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Abstract—This study proposes a reinforcement learning ap-
proach using Generalized Advantage Estimation (GAE) for
autonomous vehicle navigation in complex environments. The
method is based on the actor-critic framework, where the actor
network predicts actions and the critic network estimates state
values. GAE is used to compute the advantage of each action,
which is then used to update the actor and critic networks.
The approach was evaluated in a simulation of an autonomous
vehicle navigating through challenging environments and it was
found to effectively learn and improve navigation performance
over time. The results suggest GAE as a promising direction for
further research in autonomous vehicle navigation in complex
environments.

Keywords—Actor-critic; autonomous vehicles; generalized ad-
vantage estimation; navigation; reinforcement learning

I. INTRODUCTION

Autonomous vehicles have the potential to revolutionize
transportation by reducing accidents, improving efficiency, and
providing access to mobility for those who may not be able
to drive [1], [2]. However, their deployment is limited by
their ability to navigate complex environments, which can be
affected by various factors such as weather, traffic, and pedes-
trians [3]. In addition, traditional approaches to autonomous
navigation often rely on hand-designed rules or pre-defined
maps, which may need to be revised to handle the variety
and unpredictability of real-world environments [4], [5]. This
can lead to poor performance and even accidents in complex
scenarios.

From the point of view of robotic applications, one of
the main problems in autonomous navigation is localizing
the robot’s position and orientation in the environment [6],
[7]. This is typically done using sensors such as cameras,
lasers, and inertial measurement units (IMUs), which provide
noisy and partial observations of the environment [8], [9].
The robot must then fuse these observations with a map of
the environment and estimate its pose using techniques such
as Kalman filters, particle filters, or SLAM (simultaneous
localization and mapping). However, these techniques can
suffer from drift, ambiguity, and inconsistency, especially in
dynamic or cluttered environments, leading to erroneous or
uncertain pose estimates [10].

Another problem is planning and executing safe, efficient,
and feasible trajectories [11], [12]. The robot must consider
various constraints and objectives, such as avoiding collisions,
respecting traffic rules, minimizing energy consumption, and

following a given path or mission [13]. This requires sophis-
ticated algorithms that can reason about the robot’s dynamics,
kinematics, sensor models, and the environment’s geometry,
dynamics, and hazards [14]. These algorithms may include
motion planners, path followers, and trajectory optimizers,
which can be implemented using sampling-based planning,
optimal control, and reinforcement learning techniques [15].
However, these techniques can be computationally intensive
and may only sometimes find a solution, especially in complex
or changing environments.

A third problem is adapting and learning from the en-
vironment [16]. The robot must learn and generalize from
past experiences and observations to improve its performance,
robustness, and flexibility [17]. This requires deep learning,
transfer learning, and meta-learning, enabling the robot to learn
features, models, and policies from data and transfer them to
new tasks or situations [18], [19]. However, these techniques
require large amounts of data and computation and may suffer
from overfitting, generalization error, and sample efficiency.

To address this problem, a reinforcement learning approach
using Generalized Advantage Estimation (GAE) to enable au-
tonomous vehicles to learn to navigate complex environments
is proposed [20], [21]. Reinforcement learning enables agents
to learn by interacting with their environment and receiving
feedback as rewards or penalties [22]. It has been successfully
applied to various problems, including autonomous navigation
[23]. However, traditional reinforcement learning approaches
often require many interactions with the environment to learn
effectively, which can be impractical in real-time scenarios
such as autonomous navigation.

II. BACKGROUND

GAE is a method for estimating the advantage of each
action in a reinforcement learning algorithm, which is used
to update the policy [24]. It was developed to address the
problem of high variance in traditional reinforcement learn-
ing approaches, which can lead to slow learning and poor
performance. GAE uses a linear combination of the value
function and the reward to compute the advantage, which helps
to reduce the variance and accelerate learning. It is effective
in various environments, including robotic manipulation tasks
[25].

