
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

TextBrew: Automated Model Selection and
Hyperparameter Optimization for Text Classification

Rushil Desai1, Aditya Shah2, Shourya Kothari3, Aishwarya Surve4 and Dr. Narendra Shekokar5
Department of Computer Engineering, Dwarkadas J. College of Engineering

Mumbai, India

Abstract—In building a machine learning solution, algorithm
selection and hyperparameter tuning is the most time-consuming
task. Automated Machine Learning is a solution to fully automate
the process of finding the best model for a given task without
actually having to try various models. This paper introduces a
new AutoML system, TextBrew, explicitly built for the NLP task
of text classification. Our system provides an automated method
for selecting transformer models, tuning hyperparameters, and
combining the best models into one by ensembling. Keeping
in mind that new state-of-the-art models are being constantly
introduced, TextBrew has been designed to be highly flexible
and thus can support additional models easily. In our work,
we experiment with multiple transformer models, each with
numerous different hyperparameter settings, and select the most
robust models. These models are then trained on multiple datasets
to obtain accuracy scores, which are then used to build the meta-
dataset to train the meta-model. Since text classification datasets
are not as abundant, our system generates synthetic data to
augment the meta-dataset using CopulaGAN, a deep generative
model. The meta-model is an ensemble of five models, which
predicts the best candidate model with an accuracy of 78.75%.
The final model returned to the user is an ensemble of all the
best models that can be trained under the given time constraint.
Experiments on various datasets and comparisons with existing
systems demonstrate the effectiveness of our system.

Keywords—Automated machine learning; AutoML; NLP; trans-
former models; hyperparameter optimization; CopulaGAN; gener-
ative model; meta-learning

I. INTRODUCTION

As more and more people recognize the actual value of
data and try to get the most out of it, the demand for machine
learning tools is increasing. But the complexity of the tasks
involved in machine learning can be overwhelming for non-
ML experts, and this is where automated machine learning
comes into the picture. Non-ML experts can use AutoML for
building ML projects. ML experts can also use it to perform
repetitive tasks to save time and accelerate machine learning
research by automating the development of models. Using Au-
toML, one can train high-performing models without worrying
about hyperparameters, model architecture, or cross-validation
strategies [1]. It aims to automate the model selection process,
as shown in [2], [3], and its applications are increasing by the
day, hand-in-hand with the growth of applications of machine
learning.

Machines must use complex data processing and state-
of-the-art machine learning algorithms to work with natural
language. It is also essential to decide the particular ma-
chine learning method based on the dataset and the task.
Selecting the correct method may become difficult as more

accurate methods are constantly being developed. Even after
considering all these factors for choosing the algorithms and
methods, getting the best result is not assured. AutoML for
text classification (TextBrew) can address all these challenges.

Finding the best model and the best set of hyperparameters
is tedious. This task requires a lot of time and resources since
training a model on a dataset may take hours or even days,
subject to the size of the dataset and the model being used,
and then changing hyperparameters and training the dataset all
over again becomes an even more tedious and patience-testing
task. We aim to tackle this issue and give the user the best
model for an NLP classification task.

This paper presents a system that returns the trained model
predicted to be the best for it within a particular time limit
when given a dataset as an input. Our system is such that it is
effortless to add new state-of-the-art transformer models to the
pre-existing pool of models for the system to consider those
models. In this paper, we have performed all experiments on
BERT [4], ALBERT [5], and XLNet [6] for text classification
using multiple hyperparameter combinations for each. A major
part of building our AutoML system is creating the meta-
dataset, which is made by training and testing several deep
learning models on multiple text classification datasets. This
process has been made efficient using generative models to
synthesize data instead of running models on many datasets.
The results demonstrate the effectiveness of our system.

A. Contribution and Organization of the Paper

To sum up, we aim to reduce the time spent by a data
scientist on selecting a particular model and its hyperparameter
values. As seen in the next section, a significant drawback of
many AutoML systems is the inability to support additional,
more complex models. TextBrew has been developed keeping
this problem in mind. The contributions of our paper are as
follows:

1) We show the effectiveness of using deep generative
models to synthesize the training data instead of
spending hours running models on a large number
of datasets.

2) TextBrew is a flexible system that can accommodate
the new models with the least number of changes
possible as it is not built around any specific set of
models. All that is needed for the inclusion of a new
model is for it to be added to the model pipeline
which is run while generating the meta-dataset.

