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Abstract—Stock liquidity forecasting is critical for investors,
issuers, and financial market regulators. The object of this study
is to propose a method capable of accurately predicting the
liquidity of stocks. The few studies on stock liquidity forecasting
have focused on single models such as Seasonal Auto-Regressive
Integrated Moving Average with eXogenous factors, the nonlinear
autoregressive network with exogenous input, and Deep Learning.
A new trend in forecasting which attempts to combine several
approaches is emerging at the moment. Inspired by this new
trend, we propose a hybrid approach of Wavelet Transform,
Convolutional Neural Networks, and Gated Recurrent Units to
predict stock liquidity. Our model is tested on daily data of
companies listed on the Casablanca Stock Exchange from 2000
to 2021. Its forecasting performances are evaluated based on the
Mean Absolute Error, the Root Mean Square Error, the Mean
Absolute Percentage Error, Theil’s U statistic, and the correlation
coefficient. Finally, the outperformance of the proposed model is
confirmed by comparison with other reference forecasting models.
This study contributes to the enrichment of the field of prediction
of financial risks and can constitute a framework of analysis
allowing to help the stakeholders of the financial markets to
forecast the liquidity of the actions.

Keywords—Stock liquidity; wavelet transform; convolutional
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I. INTRODUCTION

"A stock is considered liquid if large transactions can
be made rapidly without significantly impacting the stock
price and without incurring substantial losses, and if any
price variation caused by a random shock is quickly adjusted"
[1]. Before the financial crisis of 2007-2008, stock liquidity
risk was largely underestimated by investors, financial market
regulators, and researchers. Yet, it has negative financial and
economic consequences. In fact, It increases equity market risk
[2], [3], [4], and reduces bank liquidity [5], [6]. Stock liquidity
affects financial stability [7], [8]. It also impacts the financial
structure and cost of capital [9], [10], the dividend distribution
policy [11], and the risk of corporate failures [12], [13].

Forecasting stock liquidity is crucial for investors, issuers,
and financial market regulators. It allows investors to forecast
the illiquidity premium to be charged to compensate for lower
returns [14]. Stock liquidity prediction helps issuers to choose
the right time to go public, increase their capital or carry out
financial packages such as takeover bids, sales, or the outs.
Financial market regulators are also concerned with liquidity
predictions as it allows them to act a priori to safeguard
financial stability.

Only a few studies have attempted to address forecasting
stock liquidity. We are aware of only two research articles
in this area. In a comparative study, [15], concludes that
the Nonlinear Autoregressive Network with eXogenous inputs
(NARX) has better predictive performance than the Seasonal
Auto-Regressive Integrated Moving Average with eXogenous
factors (SARIMAX). These authors found that SARIMAX
method is inaccurate because stock liquidity is irregular, noisy,
and nonlinear time series. However, this study has some
shortcomings.

It is based on only 108 observations, a number that we
consider to be low for the learning processes of an algorithm
capable of making effective predictions. The training of this
type of algorithm on the basis of the large dataset can generate
the problems of vanishing and exploding of the gradient. Since
the number of hidden layers is low, NARX neural networks
cannot capture hidden functional relationships in the historical
stock liquidity dataset. As a result, their predictive performance
is very limited.

The author in [16] compared linear regression model,
multilayer perceptron, and Long Short Term Memory (LSTM).
Based on daily data of companies listed on the Ho Chi Min and
Hanoi Stock Exchanges in Vietnam from January 2011 to De-
cember 2019, the authors conclude that the LSTM model has
the lowest Mean Square Error (MSE). This result seems logical
to us because LSTM neural networks have more advantages
than the linear regression model and the multilayer perceptron.
Compared to linear regression, the LSTM model capture the
characteristics of even nonlinear data. The multilayer per-
ceptron assumes that inputs and outputs are independent of
each other. On the other hand, the LSTM model takes into
account the temporal dependencies while avoiding the problem
of vanishing gradient. However, despite the advantages of the
LSTM model, the results of this study are less convincing.
First, the predictive performance is only evaluated on the
basis of a single criterion (MSE). Second, despite their power,
LSTM neural networks alone cannot capture all abrupt and
dynamic changes in financial time series [17].Stock liquidity is
noisy, volatile, and non-linear. It requires pre-processing before
forecasting.

