥) =  𝑤1𝑥1 + ⋯ + 𝑤𝑝𝑥𝑝 + 𝑏            (1) 

TABLE I. HOTSPOT CONFIGURATION PARAMETERS 

HotSpot Parameters Value 

Thickness of the chip (in meters)  0.00015  

Specific heat of Silicon (in J/(m3-K)) 1.75 x 10e6  

Thermal conductivity of Silicon (in W/(m-K)) 100.0 

Resistance (Convection) (in K/W) 0.1  

Capacitance (Convection) in J/K (Heat sink)  140.4 

Thickness (Heatsink) (in meters) 0.0069  

Heatsink side (in meters)  0.06 

Thermal conductivity of Heatsink (in W/(m-K)) 400 

Specific heat (Heatsink) (in J/(m3-K)) 3.55 x 10e6 

Side (Heat spreader) (in meters) 0.03 

Thickness (Heat spreader) (in meters) 0.001 

Thermal conductivity (Heat spreader) in W/(m-K) 400 
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where X = (x1, x2, ... xp) represents the features used to train 
the models, w1, w2, ... wp are the coefficients and b represents 
the bias. To reduce the sum of the squared estimate of errors 
between the measured values of the data, linear regression fits 
a linear model using weights W = (w1, w2, ... wp). The loss 
function which indicates the adequacy of the fit is given by (2). 

𝐿(�̂�, 𝑡) =
1

2
(�̂� − 𝑡)2               (2) 

where ŷ, t, and (�̂� − 𝑡) represent the prediction, target, and 
residual values respectively. The coefficients w1, w2, ... wp, and 
b are selected in a manner to reduce the loss function as 
represented in (3) and (4). 

𝐸(𝑤1, 𝑤2, … 𝑤𝑝, 𝑏) =
1

𝑁
∑ 𝐿(𝑦𝑖 , 𝑡𝑖)𝑁

𝑖=1            (3) 

=
1

2𝑁
∑ (∑ 𝑤𝑗𝑥𝑗

𝑖
𝑗 + 𝑏 − 𝑡𝑖)

2𝑁
𝑖=1              (4) 

In this study, the Python-based Scikit-learn machine 
learning package [36] is used, which is regarded as an effective 
and reliable tool for predictive data analysis. 

In the development of the Polynomial Regression (PR) 
models of steady state temperature, polynomial regression 
needs to be performed on the data set, which are the workload 
characteristics, to fit a polynomial equation to it. This work 
extends linear regression by building polynomial features from 
the coefficients. For instance, the features in the second-order 
polynomials are utilized to fit a paraboloid to the data rather 
than a plane, giving the model represented in (5): 

 �̂�(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥1𝑥2 + 𝑤4𝑥1
2 + 𝑤5𝑥2

2  (5) 

The above model can be considered as a linear model 
creating a set of features given in (6). 

𝑧 = [𝑥1, 𝑥2, 𝑥1𝑥2,𝑥1
2, 𝑥2

2]             (6) 

This renaming of the data allows for the formulation of the 
problem as in (7). 

�̂�(𝑤, 𝑥) = 𝑤0 + 𝑤1𝑧1 + 𝑤2𝑧2 + 𝑤3𝑧3 + 𝑤4𝑧4 + 𝑤5𝑧5        (7) 

The derived polynomial regression belongs to a similar 
category of linear models as those previously mentioned, 
which can be evaluated using the same methods. The model is 
flexible enough to accommodate a broader range of data by 
taking into account the linear fits in a higher-dimensional space 
constructed with these basis functions. To transform an input 
data matrix into a new data matrix of a specific degree, the 
polynomial properties converter in the Scikit-learn Python 
machine learning toolkit is used. The parameters of X have 
been converted from [𝑥1, 𝑥2, … ] to [𝑥1, 𝑥2, 𝑥1𝑥2,𝑥1

2, 𝑥2
2 … ] and are 

now applicable to any linear model. 

Linear and polynomial regression are used to model the 
temperature profiles of the processing units of the core. Fig. 1 
represents the architecture of the processor core considered in 
this work. The models thus developed are used to predict the 
steady-state temperature of the various processing elements in 
the architecture. The regression models presented in this work 
are most appropriate for multi-core systems executing 
embedded tasks since their task characteristics are often highly 
predictable. The proposed model-based prediction logic is 

computationally efficient and is more suitable for real-time 
thermal estimation. The estimated data can be used by an 
aging-aware scheduler to determine the best course of action 
for controlling the temperature below threshold levels while 
maintaining performance goals and extending the useful 
lifetime of processor cores. 

 

Fig. 1. Core Architecture. 