This paper is structured as follows. In the next section,
we review the related literature. Section III discusses the

www.ijacsa.thesai.org 748 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

methodology we have adopted. The results are described in
Section IV, followed by the discussion in Section V. Sections
VI and VII outline the conclusion and a plan for future steps,
respectively.

II. REVIEW OF LITERATURE

AutoML is a relatively new research topic and has made
significant progress in recent years. Many surveys [7] sum-
marize the works of other researchers on this topic. Most of
these works focus on individual modules such as neural archi-
tecture search (NAS) or hyperparameter optimization (HPO)
in classifying tabular data using classical algorithms. There is
significantly less work done on AutoML for text classification,
which is quite different from classifying tabular data because
textual data is unstructured and requires more computationally
intensive algorithms.

There are works published that compare the performance
of various existing AutoML tools on text classification tasks.
Blohm et al. [8] attempt to answer the question of whether
AutoML can be effectively applied to text classification or
not. They compare the performance of four AutoML tools
on thirteen text classification datasets and document how
they perform as opposed to human-engineered models. Their
experiments show that AutoML systems perform better than
humans on 4 out of 13 tasks, and this number will continue
increasing as more sophisticated AutoML tools for NLP tasks
are developed.

Some individual works have tackled the problem of Au-
toML for text classification. Madrid et al. [9] propose a method
that automatically builds text classification pipelines based on
the metadata obtained by running experiments using standard
algorithms on 81 datasets. While it is effective, metadata
obtained from 81 datasets could be insufficient for a machine
learning model to learn and give optimal results.

Wong et al. [10] incorporate transfer learning to reduce
the computational cost of Neural AutoML. Their system learns
the hyperparameter choices common to multiple tasks and uses
this to accelerate the network design for a new task. The results
show a reduction in convergence time for text classification.
The drawback of this system is that meta-overfitting has not
been dealt with, which is an issue.

Gomez et al. [11] have used a hyper-heuristic approach
by employing a genetic algorithm to evolve a population
of meta-rules to decide the best model for the particular
text classification dataset. This work considers only simple
models: K-Nearest Neighbor, Logistic Regression, Support
Vector Machine, and Multinomial Naive Bayes. While this
approach is interesting, it is not ideal because an AutoML
system for the task of text classification needs to be able to
handle the high computational cost and complexity of state-
of-the-art transformer models.

A similar issue is present in the system proposed by Feurer
et al. [12]. They use Bayesian optimization to capture the
relationship between the hyperparameter values and the model
performance. This system includes 15 classifiers, 14 feature
preprocessing methods, and 4 data preprocessing method in
its search space. Including deep learning methods would
have made their system more competitive with other AutoML
systems for text classification.

Additionally, there exist some open-source AutoML sys-
tems that work with text data. Jin et al. [13] propose the
AutoML system AutoKeras, which efficiently performs neural
architecture search using Bayesian optimization, enabling it to
select the most profitable operation each time. Shi, Mueller,
et al. [14] in their paper use transformer networks and stack
ensemble them with classical tabular models to handle data that
contain text, numeric, and categorical features. A drawback
of this system is that it works with a limited search space
compared to other AutoML tools.

We propose TextBrew, a simpler system for AutoML for
text classification, which offers an automated way for selecting
the best transformer models and then training these models
on the dataset with hyperparameter tuning within the time
constraints provided by the user. The issue of creating a large
meta-dataset, which takes a tremendous amount of time and
effort, is solved by using GANs [15] to synthesize additional
data.

III. METHODOLOGY

A. Overview

The system offers an automated way for selecting the best
transformer models and then training these models on the
dataset with the proper hyperparameter settings. It is designed
in such a manner that it can handle both binary as well as
multiclass prediction datasets without explicitly stating so. As
shown in Fig. 1, this system for automated text classification
can be segregated into two parts:

1) Building and Training the Meta-model.
2) Using TextBrew for Model Prediction.

Meta-model refers to the model produced on training
the meta-learning algorithm. In the first part, “Building and
Training the Meta-model”, top-performing transformer models
with many different combinations of hyperparameters are
considered. After conducting experiments, the best-performing
candidate models are shortlisted. “Candidate model” is used in
this paper to refer to a model with a particular combination
of hyperparameter values. Next, the multinomial Naive Bayes
model is trained along with the selected candidate models on
a collection of text classification datasets. Due to the small
size of the meta-dataset (the dataset on which the meta-model
is trained) generated at this stage, CopulaGAN [16] (a deep
generative model) is used to synthesize additional data, helping
our meta-model train better. From the meta-dataset, we use
the accuracy of the Naive Bayes and ALBERT 2 models
along with the dataset size as the predictor variables to predict
the performance of other models. A soft voting ensemble
consisting of five models was used for building the meta-
model, and this meta-model was trained on the generated
dataset to achieve better accuracy.

