
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

An Automated Impact Analysis Approach for Test
Cases based on Changes of Use Case based

Requirement Specifications

Adisak Intana1, Kanjana Laosen2, Thiwatip Sriraksa3
College of Computing, Prince of Songkla University, Phuket, Thailand

Abstract—Change Impact Analysis (CIA) is essential to the
software development process that identifies the potential effects
of changes during the development process. The changing of
requirements always impacts on the software testing because
some parts of the existing test cases may not be used to test
the software. This affects new test cases to be entirely generated
from the changed version of software requirements specification
that causes a considerable amount of time and effort to generate
new test cases to re-test the modified system. Therefore, this paper
proposes a novel automatic impact analysis approach of test cases
based on changes of use case based requirement specification.
This approach enables a framework and CIA algorithm where
the impact of test cases is analysed when the requirement
specification is changed. To detect the change, two versions
as before-change and after-change of the use case model are
compared. Consequently, the patterns representing the cause of
variable changes are classified and analysed. This results in the
existing test cases to be analysed whether they are completely
reused, partly updated as well as additionally generated. The new
test cases are generated automatically by using the Combination
of Equivalence and Classification Tree Method (CCTM). This
benefits the level of testing coverage with a minimised number
of test cases to be enabled and the redundant test cases to be
eliminated. The automation of this approach is demonstrated with
the developed prototype tool. The validation and evaluation result
with two real case studies from Hospital Information System
(HIS) together with perspective views of practical specialists
confirms the contribution of this tool that we seek.

Keywords—Change impact analysis approach; test case; black-
box testing; use case based requirement specification; combination
of equivalence and classification tree method

I. INTRODUCTION

Software testing is one of the most necessary and integral
stages in the software development life cycle [1]. It consists
of a set of activities that are performed by using a systematic
approach. This enables a System Under Test (SUT) to be exe-
cuted on a set of test cases to ensure that the software system
is free from error. Black-box testing is one of the software
testing methods that examines the functionality of software
without knowing the internal structures or mechanisms. It is
sometimes called specification-based testing as this type of
software testing is being performed to validate the complete
or integrated software based on the Software Requirements
Specification (SRS) document. Test cases are usually derived
from software artifacts such as specifications and design.
Software testers initially go through the requirement document
to understand requirements and specifications before designing
and generating test cases.

Recently, black-box testing techniques have been widely
applied in many practical software development domains in-
cluding Point of Sales (POSs) [2], Internet of Things (IoTs)
[3], School Payment Information System [4] and e-Learning
system [5]. The result of this application can confirm that
black-box testing can guarantee the correctness of the system
functionality whether it meets the expected users’ needs.
Furthermore, in the software testing community, several black-
box testing techniques have been introduced. The widely
known black-box testing techniques include Equivalence Class
Partition (ECP) [1], Boundary Value Analysis (BVA) [1], Clas-
sification Tree Method (CTM) [6], [7], Decision Table–Based
Testing [1], State Transition Testing [1]. These influence the
benefit which maximises test case coverage with a minimised
number of test cases. However, one of the research chal-
lenges in software testing is that since the generated test
case is normally derived from the SRS document, changing
requirements always impacts on the existing previous test cases
which are unable to be retested in the modified system [8],
[9]. As the advanced technology demands businesses grow
and evolve their needs, the requirement of systems becomes
more complex and continuously changes. Over time, some
domain features may not be needed, therefore either removing
or replacing them with a new feature, whilst may be refined
[8], [9]. Whenever the software requirement is changed, the
testing process is affected. This leads to new test cases being
created from the changed version of software requirements
specification. Consequently, this causes considerable time and
resource effort to generate test cases to test all new systems
to ensure that all components in the system are connected and
functioning correctly. Thus, Change Impact Analysis (CIA) for
testing is needed to determine how much software testing and
test automation should be performed by software testers after
the change.

Therefore, in our previous work [10], we proposed the con-
ceptual vision of impact analysis framework of test cases based
on changes of use case based requirements. This framework
analyses the impact on changes of test cases when variables
in use case specification are changed. Five patterns of atomic
changes were designed specifically according to the change of
use case specification affecting the test case as 1) change of
variable name, 2) change of variable type, 3) change of variable
range value, 4) change of number of variables, and 5) change
of variable order. The result of this impact analysis enables
the existing test cases to be completely reused, partly updated
as well as additionally generated. The modified version of
test cases is generated with the Combination of Equivalence

www.ijacsa.thesai.org 967 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

and Classification Tree Method (CCTM), the hybrid testing
generation approach of ECP with CTM testing technique.
The combination of testing technique increases the level of
testing coverage and reduces the redundant test cases. The
effectiveness of this framework was demonstrated manually
with the real case study, Kidney Failure Diagnosis (KFD)
system.

