
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

On-Device Major Indian Language Identification
Classifiers to Run on Low Resource Devices

Yashwanth Y S
R.V College of Engineering

Computer Science and Engineering Department
Bengaluru, Karnataka, India

Abstract—Language Identification acts a first and necessary
step in building intelligent Natural Language Processing (NLP)
systems that handle code mixed data. There is a lot of work
around this problem, but there is still scope for improvement,
especially for local Indian languages. Also, earlier works mostly
concentrates on just accuracy of the model and neglects the
information like, whether they can be used on low resource
devices like mobiles and wearable devices like smart watches
with considerable latency. Here, this paper discusses about both
binary classification and multiclass classification using character
grams as the features. Considering total nine languages in this
classification which includes, eight code mixed Indian languages
with English (Hindi, Bengali, Kannada, Tamil, Telugu, Gujarati,
Marathi, Malayalam) and standard English. Binary classifier
discussed in this paper will classify Hinglish (Hindi when written
using English script is commonly known as Hinglish) from seven
other code-mixed Indian Languages with English and standard
English. Multiclass classifier will classify the previously mentioned
languages. Binary classifier gave an accuracy of 96% on the test
data and the size of the model was 1.4 MB and achieved an
accuracy of 87% with multiclass classifier on same test set with
model size of 3.6 MB.

Keywords—Character grams; code-mixed; deep learning; In-
dian languages; language identification; NLP; social media text

I. INTRODUCTION

In recent years, there has been a boom in the social media
usage, especially in India, because of deep penetration of
internet connectivity among people. There are close to half
a billion active social media users with a growth of 4.2%
every year [1]. Due to this rapid increase, people of various
demographics and ages have started to use social media and
in turn code mixed language has become more popular than
ever on social media. Usually, a local regional language is
mixed with English. Be it for hate speech detection on social
media or to generate auto reply suggestions to incoming text
message or any other NLP system that involves code mixed
data, requires language tagging as first step and will determine
the accuracy of the system as whole to a great extent. There
are many difficulties with language tagging. Even though large
amount of code-mixed language data is available to us as raw
data (tweets, posts, blogs, etc.) on social media, we don’t
have a readily available tagged data set suitable for supervised
learning [2]. Also, there are many dialects of same language,
and so there are different spellings and pronunciations of
the same word in code mixed context. Another important
difficultly is, if the data set is not diverse, then the supervised
language tagging model will suffer from over fitting [3]. This

paper aims in building code mixed Indian languages classifiers
that can run on low resource devices with little latency, so
that they can be used in real time applications like auto reply
systems.

The reason for choosing the previously mentioned nine
languages for classification is, 82% of Indian population speak
one of the nine languages as their first language [4]. Since
Hindi is spoken by 58% of Indian population [4], this article
also considers a binary classifier that distinguishes Hinglish
from other languages along with the multi class classifier.
Collected close to 120k sentences for all the nine languages to
create a separate train set and test set for training and testing
model respectively.

In this article presents Stacked Bi-LSTM network that uses
trigrams as features to classify Hinglish from other languages
and Ensemble CNN - Bi-LSTM with attention network with
both trigrams and quad grams as features for multiclass clas-
sification [5][6][7].

II. RELATED WORK

In recent years, lot of research on language identification
is done, which essentially is the first step in NLP systems,
although less work is done where it involves detection of
multiple Indian languages. Inumella Chaitanya et al. describe
how common word embeddings like Continuous Bag of Words
(CBOW) and Skip Grams models can be used to generate
embeddings that can be feed to common machine learning
models like support vector machine, Logistic Regression and
K-Nearest neighbors among other algorithms [8]. Anupam
Jamatia et al. in their paper describe about two models i.e.,
Bi-LSTM classifier and Conditional Random Fields (CRF)
classifier and suggest that Bi-LSTM classifier performs better.
Ramachandra Joshi and Raviraj Joshi describe about various
input representations like character, sub-word and word em-
beddings, for language identification task in their paper. They
also pass these representations as input to CNN and LSTM
based models. They indicate that sub-word representation
combined with LSTM model gives the best results [9].