B. The Aging-aware Scheduler Design 

With the advancements in integrated circuit design and 
fabrication technology, more transistors can now fit into a 
square millimeter of a silicon wafer. When clocked at higher 
speeds to address the execution constraints, such densely 
integrated processors have increased power and heat 
dissipation, which has a negative impact on lifetime 
dependability. The major challenge is to develop algorithms 
that can forecast device-level degradation behavior based on 
the application features. This work presents a strategy for 
extending the useful lifetime of multi-core processors. A fine-
grained approach is followed for estimating the aging effects of 
the various processing components of the multi-core processor. 
The data available for the recent industrial-grade embedded 
processors manufactured by Texas Instruments [37] is taken as 
the reference. Referring to [37], the operational lifespan of the 
semiconductor core is taken as ten years, when the junction 
temperature TJ is 105oC. The crucial factor affecting silicon 
lifespan is the junction temperature TJ when the circuit is 
functioning within the limits of voltage and frequency stated in 
the data sheet. 

Due to continual operation at high temperatures, wear-out 
processes begin to develop in semiconductor products during 
their useful life. The wear-out processes commonly considered 
in the design of integrated circuits include Gate Oxide Integrity 
(GOI) [38], Electromigration (EM) [39], [40], and Time-
Dependent Di-electric Breakdown (TDDB) [41]. Additionally, 
the lifespan of the present semiconductor devices is affected by 
processes such as Negative Bias Temperature Instability 
(NBTI) [42] and Channel Hot Carriers (CHC) [43]. Among 
these, electromigration is a major aging effect in present 
integrated circuits. The primary factor that influences 
electromigration is the junction temperature TJ. The junction 
temperature TJ is thus the critical factor affecting silicon 
lifespan under electrical bias when the chip is operating within 
the prescribed data sheet conditions, and the lifetime can be 
represented using an Acceleration Factor (AF). The Arrhenius 
equation, which links the chemical reaction rate to temperature, 
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can be used to analyze the damage that occurs in electronic 
devices over time for various working temperatures. The 
accelerating factor (AF) [37] can be represented as in (8). 

𝐴𝐹 = 𝑒𝑥𝑝 (
𝐸𝑎

𝐾
 (

1

𝑇𝑢𝑠𝑒
−

1

𝑇𝑠𝑡𝑟𝑒𝑠𝑠
))             (8) 

where AF represents the Acceleration Factor, Ea is the 
Activation energy in eV, K is the Boltzmann’s constant (8.63 x 
10-5 eV/K), Tuse is the use temperature in Kelvin and Tstress is 
the stress temperature in Kelvin. 

This work proposes a methodology for improving the 
useful lifetime of the processor cores by considering electro-
migration as the primary failure mechanism. The aging-aware 
scheduler estimates the temperature of the processing elements 
of the core when a job is ready, by using the workload 
characteristics as input to the developed models. Our goal is to 
allocate the tasks to cores based on the aforementioned inputs 
to maximize chip lifetime while meeting the performance 
requirement bounds. For the reliability-aware scheduler design, 
two types of frequency adaptations are proposed in this work, 
where the processor clock can either be controlled in discrete 
values or in a continuous manner. Based on the workload 
characteristics, the performance requirement, and the end 
system reliability requirement, the aging-aware scheduler 
selects a core from the pool of feasible cores and decides its 
frequency of operation. The architecture of the proposed aging-
aware scheduler is represented in Fig. 2. 

 

Fig. 2. The Aging-aware Scheduler. 

The proposed aging-aware scheduler supports two types of 
clocking schemes for the processor core, i) cores whose 
operating frequencies can be selected from a discrete set of 
values and ii) cores whose frequency of operation can be 
varied continuously within a defined range. For the discrete 
frequency selection scheme, the scheduler will select the 
maximum possible operating frequency from a set of possible 
values, such that the lifetime reliability requirement can be 
met. In the continuous frequency selection scheme, the 
scheduler will have fine control of the operating frequency. In 
this case, the scheduler will use interpolate functions to 
estimate the closest frequency of operation that meets the 
lifetime reliability requirement with graceful performance 
degradation. For the specified workload characteristics, the 
data set includes known frequency and related temperature 
values of the logical components of the core. 

Linear Interpolation (LI) and Spline Interpolation (SI) are 
the two types of interpolation schemes attempted in this work. 
To build a function utilizing fixed frequency datasets for linear 
interpolation, the interp1d class from the "scipy.interpolate" 
package is utilized. SciPy [44] is a free and open-source 

Python library used for scientific and technical computing. 
When using linear interpolation for curve fitting, additional 
data sets are generated inside the boundaries of a finite 
collection of existing datasets using linear polynomials. In 
applications where smoothing is necessary, the piecewise-
defined spline function is employed instead of polynomial 
interpolation because it produces good results for low-degree 
polynomials while minimizing Runge's phenomena for higher 
degrees. 