In the second part, “Using TextBrew for Model Prediction”,
the meta-model is used for model prediction. The best model
predicted by the meta-model is trained on the dataset provided
by the user under the given time constraint. After training
the best candidate model predicted by the meta-model, the
next best predicted model is trained if time remains. This
is continued until the specified time is exceeded. Finally, an
ensemble of all these models is returned to the user.

www.ijacsa.thesai.org 749 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 1. Architecture Diagram of the TextBrew System.

B. Building and Training the Meta-Model

Here, we describe how the meta-dataset is created and how
the meta-model is trained.

For the real-world usage of this system, the system needs
to be able to take into consideration a lot of different mod-
els. Transformer models are state-of-the-art machine learning
models for NLP text classification tasks. There are a lot
of different choices available, with GPT [17], BERT [4],
RoBERTa [18], ELECTRA [19], ALBERT [5] and BART [20]
being just a few of them. In fact, several different pre-trained
models are based on each of these language models. For
instance, BanglaBert [21] is a BERT-based Natural Language
Understanding model pre-trained in Bangla. In addition, new
models are being built at a blazing pace, and state-of-the-art
models are being replaced frequently. This begs for a flexible
system to accommodate the new models with the least number
of changes possible.

1) Candidate Model Selection: Since transformer models
are computationally costly, we perform all experiments needed
to design this system using three models. The system is
independent of the model choices and count. One can add
more models in the same way described in this paper.

Gasparetto et al. [22], in their work, tested many algorithms
on multiple text classification datasets, and it can be seen that
these XLNet and BERT-base are among the top performing
models in terms of accuracy.

In addition to these two models, we select ALBERT (A
Light BERT) as one of our models as it has an architecture
similar to that of BERT but has a fraction of the total number
of parameters [5]. This makes it fast and less computationally
expensive and so can help save time. Above are the reasons
for selecting XLNet, BERT-base, and ALBERT for our experi-
ments. These models are among the best for text classification.

Since all three transformer models have multiple hyperpa-
rameters that need to be tuned to an appropriate value, there
are effectively many candidate models from which to choose.
So, the next step is selecting the hyperparameter values for
each model. We experimented with different combinations of
hyperparameter values and picked the ones that gave us the
best results when trained on multiple datasets.

The selected possible values of the hyperparameters for
the models are shown in Table I. A short description of the

TABLE I. HYPERPARAMETERS AND SELECTED VALUES

Hyperparameters Selected values
num warmup steps [0, 1]

init lr [2e-5, 1e-5]
adam β1 [0.8, 0.9]
adam β2 [0.9, 0.999]
powers [1, 1.5]
epochs [3, 5]

hyperparameters is given below:

1) Num warmup steps: It is a parameter used to lower
the learning rate to reduce the impact of deviating
the model from learning on sudden new data set
exposure.

2) Init lr: It is the initial learning rate before training
and after warm-up steps.

3) Adam β1, Adam β2: The hyper-parameters β1 and β2

of Adam are initial decay rates used when estimating
the moments of the gradient, which are multiplied by
themselves at the end of each training step.

4) Powers: The power to use for polynomial decay.
5) Epochs: The number of passes or iterations of the

training dataset by the machine learning model.

We choose the best set of hyperparameters by using an al-
gorithm similar to grid-search. We run the transformer models
with each possible combination of the hyperparameter values
and compute the set of hyperparameters for which the model
returns the best accuracy as output. In this case, each model
effectively has 26 candidate models, counting all combinations
of the six hyperparameters mentioned above.

Next, we selected three datasets to reduce bias in training
the models. The three datasets are Sarcasm Detection [23], E-
Mail classification NLP [24] and Financial phrase-bank [25].
Before training the candidate models on these datasets,
the datasets were passed through a standard preprocessing
pipeline. First, the text is converted to lowercase, and then
we remove the URLs, non-ASCII characters, punctuations,
and stopwords from the text. As this paper focuses mainly on
model selection and hyperparameter optimization and not on
the preprocessing of the data, the same preprocessing pipeline
is used to clean all the datasets which are passed through the
system.