Sourya Dipta Das et al. train multiple LSTM models
and create an ensemble model using stacking and threshold
technique which helping in increasing the accuracy of the
model instead of using a single model [10]. Neelakshi Sarma
et al. have developed a framework for language identification
which is capable of recognizing words that are borrowed from
other languages and used in multiple languages and predict

www.ijacsa.thesai.org 755 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

the language. This framework also considers the context of
the sentence [11].

Monojit Choudhury et al. used both word embeddings
and character embeddings, then concatenated both of them to
predict the language [12]. Harsh Jhamtani et al describes a
method which combines word embeddings, character n-grams
and POS tagging to predict the language [13]. Shruti Rijhwani
et al presents a unsupervised model for language detection that
does not require any annotated data to train the model. It is
also capable of detecting large number of languages [14].

III. PROPOSED SOLUTION

This section discusses about the dataset creation, pre-
processing steps, embeddings generation and finally about the
classifiers i.e., binary and multiclass classifiers. In summary,
first a data set is created by collecting data from various
sources. Vocabulary or Embeddings are generated from the
data set, which will be used to encode the input before giving
it the model. All the steps are explained in detail, in following
sections and summary of the steps in very high level is shown
in Fig. 1.

Fig. 1. Summary of Steps of Proposed Solution.

A. Dataset

There was no readily available dataset for the previously
mentioned nine languages. Had to create one by collecting
data from multiple sources like reddit, Facebook posts, twitter
tweets, WhatsApp chats and blogs. English language sentences
are easy to collect but it is difficult to find and collect other
Indian local languages code mixed with English. Data for
Indian languages code mixed with English, was collected by
scrapping from dedicated subreddit topics and twitter tweets.
Also, used Google translate API, where we provide a English
sentence as input to translate function of the API and set the
destination language to any one of the Indian languages [15].
The translate function returns an object that has a pronuncia-
tion attribute. This pronunciation is a close approximation of
Indian language sentences written in English script. In addition
to this, after collecting the data, some irregularities to the
spellings were introduced in the data set, so that the model
does not suffer from overfitting problem. In total, the dataset
consists of little above 100k sentences and the test set consists
of about 13k sentences. The test data consists mostly of real
world data and the approximation data generated from google
translate API is not included. The distribution of train set and
test set is shown in Table I and Table II, respectively.

B. Pre-Processing

These common preprocessing steps are applied to all the
sentences in dataset and also to the input sentence given to

TABLE I. TRAIN SET

Languages Number of Sentences
Hinglish 26804
Bengali 11570
Kannada 11148

Tamil 11115
English 11069
Gujarati 11032
Telugu 9231
Marthi 8166

Malayalam 6836
Total 106971

the trained model to predict. Removed the components of the
sentences that don’t help us in identifying the language. Digits,
punctuation marks, extra whitespaces, HTML tags and emojis
are removed.

Apart from these common preprocessing steps, irregular-
ities to spellings of Indian languages is introduced into only
train set. This is because, Indian language words when written
in English script can have different spellings. For instance,
the word “why” in Telugu language is spelled as “enduku” or
“yenduku”, when written in English script. Similarly, “where”
in Kannada language is spelled as “ellige” or “yellige”. So,
introduced these extra letter in some cases into train set so that
the model generalizes well and does not suffer from overfitting
problem. The summary of preprocessing steps are shown in
Fig. 2.

Fig. 2. Summary of Pre-Processing Steps.

www.ijacsa.thesai.org 756 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

TABLE II. TEST SET

Languages Number of Sentences
Hinglish 2496
Bengali 689
Kannada 1338

Tamil 1554
English 3226
Gujarati 262
Telugu 1599
Marthi 1942

Malayalam 442
Total 13548

C. Vocabulary/Embeddings Generation

Generated trigrams and quadgrams using all the sentences
from the dataset and stored these character grams in form of
a dictionary, where the character gram string is the key and
a unique integer starting from 1 as the value for the key. So,
each character gram is unique identified by an integer. Zero (0)
is used to indicate out of vocabulary (OOV) character grams.
Only top 20k (in terms of number times it appears in dataset)
trigrams and quadgrams are selected. We are limiting the size
of the embeddings to limit the size of the model, keeping
in mind that we need models that can run on-device with
as little resource utilization as possible. Separate dictionaries
are created for trigrams and quadgrams. Trigrams are used
as embeddings in binary classifier and both trigrams and
quadgrams are used in case of multiclass classifier. These
dictionaries are stored as csv files.