Algorithm I illustrate the aging-aware scheduler's pseudo 
code. The scheduler, based on the workload characteristics, 
forms a feasible set of cores {C1, ... Cm}, from the set of 
available cores during the scheduling interval. The temperature 
patterns of the logical components are predicted using the 
prediction models developed in the first part of this work, and 
using these parameters, the aging factor AF of each core Ci 
related to the lifetime reliability is determined. Based on the 
workload's performance requirements, the lifetime reliability 
requirement of the cores, and the type of frequency control 
supported by the architecture, i.e., either a discrete frequency 
control or fine frequency control, the frequency of operation of 
the core is determined. 

Algorithm I. Aging Aware Core Selection 

Inputs: workload characteristics, performance constraints, 
lifetime reliability requirement  

1. while (true) { 
2. for each schedule window Ts, perform { 
3. for each task {T1, T2…Tn} in the process queue Q 

perform { 
a. analyze the characteristics of Ti and form the 

feasible set of cores {C1, …... Cm}. 
b. estimate temperature characteristics of the 

processing elements {L1, …. Lp} of the 
feasible cores Ci. 

c. estimate aging factor AF of each core Ci 
related to the lifetime reliability. 

d. select a core based on the lifetime reliability 
and performance requirements. 

e. determine the core's operating frequency f: 
i. if discrete frequency control 

f = fc where fc ∈ {f1, …... fs} 
ii. else f = fi where fmin ≤ fi ≤ fmax 

4.  //end for each task 

5. }//end for each schedule window 

6. }//end while 

Outputs: i) Mapping of the tasks {T1, …... Tn} to cores {C1, 

... Cm} if n ≤ m; stall the remaining n-m tasks if n > m, ii) 

frequency of operation of the selected cores. 

The regression models for predictive modeling need to be 
updated if the error in prediction is more than a threshold value 
because of the change in the data. The accuracy of the 
prediction logic is verified periodically with an updating 
interval. The updating interval, a customizable parameter, is 
kept substantially greater than the scheduling interval to reduce 
the computational overhead for the assessment of the actual 
temperature levels. The model updating process is represented 
in Algorithm II. 
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Algorithm II. Model Updation 

Inputs: workload characteristics, core id, maximum 

allowable error in prediction (threshold) 

1. while (true) { 

2. for each updating interval, Tu do { 

a. for each core {C1, ... Cm} do { 

compute the actual temperature of the 

processing elements (with on-chip sensors 

and/or software tools). 

b. }//end for each core 

c. if (prediction error > threshold) 

update the prediction models. 

d. end if 
3. }//end for each updating interval … 

4. }//end while 

Output: updated prediction models. 

IV. RESULTS AND DISCUSSION 

The experiments of this research work were conducted 
using the application benchmarks belonging to consumer, 
telecommunications, network, and security categories taken 
from the well-known MiBench suite as represented in Table II. 

Multiple instances created by altering the data set handled 
by the tasks are used to model the temperature characteristics 
of the logical components. As a result, n versions of a task w 
are created and evaluated its execution on m number of cores 
of the multi-core processor. Using new instances of the 
workloads derived from MiBench, the per-logical unit 
temperature is estimated to evaluate the developed models. The 
integer ALU, integer register file, floating-point unit, floating 
point register file, Data Translation Lookaside Buffer (DTLB), 
Instruction Translation Lookaside Buffer (ITLB), and 
load/store queue are characterized as the key power-consuming 
processing elements of the cores. Fig. 3 illustrates the 
validation of the developed models for the task CRC. The 
Steady State Temperature (SST) of the logical elements which 
are having significant power consumption is evaluated using 
the developed LR and PR models and is compared with the 
values estimated using the tool HotSpot. The operating 
frequency of the core is defined as 3400 MHz. The difference 
in estimation using the two methods is represented as a 
percentage error and is shown in Fig. 4. With a maximum 
prediction error of 0.008 percent for linear regression and 
0.826 percent for polynomial regression-based models, the 
suggested regression-based models exhibit good consistency 
with HotSpot. 

TABLE II. REPRESENTATIVE BENCHMARKS 

Category MiBench Benchmark 

Consumer JPEG encoding/decoding - (cjpeg /djpeg) 

Telecom Cyclic Redundancy Checks (CRC) 

Network Dijkstra 

Security Secure Hash Algorithm (SHA) 

 

Fig. 3. SST of the Processing Elements Estimated using HotSpot, Linear 

Regression, and Polynomial Regression Models. 

 

Fig. 4. Differences in the Estimation of SST of the Processing Elements are 

represented as a Percentage Error. 