www.ijacsa.thesai.org 750 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

All the candidate models for the three models, XLNet,
BERT-base, and ALBERT, were then trained on the prepro-
cessed datasets. Our system records how each hyperparameter
combination performs on each dataset. Taking every possible
combination of the hyperparameter values, we get 64 possible
outcomes for each model. Hence, on trying these 64 outcomes
for each of the three models for each of the three datasets,
we effectively train 576 candidate models. The system records
the accuracy attained by that particular model and the time
required to train the model. From this dataset, we select
the top six models (two from each of the three transformer
models) as the shortlisted candidate models. We did this by
averaging the accuracy of each unique hyperparameter combi-
nation model across the three datasets and taking the top two
best-performing candidate models. This handles the situation
where a model performs exceptionally well on one dataset and
poorly on another. The top 6 models and the corresponding
hyperparameter values are mentioned in Table II.

TABLE II. TOP SIX MODELS AND THEIR CORRESPONDING
HYPERPARAMETERS

Model Hyperparameters
Name epochs warmup steps learning rate adam β1 adam β2

BERT 1 5 0 2e-5 0.9 0.999
BERT 2 5 0 1e-5 0.9 0.9

ALBERT 1 5 1 2e-5 0.8 0.9
ALBERT 2 3 0 1e-5 0.9 0.9

XLNet 1 3 1 1e-5 0.8 0.9
XLNet 2 3 1 2e-5 0.8 0.999

2) Meta-Dataset Preparation: After selecting the top six
models, we create the meta-dataset for training the meta-
model. We curated a list of 44 datasets consisting of both
binary and multiclass text classification datasets. A longer
list of datasets would have been beneficial, but for the task
of English language text classification, the datasets publicly
available are limited in number. On the other hand, a longer
list of datasets means a lot more time to build the meta-dataset
as more model training would have to be done. We solve this
problem by synthesizing data using GANs, as described later in
the paper. For each dataset, our system automatically trains all
the selected candidate models and one additional multinomial
Naive Bayes model. The accuracy and the training time taken
for all these models are recorded.

The pipeline for training the multinomial Naive Bayes
model consists of a count vectorizer that transforms the text
into a vector based on the frequency of each word. A count
matrix is created in which a column of the matrix represents
each unique word in the dataset, and each row of the dataset
is a row in the matrix, and the cells contain the count of the
word in that text. Then, we transform the count matrix into
a normalized TF-IDF representation. We use TF-IDF instead
of the raw frequencies to reduce the impact of the frequently
occurring words that are less informative than other words
that occur in a small fraction of the dataset. We then train
the multinomial Naive Bayes classifier on this. The reason for
considering Naive Bayes for our model prediction is stated in
the next section.

Table III shows a few records from our final meta-dataset.

3) Feature Extraction: The prerequisite step for training
a classifier is feature extraction. Text embedding is the most

popular feature extraction method for text-oriented tasks [29].
Calculating embeddings for entire datasets is not feasible
because of the computational expense that comes with it. Since
the performance of any model depends on the dataset it has
been trained on, the performance metrics of a model can be
treated as a feature that is representative of the dataset. This
approach is the basis for feature extraction in this paper.

Above is the reason for including multinomial Naive Bayes
in the list of models. The accuracy of the Naive Bayes model is
part of the feature space. The reason for choosing Naive Bayes
is that it is extremely fast to train on the datasets compared to
other models, making it efficient for use as a feature extraction
tool. We also use the number of records in the dataset to
predict the accuracy values of various models. Further, since
ALBERT is A Light BERT model, it is faster to train than other
transformer models we have chosen. Studying Table IV, we
see that ALBERT 2 consistently takes the least time to train.
This makes it possible for us to take ALBERT 2 accuracy
scores as the third predictor variable to expand the feature
space and, in turn, increase the accuracy of our meta-model.
After running experiments to validate our hypothesis, we see
that using the performance of the ALBERT 2 model along
with Naive Bayes performance and the dataset size improves
the accuracy of the meta-model for predicting the best model.
Adding the ALBERT 2 accuracy score to the feature space
boosts the accuracy by 26%, from 0.625 to 0.788, as shown
in Fig. 2.

Fig. 2. Improvement in Overall Accuracy after Adding ALBERT 2
Accuracy Score to the Feature Space.

4) Using Generative Models to Synthesize Data: Creating
an extensive dataset requires a lot of time, and even if time
constraints were not to be considered, publicly available text
classification datasets are limited in number. Furthermore,
overfitting is a problem faced by a model when the model
predicts exceedingly well on the training dataset but cannot
provide similar results on the testing dataset. It is known that
small datasets are prone to overfitting. As a result, we need to
tackle the overfitting problem caused by the small size of the
dataset.