The process of encoding the input that must be given
to the model, using the vocabulary dictionaries generated
is described next. For instance, lets consider the following
trigram vocabulary dictionary and input sentence in English as
shown in Fig. 3. The input sentence is then split into trigrams
and each of these trigrams are searched in the vocabulary
dictionary. If there is a match, then value associated with the
trigram in the dictionary is used for encoding. If the trigram
match is not found, then it is a case of out of vocabulary
(OOV) and 0 is used to encode such trigrams. Same is done
when quadgrams are used as features.

D. Binary Classifier

After following the preprocessing steps, the sentences in
the train set are encoded using the earlier generated embed-
dings. Each sentence encoded is padded to have a size of 50.
The first layer of the model is Embedding layer with vocab
size of 20k, as previously mentioned and with both the input
and output dimensions to be 50. The activation function for
this layer was relu. The embedding layer is followed by a
dropout layer (rate = 0.5). This followed by stacked Bi-LSTM
layers with output dimensionality of 32 and 16. Stacking the
Bi-LSTM layers, helped in boosting the accuracy of the model.
This is followed by a dense layer with output dimensionality
of 8 followed by drop out layer (rate = 0.5). Last is the output
layer with sigmoid as the activation function. The summary of
the model is shown in Fig. 4. The entire model was compiled
with adam as optimization function and binary cross-entropy

Fig. 3. Steps to Encode Input.

as loss. The number of epochs was set to 3 and batch size was
set to 64.

The trained model is then saved as a TensorFlow Lite
(tflite) model in order to compress the size and decrease the
latency of the model [16], without losing much on accuracy
and tflite models are easier to use on low resource devices like
mobiles or even embedded devices. The tflite model size came
to be 1.4 MB. The coming sections discuss about the accuracy
and performance of the model in detail.

E. Multiclass Classifier

The preprocessing and encoding steps are same as for
binary classifier, except both trigrams and quadgrams are
used. Siamese neutral networks are used, whose output is
concatenated and given to a dense network to form a ensemble
model [17][18]. Built two models, with trigrams as features for
one and quadgrams as features for the other, then concatenated
the outputs and feed it to a deep network as shown in Fig. 5.
After the embedding layer we use Conv1D layers with varying
kernel sizes (here 3, 4 and 5) with relu as activation function
and followed spatial dropout (rate = 0.2) and max pooling cells.
Using filters of various sizes, dropout and max pooling cells
helped reduce overfitting and variance largely. This is followed
by Bi-LSTM stack with attention with 32 and 16 sizes orderly.
The output from two identical networks using different features
was combined by a concatenate layer followed by two dense
layers of 16 and 9 orderly as shown. The entire model was
compiled with adam as optimization function and categorical
cross-entropy as loss. The number of epochs was set to 3
and batch size was set to 64. Even the multiclass classifier
is stored as a tflite model and the size comes to 3.6 MB. The
accuracy and performance of the model is discussed in the
coming sections.

www.ijacsa.thesai.org 757 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

TABLE III. MODELS PERFORMANCE SUMMARY

Models Accuracy F1-score Model Size Latency Peak RAM Usage
Binary Classifier 96% 0.96 1.4MB 8-10ms 4.7MB

Multiclass Classifier 87% 0.88 3.6MB 30-35ms 8.3MB

Fig. 4. Binary Classifier Model Summary.

IV. EXPERIMENTAL RESULTS

The parameters on which the models was judged are
accuracy, f1-score, size, latency and the peak RAM usage by
the model. The test set described earlier is used to measure
the performance of the model. A c++ program was written to
perform the earlier discussed preprocessing steps on the input
which is to be given to trained model and to load the saved
tflite model and predict the output. The reason for writing c++
code to estimate the performance of the models rather than
python was, c++ code runs faster than python [19].

