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Abstract—With the help of the rapid development of technol-
ogy, especially the prevalence of UAVs (unmanned aerial vehicles),
object detection in aerial images gains much more attention in
computer vision and deep learning. However, traditional methods
use horizontal bounding boxes for object representation leading
to inconsistency between objects and features. Therefore, many
detectors are being built to tackle this problem, and normally they
use the conventional approaches of training and testing to achieve
the results. Our pipeline proposed to strengthen not only the clas-
sification but also localization via independent training processes
using convex-hull transformation in data pre-processing phase.
We experimented with the well-designed S2ANet, R3Det, ReDet,
RoI Transformer and Oriented R-CNN on the well-established
oriented object detection dataset DOTA. Then we adopt the best
detectors with the well-known classification network EfficientNet
to our proposed pipeline and achieve promising results on the
oriented object detection DOTA dataset. Moreover, our pipeline
can flexibly be adapted to various oriented object detection
baselines improving the results in classification via independent
extensive training cycles.

Keywords—Aerial images; classification; convex-hull transfor-
mation; data processing; oriented object detection

I. INTRODUCTION

Object Detection in Aerial Images (ODAI) has always been
important in our real life with tremendous real-world appli-
cations such as surveillance, disaster prediction, emergency
rescue, and even urban management [1] [2] [3]. Nowadays,
it is becoming more feasible thanks to the increasing growth
of studies in deep learning and the fast-paced development of
information and communication technology. However, objects
collected from aerial images appear in a variety of repre-
sentations. They are often distributed in arbitrary orientations
leading to confusion for many latest deep learning models,
which opens a new study aspect in computer vision. To
tackle this problem, a lot of experiments conducted show that
using oriented bounding box representation (OBB) instead of
horizontal bounding box (HBB) representation will alleviate
the mismatch features and increase object detection accuracy
[4] [5] [6] [7].

ODAI is extremely crucial to this world so it requires high
accuracy and fewest mismatched objects in the prediction task
as possible [8]. Although detecting objects in aerial images
is vital, there is a lack of data about it. Many well-designed
methods follow the traditional pipeline without refining class
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labels for output predictions, which could lead the model to
behave biased toward less significant objects. Our proposed
pipeline ensures that classes are treated equally, and models
learn as much as data features from not only inside but also
outside of the dataset through an independent classification
training process.

In this study, we propose and provide a deep analysis
of an effective training and testing pipeline to surge the
performance of oriented object detectors in aerial images. Our
pipeline applies the convex-hull transformation on ground-
truth oriented bounding boxes to extract proper instances for
the training and testing processes. Furthermore, we can use
extra data for the independent training process to ensure the
model classify proper label instances. We conduct extensive
experiments on multiple baselines and apply the pipeline on
them, yielding promising results.

We summarize our contributions in this paper as:

• Proposing a novel training and testing pipeline to
improve classification performance flexibly adapt to
many latest models.

• Providing a wise way to prepare data for classification
training and an effective ensemble method in testing
models.

• Using convex-hull transformation technique to trans-
form oriented bounding boxes to horizontal ones for
the further training process.

• Give a deep analysis of why we are choosing this
pipeline and what are common problems of nowadays
object detection methods in aerial images.

• Carrying out extensive experiments with the latest
oriented object detection methods and providing an
in-depth evaluation of the best deep learning models
to strengthen our proposal.

The rest of the paper is: Section II is Related works; Section
III is Methodology; Section IV is Our approach; Section V is
Experiment and finally the last one, Section VI is Conclusion
and Future Work.

II. RELATED WORKS

A. Oriented Object Detection

For the past decade, there have been various well-
established object detector methods designed for tackling the
horizontal object detection task, many of which have made re-
markable progress such as Fast R-CNN [9], Faster R-CNN [10],
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Dynamic R-CNN [11], Deformable DETR [12], SSD [13],
YOLOF [14], YOLOX [15], etc. However, these general object
detection methods cannot tightly locate the object leading to
the inconsistency between the classification and localization
processes. Therefore, the extended branch of study using an
oriented bounding box to represent the object’s ground truths
receives extensive attention to meet the need for applying deep
learning to real-world applications (Fig. 1).