The work proposed in this paper is extended from our
previous work [10]. This paper presents an automated impact
analysis approach of test cases based on changes of use
case based requirement specification. The automation of this
approach is demonstrated by an automatic prototype tool in
which the CIA algorithm of the approach is implemented in
this tool. To detect changes, the tool provides consistency
checking by comparing two versions as before-change and
after-change of use case XML files. Five patterns of atomic
changes designed specifically are encoded into this tool to
analyse and classify the cause of the change. The tool also
performs the analysis of level of change impact on the before-
change version of test cases that are classified into four groups
as no-change, delete, update and create categories. To create
the new test cases, CCTM was implemented in the tool.
Furthermore, we show the applicability and efficiency of the
proposed automatic approach and tool with two case studies
formulated from real-world Hospital Information System (HIS)
with perspective views of practical specialists. The result of
this test case generation from these case studies by the tool
was compared with the expected test cases that were calculated
manually to validate the accuracy and effectiveness of both
approach and implementation. The reusability level of test
cases was also evaluated by the case studies. Moreover, the
satisfactory level of the proposed approach and tool was
evaluated from practical specialists for potential application
in the future.

The rest of the paper is structured as follows. Section
II gives the necessary background and related work. Then,
Section III describes and demonstrates the proposed impact
analysis approach and the detailed algorithm with our experi-
enced case study. In Section IV, we demonstrate the proof of
concept of our proposed approach through the evaluation of
implemented prototype tool for impact analysis of test cases
with two real-world case studies. Section V presents lesson
learned and discussions of this study. Finally, conclusions and
areas of future work are summarised in Section VI.

II. RELATED WORK

There are some research studies dealing with the applica-
tion of the CIA approach to analyse the effect level of test case
changes [11], [12], [9], [8], [13]. Some of these focus on the
impact analysis of test cases from changes in database schema
such as the work proposed by [12], [13]. The author in [12]
presented a tool for analysing the changes of database schema
encoding in terms of embedded SQL in the source code. The
database schema change is detected from the recorded log
file before the impact of the corresponding embedded SQL
in the source code is analysed and new test cases are finally
generated. In [13], the impact of changes in database schema
requirements such as addition, deletion, modification or change
of some schema values is analysed before a set of test cases
corresponding to the change is generated.

Some research studies proposed a CIA framework for test
cases from the change of specification [11], [9], [8], [14]. The
author in [11], [9] proposed the impact analysis framework
of test cases from the change of use case specification. The
author in [11] proposed a test case selection framework based
on the change of two versions of use case description. These
two versions of the use case description are encoded in XML
file format and used as input for this framework. Requirement
validation matrix mapping the use case with its corresponding
generated test cases is used to check and track the change of
use cases. When there are changes in the use case, the existing
test case affected from the change is considered whether is
can be reusable. The author in [9] extended the capability of
[11] in which the requirement validation matrix is generated
automatically from the old version of use case description
when it does not exist. However, both former research studies
only analyse the impact results in either the existing test case
from the previous version can be reused or the new test case
must be generated. They do not classify the cause of change
into a pattern which may help testers to analyse the change
of test cases faster and more efficiently. Furthermore, their
framework does not support the automatic test case generation
in the case that new test cases are required to be generated due
to the added feature or requirement. Recently, [14] proposed
a CIA approach for test cases affected from the change of
inputs or outputs of functional requirements. The approach
offers the change process enabling the change control over
functional requirements, test cases and database schema. The
rollback mechanism is also provided to support in the case
of cancelling of changes. Similar to other earlier mentioned
studies, the cause of change is not classified and the level of
reusability is not specified in this work.

The closely related work is proposed by [8]. They proposed
the impact analysis framework of test cases from the change
of use case specification. They introduced seven patterns
indicating the cause of changes into their impact analysis tool.
This includes the change of 1) variable name, 2) data type,
3) variable value, 4) variable tag, 5) order, 6) link and 7)
variable number. They are used to analyse the two versions
of HTML document and XML schema file representing the
previous and changed version of input and output specified in
the Graphic User Interface (GUI) of web application. ECP and
BVA testing techniques are used to generate the new test case.
From our literature reviews, we can conclude that there are few
attempts at the specification level. Therefore, our challenge is
to contribute an impact analysis approach for test case based
on changes of requirement specification.