Fig. 5 illustrates the validation of the thermal models of the 
logical component integer ALU. The tasks used in the analysis 
are executed in cores set to operate at a clock frequency of 
3400 MHz. The percentage error in the estimation of 
temperature is shown in Fig. 6. Simulation results show that 
the model is comparable to the HotSpot model in estimating 
the thermal profile of the logical components of the processor 
core. 

 

Fig. 5. Steady State Temperature of Integer ALU Estimated using HotSpot, 

Linear Regression, and Polynomial Regression Models. 
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Fig. 6. Differences in the Estimation of Steady-state Temperature of Integer 

ALU. 

The proposed aging-aware scheduler uses predicted SST of 
the logical components to estimate the degradation in the 
lifetime of the processor core during the scheduling of 
workloads. The lifetime of the critical components is 
represented using the Acceleration Factor (AF) while 
considering the junction temperature (Tj) of silicon as the 
primary variable impacting the lifetime of the cores. Fig. 7 
shows the validation of AFs of the principal power-consuming 
processing elements of the core for the task djpeg where the 
AFs are computed using the SST values estimated using 
HotSpot, LR, and PR models. Fig. 8 represents the validation 
of the AF estimation of int_ALU for the different tasks. The 
processor core is set to operate at a frequency of 3400 MHz. 

 

Fig. 7. Acceleration Factor of the Processing Elements Estimated using 

HotSpot, Linear Regression, and Polynomial Regression Models. 

 

Fig. 8. Acceleration Factor of the Tasks Estimated using HotSpot, Linear 

Regression, and Polynomial Regression Models. 

The proposed aging-aware scheduler estimates the 
temperature profiles of the logical components of the feasible 
cores based on the characteristics of the task in the service 
queue and decides the appropriate frequency of operation of 
the core. The lifetime reliability requirement of the core and 
the workload's performance requirements are used to determine 
the core operating frequency. In this work, the performance of 
the workloads running on a core clocked at 4000 MHz is taken 
as the reference, and the performance of the cores executing 
workloads with different operating conditions is represented 
relative to the reference performance. Fig. 9 represents the 
lifetime improvement of the cores and the corresponding 
relative performance degradation of the tasks when 
implementing a discrete frequency control scheme. In this case, 
the lifetime reliability requirement is taken as ten years, 
corresponding to an AF of 1. The core operating frequency is 
selected from the set {4GHz, 3.4GHz, 2.4GHz, 1.4GHz} based 
on the lifetime reliability requirement. Fig. 10 shows the 
corresponding values for AF = 1.5. The scheduler uses the 
thermal profile of the logical component having the highest 
value, for the estimation of AF of the core. This work assumes 
that the CPU core is designed to function for ten years when 
the junction temperature is at 105°C. 

When the reliability-aware scheduler functions in the 
continuous frequency mode, the core operating frequency can 
assume a value within the defined range of 1400MHz to 4000 
MHz. Linear Interpolation (LI) and Spline Interpolation (SI) 
are the two interpolation schemes employed, for estimating the 
closest frequency required for meeting the reliability and 
performance requirements. The frequency values for 
interpolation are determined based on the estimated 
temperature of the cores. Thermal estimation is performed 
using HotSpot, the standard method, and with the proposed LR 
and PR methods. The frequencies estimated by the scheduler 
for these temperature values are shown in Table III. The 
frequencies are determined for meeting the lifetime reliability 
requirement of ten years (corresponding AF = 1). Lifetime 
reliability of ten years corresponds to a threshold value of the 

silicon junction temperature, Tqual of 105 Degree Celsius. 

 

Fig. 9. Useful Lifetime Improvement and Relative Performance of Tasks 

(Discrete Frequency Control with AF = 1). 
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Fig. 10. Useful Lifetime Improvement and Relative Performance of Tasks 

(Discrete Frequency Control with AF = 1.5). 

TABLE III. CORE OPERATING FREQUENCIES FOR AF=1 

Fine Control of Operating Frequency 

(AF = 1 Tqual = 105 Degree Celsius) 

Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Temp 

Estima-

tion 
scheme 

Hot- 

Spot 

Hot-

Spot 
LR LR PR PR 

Freq 

estima-

tion 
scheme 

LI SI LI SI LI SI 

Tasks Estimated Frequencies of the cores (in GHz) 

cjpeg 2.7127  2.7128 2.7357 2.7356 2.7381 2.7377 

djpeg 3.2871 3.2872 3.2852 3.2851 3.2663 3.2663 

CRC 4.0 4.0 4.0 4.0 4.0 4.0 

Dijkstra 3.7752 3.7752 3.7750 3.7749 3.7876 3.7876 

SHA 3.0191 3.0195 3.0192 3.0191 2.9254 2.9253 

Validation of the proposed scheme is carried out for the 
case where there is a lifetime reliability requirement of ten 
years. In this case, the aging-aware scheduler will adjust the 
operating frequency to limit the core temperature to 105°C. 
The actual temperature of the cores for the frequencies of 
operation mentioned in Table III is computed using HotSpot 
and is shown in Table IV. It can be seen that the proposed 
algorithm is adjusting the core frequencies in such a way that 
the temperature of operation of the cores is very close to the 
required value of 105°C. The average prediction error of the 
proposed scheme in the estimation of the core temperature is 
compared with the results reported in recent publications and is 
shown in Table V. 