The Wavelet Transform (WT) is an effective tool for
denoising the most complex time series. By decomposing a
signal into different scales, the WT can capture the hidden
features of the time series. Therefore, to further improve the
efficiency and accuracy of forecasting, researchers have started
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to develop hybrid models that combine WT and deep learning
algorithms. These hybrid models are used to predict time
series, such as wind [18], solar energy [19], water quality [20],
nickel futures price [21], gold returns [22], and stock prices
[23]. Exploring this approach, we propose a hybrid model that
combines a Wavelet Transform (WT), a Convolutional Neural
Network (CNN), and a Recurrent Neural Network (RNN) with
a Gated Recurrent Unit (GRU) layer. The purpose of this study
is to find out if stock liquidity denoising by WT can improve
the predictive performance of deep learning algorithms. The
proposed WT-CNN-GRU model is tested on daily data of
companies listed on the Casablanca Stock Exchange from 2000
to 2021. Our database contains 5478 trading days.

This study brings three novelties. First, the originality
of our approach is the denoising of stock liquidity data
by the WT before proceeding to the forecasting by deep
learning algorithms. Second, unlike previous studies that used
unique signal decomposition methods to denoise the data,
we use adaptive approaches consistent with the characteristics
of different measures of stock liquidity. Third, the proposed
model showed better performance in accurately predicting the
strong disruptions in stock liquidity caused by the COVID-19
pandemic.

While the predictive performance of the previously pre-
sented models is measured by a single criterion, the proposed
model in this study is evaluated by a multitude of parameters
such as Mean Absolute Error, the Root Mean Square Error, the
Mean Absolute Percentage Error, Theil’s U statistic and the
correlation coefficient. By showing superiority over previous
studies, the proposed model is considered a step forward in
improving the prediction of stock liquidity.

The rest of the paper proceeds as follows. The next section
describes the adopted methodology. Section 3 presents the
empirical process, results, and comparative analysis of stock
liquidity forecasting. Section 4 presents the conclusions and
offers some suggestions and perspectives.

II. PROPOSED METHODOLOGY

To forecast stock liquidity, the proposed methodology is a
hybrid approach between a WT, CNN, and GRU. Fig. 1 shows
the general procedure of our model.

Fig. 1. Flowchart of the WT–CNN–GRU Model.

The normalized and denoised stock liquidity measures are
inputs to the mixed CNN-GRU model. The detailed steps for
processing the pre-processed data in the CNN-GRU model are
shown in Fig. 2.

This section discusses the main steps of the hybrid WT-
CNN-GRU model: (1) data preprocessing (2) a hybrid CNN-

Fig. 2. Flow Chart of the CNN-GRU Model.

GRU neural network and (3) forecasting performance evalua-
tion.

A. Data Pre-Processing

1) Data Normalization: The normalized data is calculated
using the Z-Score method. Z-scores measure the distance
between a data point and the means in terms of standard
deviation. The standardized data set has a mean of 0 and
a standard deviation of 1, and retains the shape properties
of the original data set (same skewness and kurtosis). The
standardized data are obtained by (1).

x∗ =
(x− x̄)

σ
(1)

x̄ is the mean of the original data and σ is the standard
deviation of the original data. Normalization supports machine
learning algorithms in measuring the distance between the
standard deviation and the mean of processed data samples.
Conversely, The original data can be derived as follows:

x = σx∗ + x̄ (2)

2) Wavelet Transform: Financial series are noisy, volatile,
nonlinear, and non-stationary. As a consequence, they require
pre-processing. The Discrete Wavelet Transform (DWT) is a
mathematical tool that decomposes the input signal into several
physically significant components, invisible in the raw data.
These components can be frequencies, trends, edges, or breaks.
This facilitates the analysis of each component in isolation
and the reconstruction of the original signal into the desired
components to be extracted. This facilitates the denoising of
the input signal. The purpose of this step in our model is to
eliminate the noise that can characterize stock liquidity.