In this paper, we use GANs [15] to synthesize data and
increase the dataset size to obtain a better result from the meta-
classifier. Generative adversarial networks are an unsupervised
learning approach to generative modeling using deep learning
methods such as convolutional neural networks (CNN). Gener-
ative modeling involves automatic learning of patterns and the

www.ijacsa.thesai.org 751 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

TABLE III. CANDIDATE MODELS AND THEIR ACCURACIES ON DIFFERENT DATASETS

Dataset Naive Bayes BERT 1 BERT 2 ALBERT 1 ALBERT 2 XLNet 1 XLNet 2 Best Model
Cyberbullying [26] 0.8885 0.9925 0.9925 0.9950 0.9925 0.9925 0.9943 ALBERT 1

WELFake [27] 0.8510 0.9657 0.9531 0.9743 0.9788 0.9748 0.9834 XLNet 2
Amazon [28] 0.8550 0.9343 0.9086 0.9571 0.8200 0.6229 0.7257 ALBERT 1

Yelp [28] 0.7800 0.9486 0.8571 0.9371 0.8286 0.6514 0.7743 BERT 1
IMDb [28] 0.8000 0.9313 0.8053 0.9504 0.7939 0.6603 0.8397 ALBERT 1

TABLE IV. CANDIDATE MODELS AND THEIR TRAINING TIME (IN SECONDS) ON DIFFERENT DATASETS

Dataset Naive Bayes BERT 1 BERT 2 ALBERT 1 ALBERT 2 XLNet 1 XLNet 2 Fastest Model
Cyberbullying [26] 0.16 479.21 478.63 496.30 298.16 431.29 431.49 ALBERT 2

WELFake [27] 1.46 344.80 330.15 336.70 202.68 296.60 287.91 ALBERT 2
Amazon [28] 0.02 82.80 65.37 66.66 39.45 68.52 57.11 ALBERT 2

Yelp [28] 0.01 65.74 65.80 65.53 39.42 57.38 57.40 ALBERT 2
IMDb [28] 0.02 49.85 49.70 49.14 29.83 43.66 43.62 ALBERT 2

regularities of the data in a way that can be used to synthesize
new examples that plausibly could have been drawn from the
original dataset.

We employ the CopulaGAN model [16] to generate 150
data points for each group of datasets having a particular
candidate model as the best model. This ensures that the
resulting dataset is not unbalanced. The CopulaGAN model is
a variation of the CTGAN model [30] which takes advantage of
the CDF-based transformation that the GaussianCopulas apply
to make the underlying CTGAN model task of learning the
data easier. We make use of different metrics to compare the
synthesized data and the original data. Seeing the results in
Table V, we can be assured of the quality of the synthetic
data.

TABLE V. METRICS FOR SYNTHETIC DATA EVALUATION

Kolmogorov–Smirnov Test Multiclass Decision Tree Classifier
0.69 0.59

The Kolmogorov-Smirnov test [31] is based on the max-
imum difference between an empirical and a hypothetical
cumulative distribution. The test concerns the agreement be-
tween the generated data and the original data. The Multiclass
Decision Tree Classifier test lets the generated data pass
through a decision tree generated on the original dataset. The
resulting accuracy of this test indicates the percentage of data
points that fall perfectly in accordance with the original data.

5) Meta-Model Details: We use a soft voting ensemble as
our meta-model. This means that we predict the class with the
largest summed probability from all the models that are part
of the ensemble. Our ensemble consists of five models, each
of which can perform a multiclass classification.

1) Multinomial Logistic Regression [32]
2) XGBClassifier [33]
3) C-Support Vector Classification following the One-

vs-Rest scheme [34]
4) Random Forest Classifier [35]
5) AdaBoost Classifier [36]

We then use the generated data to train the meta-model.
To see how the synthesized data improves the meta-model

performance, we train it on the original data, record the
accuracy, and then do the same on the synthetic data. As
expected, we get a low accuracy of 0.475 on training the meta-
model on a small dataset. This accuracy score is boosted to
0.7875 after using synthetic data, which consists of a lot more
data.

C. Using TextBrew for Model Prediction

In this section, we describe how the user would use
our proposed system and how the system makes use of the
meta-model we trained in the previous section. The user
passes a text classification dataset and an optional parameter:
allowed training time as input to the system. The parameter
allowed training time denotes the upper limit for the time the
user expects the trained model to be returned as an output.
This parameter helps users set a time limit for training the
model if they have a time constraint. The default value of this
parameter is set as 15 minutes in our experiments.