The latency of the model was estimated by recording the
time (say t1) when the input is given for preprecessing and
again recording the time (say t2) when model predicts the
output. The latency is calculated as difference of t2 and t1.
So, this latency also includes the time taken for preprocessing
steps as well. The now() function of high resolution clock
class as part of chrono c++ header was used to record time
t1 and t2 [20]. The range of latency of both the models is
recorded in Table III.

TABLE IV. BINARY CLASSIFIER PERFORMANCE FOR EACH CLASS

Languages Precision Recall F1-score
Hinglish 0.95 0.96 0.95

Other Languages 0.98 0.97 0.97

TABLE V. MULTICLASS CLASSIFIER PERFORMANCE FOR EACH CLASS

Languages Precision Recall F1-score
Hinglish 0.92 0.96 0.94
Bengali 0.84 0.98 0.90
Kannada 0.83 0.86 0.85

Tamil 0.87 0.82 0.84
English 0.90 0.90 0.90
Gujarati 0.75 0.62 0.69
Telugu 0.86 0.88 0.87
Marthi 0.98 0.98 0.98

Malayalam 0.67 0.48 0.59

The peak RAM usage was estimated using massif tool,
which is heap profiler [21]. Massif comes as part of valgrind,
which is collection of tools for memory profiling. The peak
usage for both the models is recorded in Table III.

The same vocabulary dictionaries saved as csv files earlier
are used to encode the test input sentences given to the trained
models to predict the output. The predicted labels given by the
trained model is stored and compared with the actual labels,
then the classification report is generated based on it. The
classification report for both binary classifier and multiclass
classifier generated using classification report part of scikit-
learn package [22] and is reported in Table IV and Table V,
respectively.

V. ANALYSIS

The binary classifier performs well on most kinds of data.
The only drawback observed was, when the input sentence is
very short and mostly filled with English, then it misclassifies
Hinglish as English. For instance, “Relatives aya” (which
means “Relatives came” in English) is classified as English
sentence instead Hinglish. This is because the sentence is very
short and has only a three letter Hindi word as part of it and the
model finds it difficult to predict the correct label. Similarly,
“Ek spoon” (which means one spoon) is also misclassified as
English.

The multiclass classifier does well on most languages,
except Malayalam and Gujarati. The F1-scores for Malayalam
and Gujarati classes are 0.59 and 0.69 respectively, which is
way less compared to other classes as seen from Table V. These
classes also pull down the overall accuracy of the multiclass
classifier. The main reason for this is because Malayalam
language is very closely related to Tamil Language. Out of 442
Malayalam sentences in the test set, 190 of are missclassified

www.ijacsa.thesai.org 758 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

Fig. 5. Multiclass Classifier Model Summary.

as Tamil. These two languages are spoken by people of adja-
cent states of South India, and the root words of both languages
are very similar. For instance, “come home” in Malayalam
is “Vittir varu” and in Tamil is “Vittirku va”. The encoded
sequences of these two sentences using trigrams or quadgrams
will be very close. This is the reason the model confuses for
Malayalam sentences and classifies them as Tamil sentences.
The same reason goes for Gujarati language class, where
Gujarati language is very closely related to Hindi and encoded
sequences are also close and the model misclassifes. Out of
262 Gujarati sentences in the test set, 70 are misclassified as

Hinglish.

VI. CONCLUSION AND FUTURE WORK

The binary classifier performs really on diverse data and
generalizes well, expect for really small sentences. The multi-
class classifier performs well on seven out of nine languages.
With model sizes of 1.4 MB and 3.6 MB for binary classifier
and multiclass classifier, these models can used on any low
resource devices like smart watches, mobiles or any embedded
system where memory and RAM consumption are a constraint.

www.ijacsa.thesai.org 759 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 13, No. 9, 2022

The future work would be to collect more real world data
to train, in place of approximate data generated using Google
translate API. Also, the vocabulary size was restricted to limit
the resource usage on the device. So, if the models are run
on powerful devices, then the vocabulary dictionaries can be
further extended further and models can be retrained with
the extended vocabulary and check if there is any effect on
accuracy of the models. Also, the embedding layer size and
the number of hidden layers of the neural network can be
increased to increase the accuracy the model.