There are several signal decomposition techniques such as
Maximum Overlap Discrete Wavelet Transform (MODWT),
Empirical Mode Decomposition (EMD), Empirical Wavelet
Transform (EWT), Tunable Q-factor Wavelet Transform
(TQWT), and Variational Mode Decomposition (VMD). The
choice between these techniques depends on the characteris-
tics of the input signal [1]. MODWT is adapted for signals
containing oscillations with trends or transitions. TQWT and
VMD are most suitable for signals containing high or low-
frequency oscillations. EWT is intended for extracting low-
frequency oscillations. EMD is used when the input signal
contains trends.
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However, before proceeding with the decomposition of
input signals, it is necessary to analyze them in time frequency
to choose the most appropriate decomposition method. The
Continuous Wavelet Transform (CWT) is more efficient for
performing time-frequency analysis of a signal than the DWT
because the scales are discretized more finely in CWT. In this
study, we prefer Morse Wavelets because it has the advantage
of varying amplitude and frequency over time [24].

B. A Hybrid CNN-GRU Model

1) Convolutional Neural Network: A Convolutional Neural
Network (CNN) is a network architecture for deep learning that
learns directly from the data, eliminating the need for manual
feature extraction. Fig. 3 shows a simple CNN architecture.

Fig. 3. Basic Architecture of the Convolutional Neural Network.

In addition to the input and output layers, three different
layers are normally present in CNNs, such as the convolution
layer, the pooling layer, and the fully connected layer. The
convolution layer is a set of filters whose purpose is to
extract local features from the input layer. This ensures that
the network focuses on low-level features in the first hidden
layer, then it assembles them into higher-level features in the
next hidden layer, etc. Convolution layers are used in our
study to extract chaotic, irregular, and fluctuating features from
liquidity measurements. Pooling layers are used to retain only
the most relevant features of the liquidity measures and to
deepen them. Pooling can be of two types, maximum pooling,
and average pooling. In this study, we retain maximum pooling
because pooling by the mean is an outlier. The fully connected
layer is similar to a Feedforward Neural Network whose goal
is to extract the global feature of the inputs. Each neuron in
these layers is connected to all hidden neurons in the previous
layer.

2) Recurrent Neural Network: The Closed Recurrent Unit
Layer: In contrast to deep Multilayer Perceptron (MLP),
Recurrent Neural Networks (RNN) have interdependent input
and output layers. RNNs are suitable for modeling sequential
data and their associated temporal dynamics with greater
accuracy. However, simple RNNs are generally characterized
by the vanishing gradient problem, where, depending on the
activation function, information "vanish with time," and the
term nonlinearity is often inadequate for longer-term memory.
To overcome this problem, Long Short-Term Memory net-
works (LSTMs) have been developed. LSTMs help to preserve
errors that can be back-propagated across time and layers.
By maintaining these errors, LSTMs allow RNNs to continue
learning more efficiently across many time steps.

Compared to LSTM networks, GRUs [25], have only two
gates; a reset gate and an update gate. The update gate behaves

similarly to the forget gate in LSTM by deciding which
information to keep and which new information to add, while
the reset gate is another mechanism to determine the amount
of past temporal information to delete. We retain GRUs in our
model because they are less easy to construct than LSTMs,
due to fewer tensor operations.

As mentioned earlier, this study proposes a hybrid model
of CNN and GRU, with corresponding parameters summarized
in Table I.