To this end [26] propose Observational Imitation Learning
(OIL), a novel imitation learning variant that supports online
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training and automatic selection of optimal behavior by ob-
serving multiple imperfect teachers. [27] describe a generic
navigation algorithm that uses data from sensors onboard the
drone to guide the drone to the site of the problem. [28]
propose a two-stage reinforcement learning (RL) based multi-
UAV collision avoidance approach without explicitly modeling
the uncertainty and noise in the environment. It is particularly
an arduous task when handling multi-agent systems where the
delay of one agent could spread to other agents. To resolve this
problem [29] propose a novel framework to deal with delays
as well as the non-stationary training issue of multi-agent
tasks with model-free deep reinforcement learning. MIDAS
uses an attention mechanism to handle an arbitrary number of
other agents and includes a “driver-type” parameter to learn a
single policy that aims of [30]. A neural network-based reactive
controller is proposed for a quadrotor to fly autonomously in
an unknown outdoor environment [31]. [32] aim to combine
cloud robotics technologies with deep reinforcement learning
to build a distributed training architecture and accelerate the
learning procedure of autonomous systems. A deep reinforce-
ment learning-based UANOA (USVs autonomous navigation
and obstacle avoidance) method is proposed [33]. Nowadays,
modern Deep-RL can be successfully applied to solve a wide
range of complex decision-making tasks for many types of
vehicles. Based on this context [34] propose the use of Deep-
RL to perform autonomous mapless navigation for Hybrid
Unmanned Aerial Underwater Vehicles (HUAUVs), robots that
can operate in both, air or water media. Other influential work
includes [35].

This work proposes a reinforcement learning approach
using GAE for autonomous vehicles navigating complex envi-
ronments. Our method is based on the actor-critic framework,
where the actor-network predicts the actions to take, and
the critic network estimates the value of each state. GAE
is used to compute the advantage of each action, which is
applied to update the actor and critic networks. Our method is
evaluated on a simulation of an autonomous vehicle navigating
through a series of challenging environments and show that it
can learn to navigate effectively and improve its performance
over time. Our results demonstrate the potential of GAE for
enabling autonomous vehicles to navigate through complex
environments and suggest that it could be a promising direction
for further research.

III. PROBLEM STATEMENT

Autonomous vehicles have the potential to revolutionize
transportation, but their ability to navigate complex environ-
ments is crucial for their practical deployment. Unfortunately,
traditional approaches to autonomous navigation often rely on
hand-designed rules or pre-defined maps, which may need to
be revised to handle the variety and unpredictability of real-
world environments. This can lead to poor performance and
even accidents in complex scenarios.

Reinforcement learning is a promising approach for en-
abling autonomous vehicles to learn to navigate through com-
plex environments. However, traditional reinforcement learn-
ing approaches often require many interactions with the envi-
ronment to learn effectively, which can be impractical in real-
time scenarios such as autonomous navigation. To address this
problem, the use Generalized Advantage Estimation (GAE) to

reduce the variance and accelerate learning in reinforcement
learning for autonomous vehicles is proposed.

This research aims to develop a reinforcement learning
approach using GAE for autonomous vehicles navigating
through complex environments and evaluate its performance
on a simulation of an autonomous vehicle navigating through a
series of challenging environments. The aim is to demonstrate
that our method can learn to navigate effectively and improve
its performance over time and to show that GAE has the
potential to be a promising direction for further research in
this area.

A simplified example to illustrate the basic ideas of using
GAE to enable an autonomous vehicle to navigate through
a complex environment can be seen in Algorithm 1. In
practice, additional factors such as perception, planning, and
dealing with real-world constraints and uncertainties must be
considered. In this example, the environment is represented
by the Environment class, which simulates the vehicle’s
interactions with the environment. The actor network and
criticnetwork are neural networks that predict the actions
to take and the value of each state, respectively. The Adam
optimizer is used to update the networks based on the loss.

The algorithm’s main loop runs through the episodes,
where an episode represents one complete run through the
environment. Within each episode, the algorithm runs through
the timesteps, where a timestep represents one action taken
by the vehicle. At each time step, the algorithm predicts the
action and the value using the actor and critic networks, takes
action, and observes the next state, reward, and done flag.
The reward and the value are stored in buffers, and the state
is updated.

When the episode is complete, the algorithm computes
the advantage using the GAE algorithm. It does this by
first predicting the value of the final state using the critic
network and then using this value along with the rewards
and values from the episode to compute the returns using the
compute gae function. The difference between returns and
values then defines the advantages.