First, the dataset is passed through the same preprocessing
pipeline we created for the datasets used for training, which is
mentioned in the above sections. The preprocessing pipeline
helps to clean the data and eliminate inconsistencies. The
next step is to train Naive Bayes and ALBERT 2 models on
the preprocessed dataset. We considered Naive Bayes because
it is swift to train, as shown in Table IV. ALBERT 2 was
considered because it was the fastest to train out of the six
transformer models and could be used as a feature to predict
the best model. The output of these two models, plus the size
of the dataset, forms the feature space. These features are input
to the meta-model, which predicts the best-performing model.
The dataset given as input to the system is then trained on this
predicted model, and the time taken for training is monitored.
After training is completed, if the system has not exceeded
the allowed training time, then it trains the next best model
predicted on the same dataset. This continues until it exceeds
the allowed time. Finally, an ensemble of all these trained
models is created using a soft voting ensemble algorithm. The
prediction probabilities for all the class labels are summed up,
and the class label with the most considerable sum is selected
as the predicted class. This ensemble is returned as the output.

www.ijacsa.thesai.org 752 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

IV. RESULTS

As mentioned in the previous section, we developed a
meta-model that correctly predicted the best model with an
accuracy of 78.75% on using CopulaGAN to synthesize data,
compared to 47.5% on using the original data. This is a strong
score given that the meta-dataset is generated using only 44
datasets because of the limited availability of open-source
datasets for text classification. Additionally, 95% of the time,
the first model predicted is among the top three models in
terms of accuracy. These numbers indicate that it is highly
likely that the best model will be part of the ensemble returned
by the system as it consists of the first few models predicted
to perform well by the meta-model.

We also present the results of the experiments that were
performed using different datasets and different existing Au-
toML solutions for text classification. FakeNews, Covid Tweets
Sentiment Analysis, and Cyberbullying Classification are the
datasets used. We compare our system with AutoKeras [13]
and AutoGluon [14]. In order to create an unbiased environ-
ment for all tests, we use Intel® Xeon® 2.00GHz CPU, Tesla
P100 16GB GPU, and 13 GB of free memory for our usage.

Fig. 3. Comparion of AutoML Systems, Including TextBrew (green),
AutoKeras (orange) and AutoGluon (yellow).

We can see from Fig. 3 that our system gives the best
accuracy on one dataset and a reasonable accuracy on the
rest compared to AutoKeras and AutoGluon. Given that this
is a prototype of our system and has only six candidate
models originating from three different transformer models,
i.e., BERT-base, XLNet, and ALBERT, the performance, as
seen in Fig. 3, is extremely promising. Increasing the number
of models described in the methodology section would lead to
much better performance.

V. DISCUSSION

Today, very few AutoML systems for the NLP task of
text classification exist that incorporate state-of-the-art deep
learning models. AutoGluon is one of the best-performing
AutoML models for text classification, as seen in Fig. 3,
and TextBrew follows closely behind. In fact, TextBrew beats
AutoGluon on one out of the three datasets with an accuracy
that is 16% higher. With access to more computing power, we
can incorporate more state-of-the-art deep learning models and
a more comprehensive range of hyperparameter options, which

will enable TextBrew to be competitive and could challenge
the best AutoML tools present today.

Moreover, TextBrew returns an ensemble of models that
would give the best results on the given dataset. The best
possible model out of the six selected models is found to be
in the top three with an accuracy of 95%, of which 78.75%
constitutes the situation where the first model predicted is
actually the best. These numbers convey that the probability
of the best candidate model being included in the ensemble
generated by the system is very high.

The workings of our system back up the suggestion that
automated machine learning does not have to be complicated to
give good results. This is because this system does not employ
any complicated methods or algorithms like genetic algorithms
as seen in [11], deep reinforcement learning as seen in [10] and
Bayesian optimization as visited in [12], [13]. The approach
here is to build a meta-dataset and train classical ML models,
which are used to predict the suitable transformer model.
Nevertheless, TextBrew performs competitively considering
the dataset’s size and the approach’s simplicity.

VI. CONCLUSION

This paper proposes TextBrew: an automated machine
learning system for text classification. As discussed in the
previous section, TextBrew suggests that AutoML systems
do not have to be highly complex to perform well. The
meta-model predicts the best possible model and suitable
hyperparameters while considering the user’s time constraint.
Our meta-model predicts one of the top three models 95% of
the time, with the best candidate model being predicted with
an accuracy of 78.75%. This means that it is highly likely
that the ensemble created by the system will include the best
models.