TABLE I. PARAMETER OF THE CNN-GRU MODEL

Hybrid model Parameter Values
Network CNN Input layer 1

Dimension convolution 1 D
layer
Number of convolution 2
layers
Number of Pooling 2
layers
Number of filters 1
Width of filters 1
Pooling method Max

Pooling
GRU network Number of GRU layers 1

Number of masked units 300
Activation function Tanh
to update the masked state
Activation function Sigmoid
to be applied to gates

Dropout layer Options dropout rate 0.4
Options Learning Network CNN-GRU Epochs 300

optimizer Adam
Initial learning rate 0.005
Loss function Mean

Square
Error

3) Evaluation of the Forecasting Performance: To evaluate
the prediction performance of the proposed model, five statisti-
cal evaluation indicators are used to compare the performance
of the associated models, including MAE (Mean Absolute Er-
ror), MAPE (Mean Absolute Percentage Error), RMSE (Root
Mean Square Error), Theil’s U statistic and the correlation
coefficient (R2) which can be calculated as follows:

MAE(X, X⃗) =

∑T
t=1 ∥Xt − X⃗t∥

T
(3)

MAPE(X, X⃗) =

(
T∑

t=1

∥Xt − X⃗t∥
Xt

)/
T (4)

RMSE(X, X⃗) =

√∑T
t=1(Xt − X⃗t)

2

T
(5)

U(X, X⃗) =

√∑T
t=1(Xt − X⃗t)

2

T


/√∑T

t=1(X⃗t)
2

T
+

√∑T
t=1(Xt)

2

T

 (6)

www.ijacsa.thesai.org 677 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

R2(X.X⃗) = 1−

(∑T
t=1(Xt − X⃗t)

2∑T
t=1(Xt − X̄)2

)
(7)

Where T is the number of observations, X is the actual
value, X⃗ is the forecasted value.

III. EMPIRICAL RESULTS AND DISCUSSION

A. Sample, Liquidity Measures, and Data Analysis

1) Sample and Liquidity Measures: To test our model, we
collect the best bid and ask price, closing price, and daily
trading volume of 75 companies listed on the C.S.E from
04/01/2000 to 12/31/2021. These data come from the CDG
Capital Bourse database. Stock liquidity is evaluated using
three indicators to account for its multidimensional nature,
including the displayed range (Qs), the Amihud illiquidity
measure (Amh) and the zero return (Zr). The formulas for
calculating these indicators are as follows:

Qsi,t =
(PA

i,t − PB
i,t)

PM
i,t

(8)

Amhi,t =

(
D∑
t=1

∥ri,t∥
V oli,t

)/
Di,t (9)

Zri,t =

{
1, ri,d = 0

0, ri,d ̸= 0
(10)

With PA
i,t, P

B
i,t, P

M
i,t , ri,t and V oli,t are the best ask price,

best bid price, closing price, daily return, and daily volume of
stock i , respectively. The displayed range Qsi,t measures the
depth of the market. The larger the spread between the best ask
price and the best bid price, relative to the market price, the
lower the liquidity of the stock [5]. Amihud’s illiquidity ratio
(Amhi,t) describes the change in daily price for a given trading
volume; a low trading volume generating a higher return is
synonymous with illiquidity. The zero return (Zri,t) measures
the number of days when the return is zero. It takes the value
1 if the return is zero and 0 otherwise. A high number of days
of zero return is synonymous with low liquidity.

Each indicator is calculated daily per company; the aggre-
gate daily indicator is an average of all companies. In sum, we
have 5268 observations for Qs, 5469 observations for Amh and
5475 for Zr.

2) Descriptive Statistics: Fig. 4 shows that the measures of
stock liquidity are chaotic, erratic, asymmetric, and non-linear
to time. These characteristics are evidenced by the descriptive
statistics presented in Table II. The liquidity measures are
volatile as indicated by the coefficients of variation that are
close to 0.5, and exceed 1 for the Amihud illiquidity ratio
(Amh). Respectively, the Skewness and Kurtosis coefficients,
indicate that the displayed range (Qs) and Amihud illiquidity
ratio (Amh) are left skewed and pointed, while the zero return
(Zr) is right skewed and flattened.

Fig. 4. Evolution of the Liquidity of Shares in the Casablanca Stock
Exchange.