III. MATERIALS AND APPROACH

A. Framework of Impact Analysis of Test Cases

A conceptual overview of an impact analysis framework
of test cases based on changes of use case proposed in our
preliminary work [10] as shown in Fig. 1. This framework is
divided into four steps: 1) variables in two versions as before-
change and after-change of the use case specification model
are extracted. Then, 2) the extracted variables from these two
versions are compared. This results in the variables affected
from the requirement change to be identified. The cause of
changes is also identified. There are five patterns of atomic
changes classified for the cause of changes that are a) change of

www.ijacsa.thesai.org 968 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

variable name, b) change of variable type, c) change of variable
range value, d) change of number of variables and e) changes
of variable order. After that 3) the impact analysis of test cases
is performed. This enables the corresponding test case from the
before-change version recorded on the database to be retrieved
in order to analyse the level of change impact. Consequently,
the analysed test cases are classified into four groups that are
no-change, delete, update and create categories. In the case
of no change effect, the test case is totally reused in the new
version. However, if change impacts of test cases are detected,
either the affected test case is updated giving it improvement
or 4) the new test case is fully generated according to the
additional requirement by using CCTM technique.

Fig. 1. Framework of impact analysis of test cases [10]

B. Case Study

To demonstrate the effectiveness of our approach, we
formulate our case study, Medical Record System (MRS) from
a real-world system, Hospital Information System (HIS)1, an
open-source software based on Java platform. The system
was deployed over 90 hospitals in Thailand. This system
has been chosen as it is a safety-critical system related to
human diagnosis that requires a high degree of correctness.
Furthermore, we select two real case studies from the sub-
system that has the requirements changing issues, these types
of modules require a high degree of accuracy calculation and
measurement. To explore the effectiveness of our approach, we
chose Kidney Failure Diagnosis (KFD) and Online Nursing
Assessment (ONA) subsystems from HIS. Table I shows the
criteria of the selected case studies from the different level
of complexity. Number of implemented use cases is the first
criteria to demonstrate the complexity of system. As the
Cartesian product method is used in testing technique in which
all variable range value are multiplied together to generate test

1http://www.opensource-technology.com

cases, number of variable is the second criteria. Number of
change requests influencing five patterns of atomic changes
is the other criteria used for case study selection. As can be
seen in this table, KFD is a simple case study that is used
to demonstrate and evaluate how the proposed approach and
its implemented prototype tool work. ONA is a more complex
case study compared to KFD in terms of number of use cases,
variables and change requests. Moreover, it contains the change
requests covering all patterns of atomic changes. Therefore,
ONA is more focused on the evaluation of the efficiency of the
approach and implementation. Specifications of these systems
are described in the following sections.

TABLE I. CASE STUDIES CHARACTERISTICS

System

#
us

e
ca

se
s

#
va

ri
ab

le
s

#
ch

an
ge

re
qu

es
ts

change of

va
ri

ab
le

na
m

e

va
ri

ab
le

ty
pe

va
ri

ab
le

ra
ng

e
va

lu
e

nu
m

be
r

of
va

ri
ab

le
s

va
ri

ab
le

or
de

r

KFD 3 6 3 × × - × ×
ONA 5 19 4 × × × × ×

1) Kidney Failure Diagnosis (KFD) Subsystem: KFD is a
subsystem in MRS that records the history of patient treatment.
KFD subsystem provides the result of kidney failure analysis
to physicians helping them to diagnose whether their patients
kidney disorders are abnormal. The Chronic Kidney Disease
(CKD) of a patient is calculated and used to interpret the stage
of kidney disease by this system. This calculation is based on
two factors: Glomerular Filtration Rate (GFR) and Uric Acid
Creatinine (UO). GFR is a calculation that is used to determine
how well the kidneys function by estimating the blood that is
filtered by the kidneys. GFR is normally calculated by using
mathematical formula including the Age, Gender and Serum
Creatinine (SCr) of patients. Failure of the patient kidney
is interpreted by determining GFR values together with the
effects of UO. This results in the stage of kidney failure to
be interpreted and suggests what treatment is applied to the
patient. After this diagnosis and applying the treatment to
the patient, the nurse records the information regarding the
measured factors, interpretation and diagnosis results into the
system, so that the physician can view the history of treatment
in order to monitor the patient disease later.

Requirements. The requirements of this system are sum-
marised as follows:

• REQ1: The system shall automatically calculate GFR
value for the patient from Gender, Age and Scr.