Current oriented object detection methods heavily depend
on the original horizontal object detection task. They adopt
the mechanism from extracting deep features and generating
proposals to refining the final bounding boxes results. For
example, Ding et al. introduced RoI Transformer [16] to tackle
the problem of misaligned between regions of feature and
objects, they applied the spatial transformation to Regions
of Interest and configured the model to learn these geomet-
ric parameters using oriented bounding boxes labels. Jiang
et al. introduced Rotational Region CNN [17] for detecting
arbitrary-oriented texts in natural scene images. The model
adopted the Faster R-CNN baseline using the region proposal
network (RPN) to generate HBBs of texts and those HBBs
will integrate many pooled RoI features to produce the final
regressed OBBs. Han et al. introduced Single-shot Alignment
Network (S2ANet) [18], addressing the issues of inconsistency
between classification and localization. S2ANet consists of
two main components: Feature Alignment Module (FAM) and
Oriented Detection Module (ODM). The FAM specifically
uses the Alignment Convolution to generate well-qualified
anchors on which the active rotating filters of the ODM apply
to encode the orientation information. Eventually, the net-
work produces orientation-sensitive and orientation-invariant
features to mitigate the inconsistency between classification
scores and localization accuracy.

Fig. 1. Oriented Bounding Box (OBB) [(x, y), w, h, θ], where (x, y) is the
Center and w, h, θ are the Width, Height and Angle of an OBB.

B. Classification

Classifying objects in aerial images using their CNN ex-
tracted features has always been a challenging problem since
aerial images usually contain a tremendous number of various-
shape instances. In 2020, Dosovitskiy et al. proposed a method
Vision Transformer [19] following the baseline of the original
architecture Transformer with the fewest modification possible.
ViT splits images into many patches and connects these patches
(NLP-vibes) using a sequence of linear embeddings. As the
result, these patches are treated as tokens like in NLP and
receive object queries for output labels. Tan and Le introduced
EfficientNet [20] achieving better accuracy and efficiency
than previous ConvNets by leveraging a multi-objective neural

architecture search that optimizes both accuracy and FLOP.
EfficientNet-B7 achieves state-of-the-art 84.3% top-1 accuracy
on ImageNet while keeping inference time faster than prior
ConvNets methods. Xie et al. introduced a multi-branch ar-
chitecture called ResNext [21]. The deep network inherited by
ResNets [22] consists of repeating building blocks aggregating
a set of transformations with the same topology. By conducting
extensive experiments, the authors came up with the conclusion
that increasing cardinality is a more effective way of gaining
accuracy than going deeper or wider, especially when depth
and width start to give diminishing returns for existing models.
The ResNext outperforms ResNet-101/152 [22], ResNet-200
[23], Inception-v3 [24] and Inception-ResNet-101/152 [25] on
the ImageNet [26].

III. METHODOLOGY

The fundamental step to tackle Object Detection in Aerial
Images is to collect a sufficient amount of data for training
models, however in real life, especially in aerial images, objects
are often distributed randomly, leading to hardship in data
preparation steps. Therefore, humans unintentionally create
many imbalanced datasets (Fig. 2) and passively bias the deep
learning models.

Object detection in aerial images appears challenging when
detectors have to deal with the variety in object scales and
orientations, making them extremely difficult to identify. The
most common way to approach these problems is image aug-
mentation [27] (more image-more feature-high performance).
In addition, the Elhagry and Saeed proposed many methods in
[28] to solve this problem, such as modifying generated anchor
sizes for region proposals and investigating multiple backbones
and loss functions and achieved an improvement of 4.7 mAP
over the baseline.

Consider image augmentation as a feasible solution for
these problems. Some basic data augmentation methods are
applied frequently, such as random crop, random rotate, ran-
dom flip, zoom, etc. These augmentation techniques only apply
to the whole image (Fig. 3), so what about class imbalance?
It seems extreme to improve classification performance via
improving the classification branch inside the models due to
common batch sampling methods.

What if we train the classification independently from the
object detection network and ensemble the results together?
Although this approach might look heavy, ensure that not
only you can modify each class independently (augmentation,
removing noises) but also add extra necessary data for extended
training cycles (Fig. 4).