TABLE II. DESCRIPTIVE STATISTICS

Qs Amh Zr
Number of observations 5268 5475 5475
Average 0,012 6,06E-06 0,362
Median 0,012 2,33E-06 0,397
Std 0,007 1,16E-05 0,167
Coefficient of variation 0,607 1,914 0,461
Kurtosis 6,512 34,004 1,874
Skewness 1,116 4,805 -0,196

B. Data Pre-Processing

The raw liquidity measures are first normalized by the Z-
Score method; then denoised by the WT. However, since the
choice of the decomposition method for the liquidity measures
depends on the characteristics of the data, we first perform a
time-frequency analysis of the liquidity measures. From Fig.
5, we can observe that Qs, Amh, and Zr experience low and
medium frequency oscillations.

Fig. 5. Magnitudes Scalograms of Liquidity Measures.

Based on the time-frequency analysis while following the
approach of [26], we present in III the methods used to
decompose the stock liquidity measures.

TABLE III. MULTIRESOLUTION ANALYSIS TECHNIQUES

Input Signal characteristics Decom-
signal Low Average Increase Breaking Trend position

frequency frequency in technique
frequency technique

Qs Yes Yes No No No VMD
Amh Yes Yes No No No VMD
Zr Yes Yes No Yes No MODWT
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Since Qs and Amh experience low and medium frequency
oscillations and peaks but no trend or break, the most appropri-
ate method to decompose them is VMD. The latter decomposes
the original signal into K intrinsic mode function (IMF)
components. Fig. 6(a) shows the decomposition of Qs into five
MFIs. The first IMFs (IMF1 to IMF3) locate low frequency
oscillations, IMF4 locates mid-frequency oscillations and IMF
5 locates peaks. The Qs signal has experienced a few spikes
between the year 2000 and 2021; the first ones are related to
the effect of the 2007-2008 financial crisis while the last ones
are due to COVID-19. Qs is noisy with midrange frequencies
and spikes. Therefore, to reconstruct the noisy Qs signal, we
neutralize IMF4 and IMF5. Fig. 6(a) highlights the original
signal and the reconstructed signal.

Fig. 6. Decomposition and Denoising of Qs.

Fig. 7(a) clarifies the decomposition of the Amh signal
into five MFIs. This decomposition clearly shows that under
the effect of COVID-19, the Amh signal experienced mid-
frequency oscillations (MFI4) and spikes (MFI5) during 2020
and 2021. This has caused Amh to become very noisy. Thus, in
order to denoise it, we reconstruct the signal while neglecting
IMF1, IMF2, and IMF3. This reconstruction is shown in Fig.
7(b).

Fig. 7. Decomposition and Denoising of Amh.

Zr is decomposed by the MODWT method, as it experi-
ences low and medium frequency oscillations and a jump in
2011. The MODWT method decomposes the original signal
into wavelet coefficients and scaling coefficient. The wavelet
coefficients identify high-frequency oscillations, while the
scaling coefficients capture trends and jumps in a time series.
Fig. 8(a) shows the MODWT algorithm’s decomposition of
the Zr signal into five levels using the orthogonal Daubechies
wavelet, with a level 1. We can observe from Fig. 8(a) that
the Zr signal is noisy by medium frequency oscillations. Fig.
8(b) shows the reconstruction of the Zr signal after removing
the noise.

1) Experimentation of the WT-CNN-GRU Model:

a) Presentation of the Empirical Results: In subsec-
tion III-B1, Qs and Amh were decomposed by the VMD
method while Zr was decomposed by the MODWT method.

Fig. 8. Decomposition and Denoising of Zr.

After the decomposition and denoising operations, we have
5469 MFIs for Amh, 5268 MFIs for Qs and 5475 approxima-
tion coefficients for Zr. The selected MFIs and approximation
coefficients constitute inputs for the CNN-GRU model. The
data for these inputs are further splitted into 80% training data
and 20% test data. Table IV details this split.

TABLE IV. TRAINING AND TEST DATA

Liquidity Training data Test data
measurement Number of Period Number of Period

observations observations
Qs 4215 November 01, 1053 October 04,

2000 to 2017 to
October 03, December 31,
2017 2021

Amh 4370 January 04, 1099 July 20,
2000 to 2017 to
July 19, December 31,
2017 2021

Zr 4380 January 04, 1095 August 01,
2000 to 2017 to
July 31, December 31,
2017 2021

The CNN-GRU model is trained according to the param-
eters described in Table I. A comparative study between the
forecasted and actual values of the three denoised liquidity
measures is shown in Fig. 9 to Fig. 11. We can observe that
the forecasted values are almost equal to the actual values
and that our model is able to make accurate forecasting even
under sudden shocks, such as the case of COVID-19 in 2020
and 2021. From Fig. 9 to Fig. 11, we can also notice that the
number of outliers in the test errors of the proposed model is
very small.