The final model returned to the user is an ensemble of all
the top candidate models that can be trained under the given
time constraint. As seen in the results section, considering the
low number of models in our system, TextBrew is promising,
and it backs the idea that automated machine learning is not
as complex as one would think.

VII. FUTURE WORK

For our future work, we aim to manually build and compile
a greater number of text classification datasets to train our
meta-model better. Additionally, we aim to access a more
powerful computing system to include a much larger number
of models and hyperparameter choices in our system.

REFERENCES

[1] S. K. Karmaker (“Santu”), M. M. Hassan, M. J. Smith, L. Xu, C. Zhai,
and K. Veeramachaneni, “Automl to date and beyond: Challenges and
opportunities,” ACM Comput. Surv., vol. 54, no. 8, oct 2021. [Online].
Available: https://doi.org/10.1145/3470918

[2] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and F. Hutter, “Efficient and robust automated
machine learning,” in Advances in Neural Information Processing
Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, Eds., vol. 28. Curran Associates, Inc.,
2015. [Online]. Available: https://proceedings.neurips.cc/paper/2015/
file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf

www.ijacsa.thesai.org 753 | P a g e

https://doi.org/10.1145/3470918
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/11d0e6287202fced83f79975ec59a3a6-Paper.pdf


(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

[3] N. Fusi, R. Sheth, and M. Elibol, “Probabilistic matrix factorization for
automated machine learning,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, ser. NIPS’18.
Red Hook, NY, USA: Curran Associates Inc., 2018, p. 3352–3361.

[4] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training
of deep bidirectional transformers for language understanding,” CoRR,
vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/
1810.04805

[5] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“ALBERT: A lite BERT for self-supervised learning of language
representations,” CoRR, vol. abs/1909.11942, 2019. [Online]. Available:
http://arxiv.org/abs/1909.11942

[6] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language
understanding,” CoRR, vol. abs/1906.08237, 2019. [Online]. Available:
http://arxiv.org/abs/1906.08237

[7] X. He, K. Zhao, and X. Chu, “Automl: A survey of the state-
of-the-art,” Knowledge-Based Systems, vol. 212, p. 106622, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0950705120307516

[8] M. Blohm, M. Hanussek, and M. Kintz, “Leveraging automated ma-
chine learning for text classification: Evaluation of automl tools and
comparison with human performance,” pp. 1131–1136, 01 2021.

[9] J. Madrid, H. J. Escalante, and E. Morales, “Meta-learning of textual
representations,” 2019. [Online]. Available: https://arxiv.org/abs/1906.
08934

[10] C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo, “Transfer learning with
neural automl,” Advances in neural information processing systems,
vol. 31, 2018.

[11] J. C. Gomez, S. Hoskens, and M.-F. Moens, “Evolutionary learning of
meta-rules for text classification,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, ser. GECCO ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
131–132. [Online]. Available: https://doi.org/10.1145/3067695.3075601

[12] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 2, ser. NIPS’15. Cambridge, MA, USA:
MIT Press, 2015, p. 2755–2763.

[13] H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient neural architecture
search system,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2019,
pp. 1946–1956.

[14] X. Shi, J. Mueller, N. Erickson, M. Li, and A. Smola, “Multimodal
automl on structured tables with text fields,” in 8th ICML Workshop on
Automated Machine Learning (AutoML), 2021.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative
adversarial nets,” in Advances in Neural Information Processing
Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K. Weinberger, Eds., vol. 27. Curran Associates, Inc.,
2014. [Online]. Available: https://proceedings.neurips.cc/paper/2014/
file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

[16] N. Patki, R. Wedge, and K. Veeramachaneni, “The synthetic data vault,”
in 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), Oct 2016, pp. 399–410.

[17] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[18] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized BERT pretraining approach,” CoRR, vol. abs/1907.11692,
2019. [Online]. Available: http://arxiv.org/abs/1907.11692

[19] K. Clark, M. Luong, Q. V. Le, and C. D. Manning, “ELECTRA:
pre-training text encoders as discriminators rather than generators,”

CoRR, vol. abs/2003.10555, 2020. [Online]. Available: https://arxiv.
org/abs/2003.10555

[20] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: denoising sequence-to-
sequence pre-training for natural language generation, translation,
and comprehension,” CoRR, vol. abs/1910.13461, 2019. [Online].
Available: http://arxiv.org/abs/1910.13461