IV. OUR APPROACH

A. Pipeline

Our pipeline consists of two main parts: training and
testing. In the training phase, Fig. 5, we train independently two
networks (classification network and oriented object detection
network). For the classification training data, we crop out
oriented bounding boxes using convex-hull transformation and
then carefully interpolate them to horizontal images. The
data then proceeded to the classification network with a re-
weighting mechanism. For the oriented object detection net-
work, we train it with the original dataset to ensure regressed
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Fig. 2. Data Distribution Leads to the Problem of Class Imbalance in our
Dataset. Our Target is to Implement the Model so that it Behaves Unbiased

Toward Every Class.

Fig. 3. Data Augmentation is a Common Method to Enrich the Amount of
Data used for Training Object Detection Models. It only Enriches the

Amount of Data, While we need the Instances Enrichment in Each Class.

Fig. 4. Data Augmentation for Every Instance for each Class Ensures
Richness in Features for the Classification Training Procedure.

bounding boxes are accurate. In the testing phase, Fig. 6,
predicted oriented bounding boxes then be cropped out and
interpolated to horizontal boxes. They will be re-labeled by
the classification network (keeping high confidence score) and
ensemble with the results of the oriented object detection
network. Finally, those with low confidence scores will be
removed as long with the NMS process from the prediction
set.

Fig. 5. Training Phase: Training Data Passed through an Oriented Object
Detector’s Network Contributes to Training Classification and Localization
as in Other Well-Known Pipelines. However, the Required Data Preparation
for Training the Classification Network is an Indispensable Step. Oriented
Ground-Truths First are Interpolated to Cropped Oriented Bounding Boxes
via Convex-Hull Transformation, then they’re Transformed to Horizontal

Images Fed to a Classification Network Together with not only the
Re-Weighting Mechanism but also Image Augmentation Methods.

Fig. 6. Testing Phase: Different from the Training Phase, the Testing Image
is Fed into Only the Oriented Object Detection Network. Then these

Regressed Oriented Bounding Boxes Produced from the Network are Fed
into the Classification Network after being Interpolated to Output the

Predicted Label. Finally, we Ensemble the Outputs from Both Networks to
Get the Appropriate Results in the Final Prediction set via Score

Fine-Tuning and Non-Maximum Suppression.

B. EfficientNet

EfficientNet [20] adopting the idea of the CNN network
can be scaled in three dimensions: depth, width, and resolution.
The depth of the neural network corresponds to the number
of layers in the network. The width refers to the number of
neurons in each layer or the number of channels in each Conv
layer (the number of channels of the output). Resolution is
simply the height and width of the input image. The following
Equation 1 describes the compound scaling method where d is
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Fig. 7. EfficientNet-B0 [31] Structure.

Fig. 8. Difference between Residual Block and Inverted Residual Block [30].

the depth, w is the width and r is the resolution. Moreover, ϕ is
a user-defined coefficient determining the available resources
for model scaling and α, β, γ specify how to assign these extra
resources to network width, depth, and resolution.

d = αϕ

w = βϕ

r = γϕ

Following the constraints:
α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(1)

The compound scaling method can generalize to existing
CNN architectures such as MobileNet [29] and ResNet [22].
However, choosing the base network is important to get the
best results because it only increases the predictive power
of the neural network by reconstructing the parameters and
structure of the base network. The author also uses Neural
Architecture Search to build an efficient network architecture
- EfficientNet B0. It achieves 77.3% accuracy on the ImageNet
with 5.3M parameters and 0.39B FLOPS (ResNet-50 achieves
76% accuracy with 26M parameters and 4.1B FLOPS).

The main building block of EfficientNet-B0 is the MBConv
block. The MBConv block, Fig. 8 is similar to the inverted
residual block used in MobileNetv2 [30]. In this block, there
is a shortcut connection between the beginning and the end of
the block. The input is scaled with a 1x1 Conv layer to increase
the number of channels or the depth of the feature map. Then
they use Depthwise convolution 3x3 and Pointwise convolution
(Conv layer 1x1) to reduce the number of channels of the
output. A shortcut connection connects narrow layers (a small
number of channels) while wider layers are in the middle of
the shortcut connection (Fig. 7). This structure helps to reduce
the number of parameters and the number of operations.

C. R3Det

ReDet [4] proposed to take a huge step from horizontal
object detection to oriented object detection by solving feature
misalignment during the feature extraction process. The model
uses the Feature Refinement Module together with feature
interpolation to extract position information related to the

refined bounding box and reconstructs feature maps to achieve
feature alignment. R3Det adopts Refined Rotation RetinaNet as
the backbone with multiple stages of refinement like Cascade
while speeding up the model by reducing the number of refined
bounding boxes in the first stage.