The lifetime of the cores, when operating with the 
temperatures shown in Table IV, is computed using (8). The 
theoretical lifetime corresponding to AF=1 is ten years. Table 
VI shows the lifetime of the cores corresponding to the steady 
state temperature values mentioned in Table IV. In this case, 
the algorithm is driving the operating frequency of the cores in 
such a way as to meet the lifetime requirement of ten years. 
The lifetime of the cores when operating with the frequencies 
estimated by the algorithm is having a maximum deviation of 
2.85 % from the required lifetime. 

TABLE IV. VALIDATION OF THE CORE TEMPERATURES FOR AF=1 

Tasks 
Temperature of Cores (in Degree Celsius) - Validation 

Case 1  Case 2 Case 3 Case 4 Case 5 Case 6 

cjpeg 104.99 104.99 105.4 105.4 105.46 105.44 

djpeg 105.01 105.01 104.98 104.98 104.69 104.69 

CRC 105.0 105.0 105.0 105.0 105.0 105.0 

Dijkstra 105.0 105.0 104.98 104.98 105.15 105.15 

SHA 105.0 105.0 105.0 105.0 103.46 103.46 

TABLE V. COMPARISON OF THE PREDICTION ERROR OF CORE 

TEMPERATURE WITH PROPOSED METHODS IN THE LITERATURE 

Scenarios  Average Prediction Error 

Case 1 0.004 oC 

Case 2 0.004 oC 

Case 3 0.088 oC 

Case 4 0.088 oC 

Case 5 0.492 oC 

Case 6 0.488 oC 

Alzemiro et al.[21] 0.020 oC 

Kaicheng Zhang et al.[32] 2.900 oC 

Carlton Knox et al.[34] 1.390 oC 

TABLE VI. THE ESTIMATED LIFETIME OF THE CORES 

Tasks 
Estimated Lifetime of Cores (in years) for AF=1 

Case 1  Case 2 Case 3 Case 4 Case 5 Case 6 

cjpeg 10.006 10.006 9.776 9.776 9.7426 9.7426 

djpeg 9.9943 9.9943 10.011 10.011 10.178 10.178 

CRC 10.0 10.0 10.0 10.0 10.0 10.0 

Dijkstra 10.0 10.0 10.011 10.011 9.9152 9.9152 

SHA 10.0 10.0 10.0 10.0 10.917 10.917 

Using the methodology proposed, embedded application 
developers can perform a fast design space exploration 
between the lifetime reliability of the processor cores and the 
performance requirement of the tasks. Fig. 11 depicts the 
compromise between AF and the performance of the 
benchmark applications when linear regression is employed for 
temperature estimation along with linear interpolation for 
frequency estimation. At higher values of AF, processing cores 
have better lifetime reliability but at the expense of application 
execution performance. Fig. 12 represents the corresponding 
trade-off when polynomial regression is employed with 
continuous frequency assignment. 

The concept suggested in this paper, where the aging-aware 
scheduler selects a task from a predetermined list of tasks to 
assign to a core, works well enough to extend the lifespan of 
multi-core systems running embedded workloads. A task might 
run at multiple scheduling points with a varying level of 
computational load because the complexity of the jobs that get 
executed on the cores may change over time. It is possible to 
account for these diverse computational costs at various 
execution times by building the regression model utilizing the 
heat profiles of logical units carrying out activities of varied 
computational costs at various execution times. 
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Fig. 11. Acceleration Factor (AF) - Performance Tradeoff (Linear Regression 

with Linear Interpolation). 

 

Fig. 12. Acceleration Factor (AF) - Performance Tradeoff (Polynomial 

Regression with Linear Interpolation). 