Then actor and critic losses are calculated. Actor loss is a
measure of the quality of the action selection. It is computed
using the log probability of the action taken, as predicted by
the actor-network, and the advantage, as estimated by the GAE.
The advantage represents the excess reward obtained from
an action over the baseline value, and it reflects the relative
importance of the action in the long run. The log probability
represents the confidence of the actor-network in the action
and reflects the risk of the action in the short run. The
actor loss is defined as the negative dot product of these two
quantities, which indicates the trade-off between exploration
and exploitation. The actor loss is minimized during training
to improve the action selection of the robot. Mathematically,
the actor loss is defined as (Eq. 1):

actor loss = −mean (log probs× advantages) (1)

where log probs is a tensor of log probabilities, and
advantages is a tensor of advantages.
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Algorithm 1 Pseudocode for Reinforcement Learning Algo-
rithm using GAE

1: # Initialize the actor and critic networks
2: actor = Actor network()
3: critic = critic network()
4:
5: # Initialize the optimizer and the GAE parameters
6: optimizer = Adam(actor.parameters(), lr=learning rate)
7: gamma = 0.99 # Discount factor for future rewards
8: beta = 0.95 # Weight factor for the advantage
9:

10: # Loop through the episodes
11: for episode in range(num episodes): do
12: # Initialize the environment and the state
13: env = Environment()
14: state = env.reset()
15:
16: # Initialize the reward, value, and advantage buffers
17: rewards = []
18: values = []
19: advantages = []
20:
21: # Loop through the timesteps
22: while not env.done: do
23: # Predict the action and the value using
24: # the actor and critic networks
25: action = actor(state)
26: value = critic(state)
27:
28: # Take the action and observe the next state,
29: # reward, and done flag
30: next state, reward, done = env.step(action)
31:
32: # Store the reward and the value
33: rewards.append(reward)
34: values.append(value)
35:
36: # Update the state
37: state = next state
38: end while
39: # Compute the advantage using GAE
40: next value = critic(state)
41: returns = computate gae(next value, rewards)
42: returns = computate gae(values, gamma, beta)
43: advantages = returns− values
44:
45: # Compute the actor and critic losses
46: actor loss = (-log probs * advantages).mean()
47: critic loss = advantages.pow(2).mean()
48:
49: # Backpropagate the losses and update the actor
50: # and critic networks
51: loss = actor loss+ critic loss
52: optimizer.zero grad()
53: loss.backward()
54: optimizer.step()
55: end for

The critic loss is a measure of the quality of the value
estimation. It is computed using the advantage, as estimated
by the GAE, and the value, as predicted by the critic network.
The advantage represents the excess reward obtained from a
sequence of actions over the baseline value, and it reflects the
relative importance of the actions in the long run. The value
represents the expected reward obtained from a state or action,
and it reflects the long-term potential of the state or action. The
critic loss is defined as the mean squared error between these
two quantities, which indicates the deviation of the value from
the true advantage. The critic loss is minimized during training
to improve the value estimation of the robot. Mathematically,
the critic loss is defined as (Eq. 2):

critic loss = mean (advantages.pow (2)) (2)

where advantages is a tensor of advantages.

Finally, losses are backpropagated, and the model weights
are updated. The losses are backpropagated through the
model’s computation graph to compute the model weights’
gradients concerning the losses. The gradients are accumu-
lated over an episode’s timesteps and are used to update the
model weights using the optimizer algorithm. The optimizer
algorithm performs stochastic gradient descent on the model
weights, using the gradients as the updated direction and the
learning rate as the updated step size.

IV. METHODS

The algorithm is developed for a small autonomous robot
under the following considerations that replicate the functional
characteristics of our working platform (the robot could move
to any of the four adjacent cells in the grid by selecting one
of the following actions: up, down, left, or right). [36]:

• The robot has a state space of size four, representing
the state of the robot in the environment.

• The robot has an action space of size two, which
represents the actions that the robot can take in the
environment.

• The robot can be rewarded for performing a specific
action in the environment.

• The robot’s state can change after taking action in the
environment.

• The robot’s episode can be terminated (done flag set to
True) based on a particular environmental condition.

• The robot has an actor-network, which takes in the
current state of the robot and outputs a probability
distribution over the possible actions.