REFERENCES

[1] https://www.theglobalstatistics.com/india-social-media-statistics/
[2] Osisanwo F.Y., Akinsola J.E.T., Awodele O., Hinmikaiye J. O., Olakanmi

O., Akinjobi J. “Supervised Machine Learning Algorithms: Classification
and Comparison”. International Journal of Computer Trends and Tech-
nology (IJCTT) V48(3):128-138, June 2017. ISSN:2231-2803

[3] https://machinelearningmastery.com/overfitting-and-underfitting-with-
machine-learning-algorithms/

[4] https://en.wikipedia.org/wiki/List of languages by number of native
speakers in India

[5] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”
.Neural Computation. Volume 9, Issue 8. November 15, 1997. pp
1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[6] Dong, X., Yu, Z., Cao, W. et al. A survey on ensemble learning. Front.
Comput. Sci. 14, 241–258 (2020). https://doi.org/10.1007/s11704-019-
8208-z

[7] S. Albawi, T. A. Mohammed and S. Al-Zawi, “Understanding of a
convolutional neural network,” 2017 International Conference on Engi-
neering and Technology (ICET), 2017, pp. 1-6, doi: 10.1109/ICEngTech-
nol.2017.8308186.

[8] Inumella Chaitanya, Indeevar Madapakula, Subham Kumar Gupta and
S thara. 2018. “Word Level Language Identification in Code-Mixed
Data using Word Embedding Methods for Indian Languages”. 2018
International Conference on Advances in Computing, Communications
and Informatics (ICACCI). ISBN: 978-1-5386-5214-2

[9] Joshi, R., Joshi, R. (2022). “Evaluating Input Representation for Lan-
guage Identification in Hindi-English Code Mixed Text”. In: Ku-
mar, A., Senatore, S., Gunjan, V.K. (eds) ICDSMLA 2020. Lec-

ture Notes in Electrical Engineering, vol 783. Springer, Singapore.
https://doi.org/10.1007/978-981-16-3690-5 73

[10] Sourya Dipta Das, Soumil Mandal, Dipankar Das. “Language Identifi-
cation of Bengali-English Code-Mixed Data using Character & Phonetic
based LSTM Models”. FIRE ’19: Proceedings of the 11th Forum
for Information Retrieval Evaluation. December 2019. Pages 60–64.
https://doi.org/10.1145/3368567.3368578

[11] Neelakshi Sarma, Ranbir Sanasam Singh, Diganta Goswami. “Switch-
Net: Learning to switch for word-level language identification in code-
mixed social media text”. Natural Language Engineering. Volume 28
Issue 3. DOI: 10.1017/s1351324921000115

[12] Monojit Choudhury, Kalika Bali, Sunayana Sitaram, and Ashutosh
Baheti. 2017. “Curriculum design for code-switching: Experiments with
language identification and language modeling with deep neural net-
works”. In Proceedings of the 14th International Conference on Natural
Language Processing (ICON-2017), pages 65–74, Kolkata, India. NLP
Association of India.

[13] Harsh Jhamtani, Bhogi Suleep Kumar, Vaskar Raychoudhury. “Word-
level Language Identification in Bi-lingual Code-switched Texts”.Pacific
Asia Conference on Language, Information and Computing. December
2014.

[14] Shruti Rijhwani, Royal Sequiera, Monojit Choudhury, Kalika Bali,
and Chandra Shekhar Maddila. 2017. Estimating code-switching on
twitter with a novel generalized word-level language detection technique.
In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), volume 1, pages
1971–1982.

[15] https://stackabuse.com/text-translation-with-google-translate-api-in-
python/

[16] https://towardsdatascience.com/model-compression-a-look-into-
reducing-model-size-8251683c338e

[17] https://towardsdatascience.com/what-are-siamese-neural-networks-in-
deep-learning-bb092f749dcb

[18] https://machinelearningmastery.com/tour-of-ensemble-learning-
algorithms/

[19] https://towardsdatascience.com/how-fast-is-c-compared-to-python-
978f18f474c7

[20] https://en.cppreference.com/w/cpp/chrono/high resolution clock
[21] https://valgrind.org/docs/manual/ms-manual.html
[22] https://scikit-learn.org/stable/

www.ijacsa.thesai.org 760 | P a g e