• REQ2: The system shall accurately perform the kid-
ney failure state from GFR and UO value mapping in
five stages.

◦ Stage 1 (Risk Stage): GFR >=90 AND UO >
300 mg/g

◦ Stage 2 (Injury): GFR = 60-89 AND UO >
300 mg/g

◦ Stage 3 (Failure): GFR = 30−59 AND (UO
= 30−300 mg/g OR UO > 300 mg/g)

◦ Stage 4 (Loss): GFR = 15−29 AND (UO <

www.ijacsa.thesai.org 969 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

30 mg/g OR UO = 30-300 mg/g OR UO >
300 mg/g)

◦ Stage 5 (ESRD): GFR < 15 AND (UO < 30
mg/g OR UO = 30-300 mg/g OR UO > 300
mg/g)

• REQ3: The interpreter of kidney failure states per a
patient must be displayed at only one stage.

Use Case based Specification Model. The use case
diagram of KFD subsystem is shown in Fig. 2. It consists
of three modules as demonstrated as use cases UC001-UC003
that covers all KFD functionality including GFR calculation,
interpretation and display that correspond to requirements
REQ1-REQ3, respectively. The detailed functionality of each
use case is represented in the form of use case description as
shown in Fig. 3. This figure demonstrates a brief description
of use case UC001 that describes the behaviour of function
GFR calculation. It explains the sequence of the step for
use case UC001 including main flow of events, alternative
of events and exception flow of each use case. The flow of
events demonstrates the main step-by-step of GFR calculation.
Furthermore, the input for GFR calculation including Gender,
Age and SCr used to calculate GFR is also indicated in the
corresponding step. After the GFR calculation, the GFR stage
is interpreted as an output of this functionality. Based on the
input and output, the relevant variables affected the change of
test cases can be analysed and stored in the XML dictionary
document for generating test data.

Fig. 2. Use case model for KFD subsystem

Fig. 3. Example of use case description of UC001 (Version 1)

Considering each use case diagram of the KFD subsystem,
variables from the data dictionary of the system are introduced
and used as input data, as shown in Table II. This table contains
variable names, variable types and data range values. The type
of variable and the range value of data for each variable are
determined for the purpose of creating the test data such as

valid variables of Gender are F and M, variable Age contains
the correct data range values: 0-120, which is in the range of
data interest.

TABLE II. DATA DICTIONARY OF UC001 (VERSION 1)

Variable
Name

Description Data Type Data Range

Gender Gender of patients Varchar(1) F, M
Age Age of patients Integer 0-120
SCr Serum Creatinine Float 0.0-10.0
UO Urine Albumin Integer 0-∞
GFR Glomerular Filtration

Rate
Integer 0-∞

Stage Kidney Failure Stage Varchar(255) Stage 1-Stage 5

Requirement Change Requests. There were the changes
of the detailed requirement in the first version of use case
based specification model from the user that were recorded in
the requirement change request form as shown in Table III.
The user requested to change the formula for GFR calcula-
tion as identified in CH01. This change request affected the
functionality of requirement REQ1. In the first version, only
a single formula was used to calculate GFR for all ages. In
the changed version, five formulas are used for different ages
instead as demonstrated in Table IV. The GFR calculation is
measured separately for an adult patient whose age is greater
than and equal to 18 with different Sex and SCr and a child
patient who has age less than 18. Moreover, the factor Height
is also included in the changed formula for the child patient.
There was also change request CH02 that results in the change
in requirement REQ2 in which variable Gender was renamed
to be Sex. In the last change request CH03, the data type
of GFR were also changed from integer to float. The relevant
variables in the changed version are analysed as shown in Table
V.

TABLE III. THE CHANGE REQUEST OF KFD SUBSYSTEM

Change
ID

Change Description Affected
Requirement
ID

Affected
Use Case
ID

CH01 Change the formula for GFR
Calculation

REQ1 UC001

CH02 The name of variable change
from gender to sex based on
the table of GFR formula