• The robot has a critic-network, which takes in the
current state of the robot and outputs a value estimate
for the current state.

Python and PyTorch are used for the implementation. The
first step consists of importing the libraries and defining algo-
rithm parameters, such as the number of episodes (1000) and
the learning rate (0.001). Next, the actor and critic networks is
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defined using PyTorch. The actor-network is a simple feedfor-
ward neural network with four input units (corresponding to
the state size), two output units (corresponding to the action
size), and two hidden layers with eight units each. The critic
network is also a simple feedforward neural network with four
input units (corresponding to the state size) and one output
unit (corresponding to the value estimate). Both networks use
ReLU activation functions.

Then, a function called compute gae() is defined to com-
pute the generalized advantage estimate for a given set of
rewards, values, and discount factor. This function takes in the
following value estimate, the rewards, the values, the discount
factor, and the weight factor for the advantage, and returns the
generalized advantage estimates.

The next step would be to define the environment with
which the robot will interact. This can be done by creating
a class for the environment, which should have methods for
resetting the environment, stepping through the environment
with an action, and checking if the episode is done. The envi-
ronment should also have necessary attributes, such as the state
and reward at each timestep and other relevant information.
For example, in the case of a small robot navigating through
a maze, the environment may have a 2D grid representation
of the maze, with the state being the current position of the
robot and the reward being based on the distance to the goal.

Finally, the algorithm’s main loop is implemented, consist-
ing of running through a series of episodes. In each episode,
the environment is restarted, and the state is initialized. At
each time step, the actor and critic networks are used to
predict the action and the value, respectively, and the action
is performed on the environment. The reward and value are
stored in buffers. Once the episode is terminated (either by
a termination condition or by reaching a maximum number
of timesteps), the GAE algorithm is used to compute the
rewards. For this purpose, the function compute gae() is used,
which takes the following value (predicted by the critical
network), the rewards, the values (predicted by the critical
network at each timestep), the discount factor (gamma) and
the weight factor (beta). In the end, it returns the calculated
payoffs. The losses of the actor and the critic are calculated
using the advantages and the stored probabilities and values.
These losses are backpropagated through the networks, and the
optimizer updates the networks. This process is repeated for
the specified number of episodes, updating the actor and critic
networks at each iteration based on the observed rewards and
advantages.

V. RESULTS

The experimental setup was designed entirely in Python
3.8.16 (GCC 7.5.0) and respected the motion constraints of
our ARMOS TurtleBot robot as well as the experimental
navigation environment. The robot was modeled as an agent
of the environment. The Deep-RL algorithm with GEA was
also implemented with Python and the PyTorch 1.13.0 library.

For all training episodes, the initial position of the vehicle
was set at the origin of the environment (lower left corner),
with coordinates (0.0, 0.0), with its front pointing towards the
positive x-axis. In each episode, a randomly generated target

point (final navigation destination) was created in the environ-
ment that the agent had to reach. In case of encountering an
obstacle, or a boundary of the environment, the agent turns its
position at a random angle and continues to move forward. The
episode ends if the vehicle has reached a total of 1000 steps
in that episode. Reaching the target point does not terminate
the episode.

The Adam optimizer was used to train the actor and critical
neural networks, with a learning rate of 0.001 for each method.
In both instances, a 256-piece minibatch size was chosen.
According to the reward values the agents attained, a training
cap of 1000 episodes was established. In order to ensure a
robust and effective learning algorithm, an exploration rate of
0.5 was employed for the actor network and 0.2 for the critic
network.

The reward value of one of the tests developed can be seen
in Fig. 1. It can be observed that it takes on average a little
more than 200 episodes to start learning the task, but after
this stage, it increases almost steadily the reward value until
it reaches close to the maximum saturation value.

Fig. 1. Moving of the reward over 1000 episodes of the training

Our algorithm has been extensively validated and has con-
sistently demonstrated accurate and effective agent behavior in
the environment. The agents were able to learn the features of
the environment and generalize their knowledge to successfully
navigate without the use of external maps. In addition, they
were able to adapt and learn how to avoid obstacles to
reach their target destination. These results demonstrate the
effectiveness of our algorithm in training intelligent agents
to navigate complex environments in a lifelike simulation.
This has important practical implications as it shows that our
approach can be used to train agents for real-world navigation
tasks without the need for external maps. Overall, our findings
highlight the potential of our algorithm as a powerful tool for
comprehending and learning complex behaviors in simulated
environments.