[21] A. Bhattacharjee, T. Hasan, K. Samin, M. S. Rahman, A. Iqbal,
and R. Shahriyar, “Banglabert: Combating embedding barrier for
low-resource language understanding,” CoRR, vol. abs/2101.00204,
2021. [Online]. Available: https://arxiv.org/abs/2101.00204

[22] A. Gasparetto, M. Marcuzzo, A. Zangari, and A. Albarelli, “A
survey on text classification algorithms: From text to predictions,”
Information, vol. 13, no. 2, p. 83, Feb 2022. [Online]. Available:
http://dx.doi.org/10.3390/info13020083

[23] K. Zeynalzada, “Sarcasm detection,” Nov 2021. [On-
line]. Available: https://www.kaggle.com/datasets/theynalzada/
news-headlines-for-sarcasm-detection

[24] A. Miglani, “E-mail classification nlp,” Sept 2020. [Online]. Available:
https://www.kaggle.com/datasets/datatattle/email-classification-nlp

[25] P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala, “Good
debt or bad debt: Detecting semantic orientations in economic texts,”
Journal of the Association for Information Science and Technology,
vol. 65, no. 4, pp. 782–796, 2014.

[26] J. Wang, K. Fu, and C.-T. Lu, “Sosnet: A graph convolutional net-
work approach to fine-grained cyberbullying detection,” in 2020 IEEE
International Conference on Big Data (Big Data). IEEE, 2020, pp.
1699–1708.

[27] P. K. Verma, P. Agrawal, I. Amorim, and R. Prodan, “Welfake: Word
embedding over linguistic features for fake news detection,” IEEE
Transactions on Computational Social Systems, vol. 8, no. 4, pp. 881–
893, 2021.

[28] D. Kotzias, M. Denil, N. de Freitas, and P. Smyth, “From group
to individual labels using deep features,” in Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ser. KDD ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 597–606. [Online]. Available:
https://doi.org/10.1145/2783258.2783380

[29] H. Liang, X. Sun, Y. Sun, and Y. Gao, “Text feature extraction
based on deep learning: a review,” EURASIP Journal on Wireless
Communications and Networking, vol. 2017, no. 1, p. 211, Dec 2017.
[Online]. Available: https://doi.org/10.1186/s13638-017-0993-1

[30] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni,
“Modeling tabular data using conditional gan,” 2019. [Online].
Available: https://arxiv.org/abs/1907.00503

[31] F. J. Massey Jr, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American statistical Association, vol. 46, no. 253, pp.
68–78, 1951.

[32] C. Kwak and A. Clayton-Matthews, “Multinomial logistic regression,”
Nursing research, vol. 51, no. 6, pp. 404–410, 2002.

[33] T. Chen and C. Guestrin, “XGBoost,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, aug 2016. [Online]. Available: https:
//doi.org/10.1145%2F2939672.2939785

[34] C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” New York, NY, USA, may 2011. [Online]. Available:
https://doi.org/10.1145/1961189.1961199

[35] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5–32, Oct 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

[36] R. E. Schapire, Explaining AdaBoost. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 37–52. [Online]. Available: https:
//doi.org/10.1007/978-3-642-41136-6 5

www.ijacsa.thesai.org 754 | P a g e

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1906.08237
https://www.sciencedirect.com/science/article/pii/S0950705120307516
https://www.sciencedirect.com/science/article/pii/S0950705120307516
https://arxiv.org/abs/1906.08934
https://arxiv.org/abs/1906.08934
https://doi.org/10.1145/3067695.3075601
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://arxiv.org/abs/1907.11692
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2003.10555
http://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2101.00204
http://dx.doi.org/10.3390/info13020083
https://www.kaggle.com/datasets/theynalzada/news-headlines-for-sarcasm-detection
https://www.kaggle.com/datasets/theynalzada/news-headlines-for-sarcasm-detection
https://www.kaggle.com/datasets/datatattle/email-classification-nlp
https://doi.org/10.1145/2783258.2783380
https://doi.org/10.1186/s13638-017-0993-1
https://arxiv.org/abs/1907.00503
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1145%2F2939672.2939785
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1007/978-3-642-41136-6_5

	Introduction
	Contribution and Organization of the Paper

	Review of Literature
	Methodology
	Overview
	Building and Training the Meta-Model
	Candidate Model Selection
	Meta-Dataset Preparation
	Feature Extraction
	Using Generative Models to Synthesize Data
	Meta-Model Details

	Using TextBrew for Model Prediction

	Results
	Discussion
	Conclusion
	Future Work
	References