D. S2ANet

S2ANet [18] proposed to solve the inconsistency between
classification and localization performance. It adopts the Fea-
ture Pyramid Network to extract high-level features. Anchor
generator, namely Feature Alignment Module, generates high-
quality anchors which then pass through Oriented Detection
Module for classification and regression.

E. RoI Transformer

RoI Transformer [16] tackles the problem of using horizon-
tal bounding boxes (mismatch features). The model consists of
the lightweight Rotated RoI learner with a 5 dimensions fully
connected layer representing the offset of the rotated RoI cor-
responding to the HRoI. Rotated RoI warping generates fixed-
size geometry robust features for classification and regression
via feature maps and rotated RoIs.

F. ReDet

ReDet [32], namely the Rotation-equivariant Detector
adopts ResNet [22] and Feature Pyramid Network so as to
extract rotation-equivariant features. RiRoI Align proposed
along with the model transforms rotated RoIs generated by an
RPN and RoI Transformer [16]. The final feature extraction
step regresses final oriented bounding boxes and classifies
corresponding labels.

G. Oriented R-CNN

The well-designed two-stage detector Oriented R-CNN
produces high-level features for oriented object detection. The
main structure inherits from the two-stage object detector
baseline while introducing a new representation of region
proposals. The oriented RPN encodes features received from
each level feature of the FPN [33] and decodes them into
RoIs under the Midpoint Offset representation. Due to the
Midpoint offset representation, the oriented proposal generated
by oriented RPN is usually a parallelogram, so the model
will slightly adjust the shorter diagonal to the same length as
another diagonal obtaining oriented bounding boxes. Finally,
each RoIs is divided into m × m grids to produce a fixed-
size feature map F’. The idea that produces feature map F’
adopts the idea of the rotation transformation the same as [5]
and these fixed-size feature maps F’ are then fed into fully-
connected layers regressing the offset and assigning categories
for each oriented bounding box.

H. Non Maximum Suppression

In the process of improving this result, after relabeling
the result by EfficientNet, we use non-maximum suppression
(NMS) to sift out the overlapping bounding box instances as
follows (Fig. 9):

Input: a list of oriented bounding box A, corresponding
confidence score S and overlap threshold N.
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Fig. 9. Objectives of Non-Maximum Suppresion. (a) Before NMS. (b) After
NMS.

Output: a list of sifted bounding box B.

Algorithm:

Step 1: Select the bounding box with the highest confidence
score, remove it from A and add it to the final list B.

Step 2: Now compare this bounding box with all the
bounding boxes in A (calculate the IoU). If the IoU is greater
than the threshold N, remove that bounding box from A.

Step 3: This process is repeated until there is no more
bounding box left in A.

We calculate IoU between two oriented bounding boxes as
IoU between two rectangles (each is the smallest horizontal
rectangle that includes the corresponding oriented bounding
box) as Fig. 10.

Fig. 10. Intersection over Union.

I. Results Post-Processing

After having regressed the oriented bounding box, we
transform it to the horizontal one and feed it through the
classification network to get the appropriate label. Also we
ensemble the classification results with the oriented object
detection network to make cleaner results. Finally, NMS will
be activated to sift and get the right fitter bounding boxes. This
approach will ensure that there will be no more overlapping
bounding boxes for one object caused by class imbalance and
inconsistency between regression and classification (common
problems in aerial images dataset).

V. EXPERIMENT

A. Experiment

DOTA Oriented Dataset: In this study, we conducted
experiments on the DOTA dataset [34], which is a large-
scale dataset widely used for the oriented object detection
problem in aerial images. The DOTA was introduced in 2018,
containing 2,806 images, and the proportion of the training
set, validation set, and testing set were 1/2, 1/6, and 1/3,
respectively. The dataset contains 188,282 instances which are
accurately labeled of 15 common object categories includes:
plane (PL), baseball-diamond (BD), bridge (BR), ground-
track-field (GTF), small-vehicle (SV), large-vehicle (LV), ship
(SH), tennis court (TC), basketball court (BC), storage tank
(ST), soccer-ball-field (SBF), roundabout (RA), harbor (HA),
swimming pool (SP), and helicopter (HC).