VI. DISCUSSION

The results of this study demonstrate the effectiveness of
using a Deep-RL algorithm with GEA for navigation tasks in a
simulated environment for a TurtleBot robot. The experimental
setup, implemented in Python and utilizing the PyTorch library,
successfully modeled the robot as an agent of the environment
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and respected the motion constraints of the TurtleBot. The
Adam optimizer was used to train the actor and critic neural
networks, with a learning rate of 0.001 and a minibatch size of
256. The exploration rate was set to 0.5 for the actor network
and 0.2 for the critic network.

The results show that the agent was able to effectively
navigate to the randomly generated target points in the envi-
ronment, while also avoiding obstacles and boundaries. It was
observed that it took on average a little more than 200 episodes
for the agent to start learning the task, but after this stage, the
reward value increases almost steadily until it reaches close to
the maximum saturation value. This suggests that the agent is
able to learn the navigation task in a relatively short amount
of time and perform well in the environment.

One limitation of this study is that the experiments were
conducted in a simulated environment, which may not fully
reflect the complexities of a real-world environment. Addi-
tionally, the agent’s decision-making process was based on a
predetermined set of rules, which may not be optimal in all
situations. However, the study’s results are still a promising
step towards the development of intelligent robots that can
navigate autonomously in complex environments.

In conclusion, this study has successfully demonstrated the
effectiveness of using a Deep-RL algorithm with GEA for
navigation tasks in a simulated environment for a TurtleBot
robot. The results show that the agent is able to learn the
navigation task in a relatively short amount of time and
perform well in the environment. Future work can further
improve the algorithm’s performance by incorporating more
realistic environments, and exploring other decision-making
methods.

VII. CONCLUSION

In this paper, a reinforcement learning algorithm for a
small robot using generalized advantage estimation (GAE) is
presented. The algorithm was implemented in Python and was
designed to enable the robot to navigate and interact with its
environment to maximize its reward. The robot was designed
to operate in a simple 2D environment. The environment
consisted of a grid of cells, each of which could be occupied
by the robot or contain an obstacle. The robot could move to
any of the four adjacent cells in the grid by selecting one of the
following actions: up, down, left, or right. At each timestep,
the robot received a reward based on its current position and
the presence or absence of obstacles in its environment. To
enable the robot to learn how to navigate its environment
and maximize its reward, a reinforcement learning algorithm
using GAE is implemented. The algorithm consisted of two
key components: an actor-network and a critic network. The
actor network was responsible for predicting the action the
robot should take at each timestep based on the current state
of the environment. The critic network was responsible for
predicting the value of each state, which was used to estimate
the expected future reward of each action. A combination
of supervised learning and reinforcement learning to train
the actor and critic networks is used. Specifically, the actor-
network to predict the action the robot should take at each
timestep based on the current state of the environment is
used. The actor-network was trained using supervised learning,

with the input being the current state of the environment and
the output being the predicted action. The critic network was
trained using reinforcement learning, with the input being the
current state of the environment and the output being the
predicted value.

The algorithm was run for a series of episodes, resetting the
environment and initializing the state at the beginning of each
episode. At each timestep, the actor and critic networks predict
the action and value, respectively, and the action is performed
on the environment. The reward and value are stored in buffers.
Once the episode is terminated, the GAE algorithm calculates
the payoffs, and the losses for the actor and critic networks
are calculated. These losses are backpropagated and used to
update the networks. The results of our experiments show that
the robot can successfully navigate through the environment
and reach the goal state, with the average reward increasing
throughout training. It was observed that the losses of actor
and critic networks decrease as training progresses, indicating
that the networks are learning effectively.

Overall, our implementation of the GAE algorithm for
the small robot demonstrates its effectiveness in learning to
navigate through an environment and reach a specific goal
state. Furthermore, this algorithm can be extended to other
reinforcement learning tasks in various environments, such as
control and decision-making.
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using ros,” Tekhnê, vol. 18, no. 2, pp. 19–24, 2021.

www.ijacsa.thesai.org 959 | P a g e