REQ2 UC003

CH03 Change data type of GFR to
decimal

REQ3 UC002

TABLE IV. THE CHANGED GFR FORMULA

Age Sex SCr Formula

≥18
F ≤ 0.7 GFR=144×(SCr/0.7)−0.329×(0.993)Age

> 0.7 GFR=144×(SCr/0.7)−1.209×(0.993))Age

M ≤ 0.9 GFR=141×(SCr/0.9)−0.411×(0.993)Age

> 0.9 GFR=141×(SCr/0.9)−1.209×(0.993)Age

<18 F/M GFR=0.413 × Height((cm)/SCr(mg/dL)
Note: F=Female,M=Male

Fig. 4 and Table V describe the use case description and
its corresponding details of data dictionary in the changed
version respectively. Based on the requirement change, there
is a change in variable Age in which the data range value of
this variable is changed from 0-120 to two range values that
are 0-17 (<18) and 18-120 (≥ 18). As the value of variable
SCr is calculated based on the value of variables Sex and Age

www.ijacsa.thesai.org 970 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

as shown as the different equations in Table IV, This affects
the value of this variable to be changed. The range value of
factor SCr is divided into two main criteria for female and
male which is (≤ 0.7, > 0.7) and (≤0.9, > 0.9) respectively.
Furthermore, as the height of patients is included into the
changed formula, variable Height with its range value (0-300)
is added into the new version of data dictionary. Finally, the
type of variables GFR is changed from integer to floating point
as to increase more accurate and precise result interpretation.

Fig. 4. Use case description of UC001 (Version 2)

TABLE V. DATA DICTIONARY OF UC001 (VERSION 2)

Variable
Name

Description Data Type Data Range

Sex Gender of patients Varchar(1) F, M
Age Age of patients Integer < 18, ≥ 18
SCr Serum Creatinine Float ≤ 0.7, > 0.7,

≤ 0.9, > 0.9
Height Height of patients Integer 0-300
UO Urine Albumin Integer 0-∞
GFR Glomerular

Filtration Rate
Float 0.0-∞

Stage Kidney Failure Stage Varchar(255) Stage 1-Stage 5

2) Online nursing assessment (ONA) subsystem: ONA sub-
system is used to record the clinical information of the patient
in order to be used to evaluate the symptoms of the patient
and consider the treatment for the doctor including medicine
dispensing to patients and accurate treatment.

Requirement. The following are the requirements of this
subsystem:

• REQ1: Nurses shall record nursing assessment data
such as patient severity (Triage), service type (Visit-
Type), service status (VisitStatus), allergy, pregnancy,
and lactation status.

• REQ2: Nurses shall record the clinical information of
the patient including vital signs (V/S), which includes
pulse rate (pulse), respiratory rate (RR), body tempera-
ture (Temp) and blood pressure (BP), as well as weight
(weight), height (height) and waistline (waistline) for
patients. The normal range value of each clinical
information is shown as follows.

◦ Pulse: 60-100 time/min.
◦ PR: 12-18 time/min.
◦ Temp: 36.5-37.5 ◦C
◦ BP: 90/60-120/80 mmHg

• REQ3: The system shall automatically calculate Body
Mass Index (BMI) for patients. The formula is calcu-
lated as BMI = Weight divided by square meter of
height.

• REQ4: The level of nutrition is divided into five levels
as follows [15]:

◦ BMI < 18.5: Underweight
◦ BMI ≤ 18.5 and BMI ≥ 24.9: Normal weight
◦ BMI ≤ 25.0 and BMI ≥ 29.9: Pre-obesity
◦ BMI ≤ 30.0 and BMI ≥ 34.9: Obesity class I
◦ BMI ≤ 35.0 and BMI ≥ 39.9: Obesity class II
◦ BMI ≥ 40.0: Obesity class III

Use Case based Specification Model. The use case
diagram corresponding to the requirements described in the
previous section is shown in Fig. 5. There are two actors
specified in this use case, the nurse and doctor. Two main
use cases are identified, UC01: Assessment Record and UC02:
Vital Sign Record. Use case UC01 implements requirement
REQ1 regarding nursing assessment record, whereas require-
ment REQ2 regarding operation recording the clinical infor-
mation of the patient is implemented by use case UC02.
After recording such clinical information, the calculation and
interpretation operation is performed based on requirements
REQ3 and REQ4. Therefore, three use cases that are UC021:
BMI Calculation, UC022: Nutrition Interpretation and UC023:
Nutrition Display are included by use case UC02.