Data Preparation for Classification Training: To train
the EfficientNet model, we need an input dataset that is an
object image set (bounding box of objects) on each DOTA
class. This process is illustrated in Fig. 11.

Step 1: Determine the object bounding box to be extracted
[Fig. 11(a), red quadrangle].

Step 2: The object bounding box shape we need to take out
is a rectangle but DOTA’s labeled bounding box is arbitrary
quadrilateral, so we take the smallest oriented bounding box
that covers DOTA’s labeled bounding box (convex-hull trans-
formation) [Fig. 11(b), green bounding box].

Step 3: Rotate the image so that the bounding box to
be taken becomes a horizontal bounding box. To reduce the
calculation cost, we define the smallest area of the image that
includes the box to be extracted, then proceed to rotate this
area [Fig. 11(c), 11(d)]

Step 4: Extract the object bounding box [Fig. 11(e)].

Fig. 11. Data Preparation Steps using Convex-Hull Transformation.

Apply the above steps to all instances on DOTA’s train
and validation set, then we get the train and validation set to
train EfficientNet, the detail as shown in Fig. 12. DOTA is the
imbalance dataset - a normal problem in real-life aerial images
data where vehicles and ships outweigh most of them.

Experimental Configuration: We implement Oriented R-
CNN, S2ANet [18], ReDet [32], R3Det [4], RoI Transformer

www.ijacsa.thesai.org 742 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 12. Illustration of the Number of Ground-Truths in Training and
Validation set of DOTA Dataset.

[16] on MMRotate [35] and EfficientNet-b3 on MMClassifica-
tion [36] framework with repeat factor sampling methods [37]
solving class imbalance problem using 2x GPU RTX 2080Ti

Evaluation Metric: To evaluate the performance of the
models, and our pipeline on the DOTA dataset, we use the
mAP score (mean Average Precision). Mean Average Precision
is a popular evaluation metric used for object detection. It is
the average of AP in every class in a dataset.

B. Analysis

In this study, we test five models, R3Det, RoI Transformer,
ReDet, S2Anet, and the Oriented R-CNN along with post-
processing methods on the DOTA dataset and achieve the
results presented in Table I.

For the initial results, all models perform very well in
directional object detection (mAP ranges from 70% to 77%).
In which the highest resulting model is ReDet (mAP = 76.68%)
and the lowest is R3Det (mAP = 69.8%). Across DOTA’s
15 layers, the accuracy of each model on each class varies
widely (accuracy ranges from 50% to 90%), of which the
highest are tennis-court (about 91%) and plane (about 89%);
Especially the lowest is the helicopter class, resulting in a
sizable difference between models (the highest is on ReDet
66.71%, the lowest is on R3Det 37.44%). Besides, R3Det
also achieved very low results on the bridge class (45.41%)
compared to other models in this class.

However, in the results of the above models, there is the
same limitation which is the discovery of many other bounding
boxes of the different classes located on the same instance (Fig.
13).

The two most accessible post-processing solutions:

- The first is the result of sifting out boxes, the scores
of which are less than a certain threshold. The results are
pretty good [Fig. 14(b)], but there are still some overlapping
bounding boxes because these wrong bounding boxes have a
score greater than the sifting threshold [Fig. 15(a)]. And this
besides removing bounding boxes also removes quite a lot of
true bounding boxes [Fig. 15(b)];

- The second is that as a result of using multi-class non-
maximum suppression, similar to the first solution, the result
of removing bounding boxes is also quite good [Fig. 14(c)].
However, this also has a limitation, which is the removal
of bounding boxes in case 2 objects overlap. Both solutions
caused the model’s mAP results to decrease (about 2%).