Table V lists the metrics for evaluating the predictive
performance of test data. From Table V, we can notice that
the proposed model gives very low MAE, MAPE, and RMSE,
Theil’s U statistics less than 1, and (R2) close to 1. Our model
demonstrates excellent forecasting performance compared to
models proposed in previous studies.

The author in [5] proposed a NARX neural network to
predict the liquidity of stocks listed on the Casablanca Stock
Exchange. Their model is evaluated based on MSE which indi-
cates a value of 0.0083 for Qs and 0.0023 for Zr. The author in
[6] estimates that the LSTM model is more efficient than the
linear regression method and the multilayer perceptron. The
results of this study indicate that the LSTM model exhibits
better MSEs. The MSE of the Amihud ratio indicates a value
of 0.0169 and 0.0252 on the Ho Chi Min and Hanoi Stock
Exchange respectively.
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Statistically, our model far exceeds the performance of
models postulated by previous studies. Moreover, these models
are only tested on a small number of observations. The authors
in [5] and [6] only tested their model on the basis of 12 and
110 observations respectively, whereas our model is tested on
1053 observations for Qs, 1099 for Amh, and 1095 for Zr. As
a result, the MSEs of earlier models are less reliable. The
commonality of previous studies is the use of MSE as an
endpoint. However, the latter is more sensitive to outliers. On
the contrary, our model is evaluated on the basis of multiple
indicators.

Fig. 9. Comparison between Actual Qs and Qs Predicted by the
WT-CNN-GRU Model.

Fig. 10. Comparison between Actual Amh and Amh Predicted by the
WT-CNN-GRU Model.

b) Comparison with Similar and Alternative Models:
To prove the effectiveness of the proposed model, we com-
pare its performance to similar models, such as WT-CNN-
LSTM and WT-CNN-BILSTM. In addition, since the focus
of our study is whether the introduction of WT improves
the predictive ability of deep neuron networks, the proposed

Fig. 11. Comparison between Actual Zr and Zr Predicted by the
WT-CNN-GRU Model.

TABLE V. INDICATORS FOR EVALUATING THE PREDICTIVE
PERFORMANCE OF THE CNN-GRU MODEL

Liquidity measurement MAE MAPE RMSE Theil’s U R2

Qs 3.1e-05 0.062 0.004 0.072 0.7379
Amh 0.0002 0.096 0.001 0.037 0.6325
Zr -0.0025 0.022 0.074 0.079 0,7880

model is compared to alternative models such as CNN-GRU,
CNN- LSTM and CNN-BILSTM. While the inputs of the
similar models (WT-CNN-LSTM and WT-CNN-BILSTM) are
denoised data, those of the alternative models (CNN-LSTM,
CNN, BILSTM, and CNN-GRU,) are normalized raw data.

As showcased in Table VI, if we compare the proposed
WT-CNN-GRU model with the CNN-GRU model, we can
notice that the denoising of the data by WT improved the
forecasting results of stock liquidity. At the level of Qs, the
WT was able to reduce MAPE and Theil’s U by 33% and 57%
respectively, and increase R2 by 48%. In addition, denoising
the Amh data contributed to the improvement of MAE, MAPE,
RMSE, Theil’s U and R2 by 154%, 84%, 21%, 94% and 40%
respectively. Finally, the denoising of Zr data by WT strongly
improved MAE, MAPE, RMSE, Theil’s U and R2 by 14%,
72%, 24%, 9% and 97% respectively. These improved results
are obtained not only from the denoising of the data, but also
from the appropriate choice of the decomposition methods.