V. CONCLUSION AND FUTURE WORK 

The aging-aware scheduler proposed in this work uses the 
developed computationally efficient models to estimate the 
steady-state temperature of the processing elements in multi-
core processor architecture. Temperature values estimated with 
the models are used to predict electromigration-induced aging. 
The scheduler performs an aging-aware application mapping 
strategy for enhancing the lifetime reliability of the cores. The 
suggested scheduler will estimate the operating frequency of 
the processing cores for satisfying the lifetime reliability 
constraints with a gentle decline of the performance as opposed 
to a no-aging aware scheduler, where the workloads are 
distributed to the cores based on the performance need. Results 
from simulations show that the suggested approach can 
increase the lifespan of the operation of multi-core processor 
systems. 

The algorithm proposed in this work is extensible and 
configurable. The proposed framework is configurable, as it is 
possible to use on-chip thermal sensor data for estimating the 
temperature and aging effects of the logical components along 
with the temperature data computed using the software tools. 
In the future, the framework may be extended to take into 
account the impacts of aging brought on by Hot Carrier 
Injection (HCI), Positive-Bias Temperature Instability (PBTI), 
and Negative-Bias Temperature Instability (NBTI), along with 
electromigration. 

REFERENCES 

[1] V. Rajaraman, “Multi-core microprocessors,” Resonance 22, no. 12, pp. 
1175–1192, 2017, https://doi.org/10.1007/s12045-017-0580-0. 

[2] B. Wang, “Task Parallel Scheduling over Multi-core System,” in M. G. 
Jaatun, G. Zhao, C. Rong, (eds), Cloud Computing, CloudCom 2009, 
Lecture Notes in Computer Science, vol 5931, Springer, Berlin, 
Heidelberg, https://doi.org/10.1007/978-3-642-10665-1_39. 

[3] S. Deniziak and A. Dzitkowski, “Scheduling of Distributed Algorithms 
for Low Power Embedded Systems,” International Journal of Advanced 
Computer Science and Applications (IJACSA), 7(12), 2016. 
http://dx.doi.org/10.14569/IJACSA.2016.071205. 

[4] B. Ranjbar, T. D. A. Nguyen, A. Ejlali, and A. Kumar, "Power-Aware 
Run-Time Scheduler for Mixed-Criticality Systems on Multi-Core 
Platform," in IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems, pp. 2009-2023, no. 10, 2020. 

[5] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur, “Thermal 
Performance Challenges from Silicon to Systems”, Intel Technology 
Journal, Q3 2000, pp. 1–16. 

[6] I. Hill, P. Chanawala, R. Singh, S. A. Sheikholeslam, and A. Ivanov, 
"CMOS Reliability From Past to Future: A Survey of Requirements, 
Trends, and Prediction Methods," in IEEE Transactions on Device and 
Materials Reliability, vol. 22, no. 1, pp. 1-18, March 2022, 
https://doi.org/10.1109/TDMR.2021.3131345. 

[7] M. D. Shroff and A. L. Loke, "Design-technology co-optimization for 
reliability and quality in advanced nodes," Proc. SPIE 11614, in Design-
Process-Technology Co-optimization XV, 1161403, February 2021, 
https://doi.org/10.1117/12.2585220. 

[8] X. Yao, P. Geng, and X. Du, "A Task Scheduling Algorithm for Multi-
core Processors," 2013 International Conference on Parallel and 
Distributed Computing, Applications and Technologies, pp. 259-264, 
2013, https://doi.org/10.1109/PDCAT.2013.47. 

[9] T. Zhang, X. Pan, W. Shu, and M. Y. Wu, “Asymmetry-Aware 
Scheduling in Heterogeneous Multi-core Architectures,” in C. H. Hsu, 
X. Li, X. Shi, R. Zheng, (eds), Network and Parallel Computing, NPC 
2013, Lecture Notes in Computer Science, vol 8147. Springer, Berlin, 
Heidelberg, https://doi.org/10.1007/978-3-642-40820-5_22. 

[10] S. Holmbacka and J. Keller, “Workload type-aware scheduling on 
big.LITTLE platforms,” in International Conference on Algorithms and 
Architectures for Parallel Processing, Springer, Cham, pp. 3-17, 2017, 
https://doi.org/10.1007/978-3-319-65482-9_1. 

[11] H. H. Hassan, A. S. Moussa, and I. Farag, “Performance vs. Power and 
Energy Consumption: Impact of Coding Style and Compiler,” 
International Journal of Advanced Computer Science and Applications 
IJACSA, 8(12), 2017, http://dx.doi.org/10.14569/IJACSA.2017.081217. 

[12] D. Kim, Y. Ko, and S. Lim, "Energy-Efficient Real-Time Multi-Core 
Assignment Scheme for Asymmetric Multi-Core Mobile Devices," in 
IEEE Access, vol. 8, pp. 117324-117334, 2020, https://doi.org/ 
10.1109/ACCESS.2020.3005235. 