After applying our initial solution: relabel all bounding
boxes using EfficientNet, then apply non-maximum suppres-
sion to sift out overlapping bounding boxes. The result is
that there is only one bounding box per object, which is
more effective than all 2 conventional solutions above [Fig.
14(d)]. However, the accuracy of the results is significantly
reduced (down almost 10-40% from the original). Among
them, the most affected classes are soccer-ball-field (about 20-
40%), bridge (about 14-60%), and helicopter (about 17-30%),
ground-track-field (about 12-50%). The subjective reason for
the decrease in results on layers is due to the misidentification
between classes of EfficientNet, between classes with similar
characteristics that make the model easily confused (between
small-vehicle and large-vehicle, ship; between roundabout,
plane and helicopter) (Fig. 16). The objective reason is that
the imbalance of big data between classes (Fig. 12, small-
vehicle and ship over 20k bounding boxes, while the remaining
classes such as soccer-ball-field, ground-track-field are only
about over 300 bounding boxes) makes the quality of layering
between classes uneven; And the lack of information about
the surroundings, because EfficientNet is only trained on the
image, are bounding boxes (the similarity between ship and
small-vehicle when cut into bounding boxes, Fig. 17).

So, to improve the accuracy of our pipeline, we combine
the results between the original model and the results of Effi-
cientNet, in detail: we will not be too confident in EfficientNet,
which means that there will be no relabeling if the results
returned by EfficientNet belong to soccer-ball-field, helicopter,
bridge, and ship (which are classes that the EfficientNet model
classifies inefficiently and affects the other classes analyzed
above); it only be relabeled if the original model gives an
uncertain result, which means that there will be a threshold if
the model gives results below this threshold, then relabel will
be applied.

The final score result of our pipeline is close to the original
result (on three models with highest original results, RoI
Transformer, ReDet, Oriented R-CNN), higher than the usual
two solutions, and also very high efficiency in sifting wrong
bounding boxes (Fig. 18). The other two models (S2ANet,
R3Det) have a lot of wrong boxes, having a relabel doesn’t
work well either.

Besides efficiency, our pipeline is still wrong in several
instances [Fig. 19(a)], which is still limited in cases where
wrong bounding boxes or bounding boxes are part of the in-
stance of the true bounding box (e.g. on container truck objects
surrounded by large-vehicle boxes, but another bounding box
covers the front of the car as a small-vehicle, Fig. 19(b)

In summary, our pipeline has solved the problem of multi-
ple different boxes on the same object while keeping accuracy.
The solution still does not resolve the case where wrong
bounding boxes or different classes bounding boxes are part
of the object of the true bounding box.
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TABLE I. EXPERIMENTAL RESULTS

Model Result Post-processing PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

R3Det Original 89.3 75.31 45.41 69.24 75.54 72.89 79.29 90.89 81.02 83.26 58.82 63.15 63.41 62.21 37.41 69.8

Sifting 89.3 73.79 45.41 68.93 74.56 72.89 79.29 90.89 78.55 78.64 58.82 62.1 63.41 57.84 36.83 68.75

Multi-class Non-maximum Suppression 89.3 75.31 45.42 69.31 74.32 72.67 79.28 90.89 79.06 82.71 55.23 62.71 63.33 62.1 33.25 69

Relabel by EfficientNet 68.96 15.88 8.33 16.36 24.8 47.07 32.76 78.16 21.53 59.61 15.48 22.04 13.77 37.79 1.27 30.92

Relabel by EfficientNet with conditions 84.4 72.48 44.6 53.2 53.31 64 69.53 85.29 77.15 60.12 57.38 61.84 56.7 41.46 31.36 60.86

S2ANet Original 89.3 80.49 50.42 73.23 78.42 77.4 86.8 90.89 85.66 84.24 62.16 65.93 66.66 67.76 53.56 74.19

Sifting 89.25 76.02 48.73 71.2 74.84 76.05 86.8 90.89 85.99 84.2 61.19 64.31 66.59 67.8 52.96 73.12

Multi-class Non-maximum Suppression 89.31 80.88 50.42 71.56 76.49 76.16 86.81 90.9 85.23 84.26 59.49 66.32 66.66 67.76 53.56 74.19

Relabel by EfficientNet 53.23 15.26 10.51 11.90 22.81 37.85 26.15 39.31 13.65 37.84 9.46 16.16 10.71 28.48 0.41 22.25

Relabel by EfficientNet with conditions 82.96 71.9 40.05 64.93 37.11 61.47 75.67 16.32 76.05 12.35 4.55 64.4 58.65 13.42 43.12 48.2

RoI Transformer Original 88.98 82.17 54.59 76.28 79.29 77.96 87.94 90.91 87.19 85.65 61.44 62.63 74.63 72.43 59.23 76.09