In Table VI, we can also notice that the proposed model
WT-CNN-GRU also outperforms similar models, such as WT-
CNN-LSTM and WT-CNN-BILSTM. The GRU closed cell is
therefore the most effective hybrid model when it is compared
to the LSTM and BILSTM cells. GRU contains several hidden
layers, which can efficiently identify the fluctuation character-
istics of liquidity measures. GRU also optimizes the network
structure and reduces information redundancy.
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TABLE VI. EVALUATION CRITERIA VALUES FOR DIFFERENT
FORECASTING MODELS

Models MAE MAPE RMSE Theil’s R2

U
Qs WT-CNN-LSTM 6.71e-05 0.09 0.008 0.1619 0.7174

WT-CNN-BILSTM 0.0001 0.117 0.004 0.1834 0.4953
WT-CNN-GRU 3.1e-05 0.062 0.004 0.0723 0.7379
CNN-LSTM 0.0004 0.07 0.005 0.2143 0.1063
CNN-BILSTM 8.6e-04 0.095 0.005 0.2056 0.0674
CNN-GRU 2.3e-05 0.0933 0.004 0.1683 0.4961

Amh WT-CNN-LSTM 0.0024 0.1479 0.0011 0.3694 0.3639
WT-CNN-BILSTM 2.7e-05 0.3631 0.0011 0.3840 0.0223
WT-CNN-GRU 0.0002 0.096 0.0011 0.0371 0.6325
CNN-LSTM 0.0001 0.2558 0.0015 0.5295 0.0092
CNN-BILSTM 0.0001 0.2937 0.0010 0.3704 0.0842
CNN-GRU -3.7e-04 0.5907 0.0014 0.6524 -0.4526

Zr WT-CNN-LSTM -0.0025 0.0226 0.07082 0.0741 0.6104
WT-CNN-BILSTM 0.0040 0.0190 0.07482 0.0778 0.33970
WT-CNN-GRU -0.0025 0.022 0.074 0.079 0,7880
CNN-LSTM -0.028 0.0851 0.0849 0.0913 0.2285
CNN-BILSTM -0.0074 0.0473 0.0861 0.0906 0.1020
CNN-GRU 0.0022 0.0793 0.0976 0.0865 0.3992

IV. CONCLUSION

Forecasting equity liquidity is crucial for investors, is-
suers, and financial market regulators. As a financial series,
stock liquidity is non-stationary, non-linear, chaotic, and noisy.
Therefore, it is very difficult to accurately forecast inventory
liquidity. The purpose of this study is to propose a model ca-
pable of effectively predicting inventory liquidity. Inspired by
the hybrid research stream in financial time series forecasting,
we proposed a WT-CNN-GRU model.

By testing it on all stocks listed on the B.V.C, our model
showed excellent forecasting performance compared to models
from previous studies and other similar or alternative models,
such as WT-CNN-LSTM, WT-CNN -BILSTM, CNN-GRU,
CNN-LSTM, and CNN-BILSTM. These improved perfor-
mances are jointly explained by the neural networks WT, CNN,
and the closed cell GRU. Choosing the right method for data
decomposition and denoising was key to improving the results.
The CNN was used to capture features that the WT did not
capture, and they worked together to denoise the data. The
GRU cell captured the time dependencies of stock liquidity,
which has an advantage over the LSTM or BILSTM cell due
to its ability to quickly catch time dependencies while avoiding
information redundancy.

This study has three contributions. First, it is considered
to be one of the few studies that have addressed the issues of
forecasting inventory liquidity. Second, unlike previous studies
that used a single data denoising method, we opted for methods
consistent with our data. Third, the proposed model can predict
stock liquidity even in the face of adverse shocks, such as the
COVID-19 pandemic.

This study contributes to the enrichment of the forecast
field of the financial series. It can be a useful analytical
framework capable of helping investors, issuers, and financial
market regulators predict stock liquidity. The model proposed
in this study is also extended to predict other financial risks.

However, to verify its robustness, we suggest that future
researchers test it in other emerging and developed markets.
We also believe that our results can be improved by integrat-
ing into the proposed model global and specific exogenous
variables for companies listed on stock exchanges.
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