[13] A. Algarni, A. Alofi, and F. Eassa, “Parallelization Technique using 
Hybrid Programming Model,” International Journal of Advanced 
Computer Science and Applications (IJACSA), 12(2), 2021. 
http://dx.doi.org/10.14569/IJACSA.2021.0120285. 

[14] A. Naithani, S. Eyerman, and L. Eeckhout, "Reliability-Aware 
Scheduling on Heterogeneous Multicore Processors," 2017 IEEE 
International Symposium on High Performance Computer Architecture 
(HPCA), 2017, pp. 397-408, https://doi.org/10.1109/HPCA.2017.12. 

[15] S. I. Kim and J. Kim, "A Method to Construct Task Scheduling 
Algorithms for Heterogeneous Multi-Core Systems," in IEEE Access, 
vol. 7, pp. 142640-142651, 2019, https://doi.org/10.1109/ACCESS. 
2019.2944238. 

[16] Guoping Xu, "Thermal Modeling of Multi-Core Processors," Thermal 
and Thermomechanical Proceedings, 10th Intersociety Conference on 
Phenomena in Electronics Systems, 2006, ITHERM 2006, pp. 96-100, 
https://doi.org/10.1109/ITHERM.2006.1645327. 

[17] D. Jaeckle and A. Sikora, "Thermal modeling of homogeneous 
embedded multi-core processors," 2014 International Conference on 
Advances in Computing, Communications and Informatics (ICACCI), 
pp. 588-593, 2014, https://doi.org/10.1109/ICACCI.2014.6968448. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 13, No. 9, 2022 

580 | P a g e  

www.ijacsa.thesai.org 

[18] I. Takouna, W. Dawoud, and C. Meinel, "Accurate Multicore Processor 
Power Models for Power-Aware Resource Management," 2011 IEEE 
Ninth International Conference on Dependable, Autonomic and Secure 
Computing, pp. 419-426, 2011, https://doi.org/10.1109/DASC.2011.85. 

[19] T. J. A. Eguia, R. Shen, S. X. D. Tan, E. H. Pacheco, and M. Tirumala, 
"Architecture level thermal modeling for multi-core systems using 
subspace system method," IEEE 8th International Conference on ASIC, 
pp. 714-717, 2009, https://doi.org/10.1109/ASICON. 2009.5351305. 

[20] J. P. Rodríguez and P. M. Yomsi, "Work-in-Progress: Towards a fine-
grain thermal model for uniform multi-core processors," 2020 IEEE 
Real-Time Systems Symposium (RTSS), pp. 403-406, 2020, 
https://doi.org/10.1109/RTSS49844.2020.00049. 

[21] A. L. da Silva, A. L. D. M. Martins, and F. G. Moraes, “Fine-grain 
temperature monitoring for many-core systems,” in Proceedings of the 
32nd Symposium on Integrated Circuits and Systems Design, pp.1–6, 
2019, https://doi.org/10.1145/3338852.3339841. 

[22] R. Zhang, M. R. Stan, and K. Skadeon, "HotSpot6.0: Validation 
Acceleration and Extension," Tech. Report CS-2015-04. 

[23] M. R. Stan, K. Skadron, M. Barcella, W. Huang, K. Sankaranarayanan, 
et al., “HotSpot: a dynamic compact thermal model at the processor 
architecture level,” Microelectronics Journal, Dec 2003, 34, (12), pp. 
1153-1165, https://doi.org/10.1016/S0026-2692(03)00206-4. 

[24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, et al., 
“McPAT: An integrated power, area, and timing modeling framework 
for multicore and manycore architectures,” 42nd Annual IEEE/ACM 
International Symposium on Microarchitecture (MICRO), 12-16 Dec 
2009, pp.469–480, https://doi.org/10.1145/1669112.1669172. 

[25] A. Guler and N. K. Jha, "McPAT-Monolithic: An Area/Power/Timing 
Architecture Modeling Framework for 3-D Hybrid Monolithic Multicore 
Systems," in IEEE Transactions on Very Large Scale Integration (VLSI) 
Systems, vol. 28, no. 10, pp. 2146-2156, Oct. 2020, https://doi.org/ 
10.1109/TVLSI.2020.3002723. 

[26] F. A. Endo, D. Couroussé, and H. Charles, “Micro-architectural 
simulation of embedded core heterogeneity with gem5 and McPAT,” 
Proceedings of the 2015 Workshop on Rapid Simulation and 
Performance Evaluation: Methods and Tools, RAPIDO ’15, Amsterdam, 
Holland, Jan 2015, Article No.7. 

[27] S. L. Xi, H. Jacobson, P. Bose, G. Wei, and D. C. Brooks, “Quantifying 
sources of error in McPAT and potential impacts on architectural 
studies”, IEEE 21st International Symposium on High Performance 
Computer Architecture (HPCA), CA, USA, Feb 2015, pp.577–589. 