Sifting 88.98 82.17 54.59 73.64 74.77 77.96 87.94 90.91 87.19 85.65 54.55 62.63 68.87 72.43 56.83 72.43

Multi-class Non-maximum Suppression 88.98 82.23 54.6 76.43 74.77 77.96 87.94 90.91 86.76 85.54 60.83 62.63 74.57 72.43 56.86 75.78

Relabel by EfficientNet 67.55 16.15 12.98 15.5 24.83 44.75 32.97 70.33 19.33 60.52 14.08 21.76 13.78 39.02 1.49 30.33

Relabel by EfficientNet with conditions 88.85 82.22 54.59 76.31 78.64 77.83 87.9 90.9 87.12 85.55 61.05 62.62 68.84 72.39 59.27 75.6

ReDet Original 89.2 83.77 52.21 71.04 78.05 82.5 88.24 90.86 87.26 85.98 65.58 62.86 75.86 70.04 66.71 76.68

Sifting 89.76 78.79 47.01 65.2 80.98 80 87.33 90.74 79.17 86.23 49.09 65.87 65.75 71.86 55.21 72.87

Multi-class Non-maximum Suppression 89.2 83.8 52.21 71.1 73.88 78.01 88.24 90.86 87.26 85.97 65.58 60.42 75.83 70.04 64.29 75.78

Relabel by EfficientNet 68.81 16.11 8.36 16.38 24.82 46.27 32.76 70.13 21.77 59.74 15.55 22 13.72 37.82 1.3 30.37

Relabel by EfficientNet with conditions 89.17 83.81 52.21 71.1 73.75 81.72 88.21 90.83 87.23 85.93 65.39 60.41 75.35 70 66.89 76.13

Oriented R-CNN Original 89.35 81.41 52.6 75.02 79.03 82.41 87.82 90.9 86.4 85.3 63.36 65.7 68.28 70.48 57.23 75.69

Sifting 89.35 81.41 52.6 72.58 74.3 77.96 87.82 90.9 86.4 85.3 63.36 63.68 68.28 70.48 54.53 74.6

Multi-class Non-maximum Suppression 89.36 81.45 52.59 72.65 74.27 77.96 87.82 90.9 86.57 85.29 60.73 63.68 68.28 70.48 54.78 74.45

Relabel by EfficientNet 89.18 74.79 38.19 60.78 71.14 67.22 77.21 90.87 77.35 78.19 43.58 56.21 63.9 61.6 37.06 65.82

Relabel by EfficientNet with conditions 89.36 79.77 52.56 74.37 78.6 82.15 87.82 90.9 86.14 85.24 62.03 63.48 68.27 70.45 54.33 75.03

Fig. 13. Model’s Result Limitation. (a) R3Det. (b) RoI Transformer. (c) ReDet. (d) S2ANet. (e) Oriented R-CNN
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Fig. 14. Post-Processing Results. (a) Original. (b) Sifting. (c) Multi-Class Non-Maximum Suppression. (d) Relabel by EfficietNet. Covered Areas Represent
Class Imbalance and Inconsistencies between Classification and Localization Leading to Bounding Boxes of Different Classes on One Object.

Fig. 15. Bad Case of Sifting Solution. (a) Wrong Bounding Boxes have a
Score Greater than the Sifting Threshold. (b) True Bounding Boxes have a

Score Smaller than the Sifting Threshold.

Fig. 16. Bad Case of Relabeling by EfficientNet. Misidentification between
Classes of EfficientNet Resulting in the False Removal and Relabel Bouding

Boxes
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Fig. 17. Similarity between Small-Vehicle and Ship. (a) Small-Vehicle. (b)
Ship.

Fig. 18. Our Pipeline Result.

Fig. 19. Bad Case of our Pipeline. (a) Wrong Labeling. (b) Wrong Bounding
Boxes of are Part of the Instance.

VI. CONCLUSION

Generally, our pipeline adopts very well to many lots of
SOTA baselines, yielding promising results and solving prob-
lems of inconsistency between classification and localization.
According to our experimental results, our pipeline yields
promising results on the oriented DOTA dataset by extracting
oriented bounding boxes and feeding to independent training
cycles. In the future, we are researching more training and
testing pipelines, seeking more baselines for oriented object
detection. Our work introduces a fine pipeline for tackling
mismatched features in classification, if exploited well enough,
it will significantly boost detection performance.
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