[28] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G. Saidi, 
et al., “The gem5 Simulator,” ACM SIGARCH Computer Architecture 
News, May 2011, 39, (2), pp. 1–7, https://doi.org/10.1145/2024716. 
2024718. 

[29] A. Akram and L. Sawalha, "A Survey of Computer Architecture 
Simulation Techniques and Tools," in IEEE Access, vol. 7, pp. 78120-
78145, 2019, https://doi.org/10.1109/ACCESS.2019.2917698. 

[30] Y. M. Qureshi, W. A. Simon, M. Zapater, D. Atienza, and K. Olcoz, 
"Gem5-X: A Gem5-Based System Level Simulation Framework to 
Optimize Many-Core Platforms," 2019 Spring Simulation Conference, 
pp.1-12, 2019, https://doi.org/10.23919/SpringSim.2019.8732862. 

[31] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, et 
al., "MiBench: A free, commercially representative embedded 
benchmark suite," Proceedings of the Fourth Annual IEEE International 
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538), 
2001, pp. 3-14, https://doi.org/10.1109/WWC.2001.990739. 

[32] K. Zhang, A. Guliani, S. O. Memik, G. Memik, K. Yoshii, et al., 
"Machine Learning-Based Temperature Prediction for Runtime Thermal 
Management Across System Components," in IEEE Transactions on 
Parallel and Distributed Systems, vol. 29, no. 2, pp. 405-419, 2018, 
https://doi.org/10.1109/TPDS.2017.2732951. 

[33] A. Iranfar, M. Zapater, and D. Atienza, "Work-in-progress: a machine 
learning-based approach for power and thermal management of next-
generation video coding on MPSoCs," 2017 International Conference on 
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 
pp. 1-2, 2017, https://doi.org/10.1145/3125502.3125533. 

[34] C. Knox, Z. Yuan, and A. K. Coskun, “Machine Learning and 
Simulation Based Temperature Prediction on High-performance 
Processors,” in Proceedings of ASME International Technical 
Conference and Exhibition on Packaging and Integration of Electronic 
and Photonic Microsystems (InterPACK), July 2022. 

[35] M. Mahbobi and T. K. Tiemann, “Introductory Business Statistics with 
Interactive Spreadsheets,” 1st Canadian Edition, BCcampus, December 
7, 2015, ch.8, Ebook ISBN 978-1-77420-007-0. 

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, et al., 
“Scikit-learn: Machine Learning in Python,” JMLR 12, pp. 2825-2830, 
2011. 

[37] Allan Webber, “Calculating Useful Lifetimes of Embedded Processors,” 
Texas Instruments Application Report, SPRABX4B, November 2014 
Revised March 2020. 

[38] F. Bonoli, P. Godio, G. Borionetti, and R. Falster, “Gate oxide integrity 
dependence on substrate characteristics and SiO2 thickness,” Materials 
Science in Semiconductor Processing, Volume 4, Issues 1–3, 2001, pp. 
145-148, ISSN 1369-8001, https://doi.org/10.1016/S1369-8001(00) 
00152-9. 

[39] J. R. Black, "Electromigration - A brief survey and some recent results," 
in IEEE Transactions on Electron Devices, vol. 16, no. 4, pp. 338-347, 
April 1969, https://doi.org/10.1109/T-ED.1969.16754. 

[40] D. G. Pierce and P. G. Brusius, “Electromigration: A review, 
Microelectronics Reliability,” Volume 37, Issue 7, 1997, Pages 1053-
1072,ISSN 0026-2714, https://doi.org/10.1016/S0026-2714(96)00268-5. 

[41] J. F. Verweij and J. H. Klootwijk, “Dielectric breakdown: A review of 
oxide breakdown,” Microelectronics Journal, Volume 27, Issue 7, 1996, 
pp. 611-622, ISSN 0026-2692, https://doi.org/10.1016/0026-2692(95) 
00104-2. 

[42] M. A. Alam and S. Mahapatra, “A comprehensive model of PMOS 
NBTI degradation,” Microelectronics Reliability, 45:71-81, Aug. 2005. 

[43] Eiji Takeda, “Hot-carrier effects in scaled MOS devices,” 
Microelectronics Reliability, Volume 33, Issues 11–12, 1993, Pages 
1687-1711, ISSN 0026-2714, https: //doi.org/ 10.1016/ 0026-2714 (93) 
90081-9. 

[44] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, et 
al., “SciPy 1.0: fundamental algorithms for scientific computing in 
Python,” Nat Methods 17, 261–272, 2020, https://doi.org/10.1038/s41 
592-019-0686-2. 