Fig. 5. Use case model for ONA subsystem

Fig. 6 shows the use case description of use case UC01
(Version 1). This figure specifies the details of use case includ-
ing the sequence of each step of use case UC01 including Main
Flow of Events, Alternative of Events and Exception Flows. As
can be seen in this figure, the description of use case UC01
is explained regarding the functionality of nursing assessment
record. Considering the flow of events in this table, variables
Triage, VisitType, VisitStatus, Allergy, Pregnancy, Lactation
and PainScore are indicated as an input data. These variables
and their data structure are defined in the data dictionary as the
form of XML file format. This file is used later to generate
test data. These variables including their data structure and
possible data range are shown in Table VI. There are 19
variables included in the first version of data dictionary used
by the functionality of ONA subsystem. For example, variable
VisitType that has data type as a string for recording the reason
of visit. This variable contains nominal data value to be Self,
Relative and Other. Another example is variable Triage that

www.ijacsa.thesai.org 971 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

determines the priority of patients’ treatments based on the
severity of their condition. This variable has ordinal data range
value of a character from 1 to 5.

Fig. 6. Use case description of UC01 (Version 1)

TABLE VI. DATA DICTIONARY OF UC01 (VERSION 1)

Variable
Name

Description Data Type Data Range

Sex Gender of patients Varchar(1) F, M
Age Age of patients Integer 1-120
Pulse Pulse Rate Integer 0-201
RR Respiratory Rate Integer 0-120
Temp Body Temperature Integer 35-46
BP upper Systolic blood pres-

sure
Integer 0-350

BP lower Diastolic blood
pressure

Integer 0-350

Weight Weight of patients Integer 0-200
Height Height of patients Integer 0-300
WL Waist of patients Integer 5-80′′

BMI Body Mass Index Float 18.50-30.00
VisitType Service Type Varchar(255) Self, Relative,

Other
VisitStatus Service Status Varchar(255) Walk, Wheelchair,

Other
Triage Triage Level Varchar(1) 1-5
Allergy Allergy Status Varchar(1) Y, N
Preg Pregnancy Status Varchar(1) Y, N
Lactation Lactation Status Varchar(1) Y, N
Pain Score Pain Level Integer 1-10
NT Level Nutrition Level Varchar(2) L1-L5

Requirement change requests. After we analysed the
requirement change request, we discovered that this change
of requirements affected the functionality of requirement as
shown in Table VII. There are two types of changes, deleting
and adding some requirements respectively. This impacted the
use case description and data dictionary to be changed as
shown in Fig. 7 and Table VIII, respectively. According to
change request CH01, Pregnancy and Lactation of patient
are excluded from inputs of assessment information in the
second version of the use case description. This affected the
variables Preg and Lactation specified in the first version of
data dictionary were deleted. Change request CH02 introduces
the new functionality into the subsystem to display the nursing
record information after assessment recording functionality, the
new use case (UC011) is added and extended from UC01. This
added use case results in variable DateTime to be added in
order to record the patient information based on the selected
date. This variable contains nominal data range values CD
and UD for the current date and updated date respectively.
Furthermore, some variables changed their data range value.
For example, from change request CH03, variable Pulse were
separated from one partition (0-201) into two partitions as 60-
100 and 90-130 for different age groups respectively. Change
request CH04 affected the name of variable NT Level to be
renamed to BMI Level according to the international standard
name based on WHO.

TABLE VII. THE CHANGE REQUEST OF ONA SYSTEM

Change
ID

Change Description Affected
Require-
ment ID

Affected
Use Case
ID

CH01 Delete pregnancy and lactation de-
tails

REQ1 UC01

CH02 The system can display the nursing
record information based on the
selected date (current date: CD and
updated date: UD)

REQ2 UC011

CH03 Adjust the patient’s normal range
including Pause: 90-130 times per
minute for children aged 18 years
old and 60-100 times per minute
for adult aged over 18 years old

REQ3 UC02

CH04 Rename the nutrition level display
to BMI level

REQ4 UC021

Change data type of Weight and
Height to decimal

REQ4 UC023

Fig. 7. Use case description of UC01 (Version 2)

C. CIA Algorithm

To achieve a better understanding of our impact analysis
framework as described in Section III-A, the detailed algorithm
is explained in this section. This is demonstrated with using
our experienced case study, KFD subsystem as an example.

Step 1: Variable Extraction. After the change request is
identified by the change analysis, variables specified in the
use case diagram are extracted. As variables and their data
structure are normally defined in the data dictionary, the XML
of data dictionary that is extended from the XML of conformed
use case is used as a source for this variable extraction in
our developed prototype tool. The variable information in the
XLM file including use case id, variable name, variable type,
variable range value, variable number and variable order are
extracted before it is analysed for the level of change impact.

Fig. 8 demonstrates an example of the changed version of
the XML of data dictionary that conforms to the changed ver-
sion of use case description. The information of variables Sex,
Age, Height and SCr encoded in this XML file is extracted.
Especially, the data structure that are variable type and variable
range value from the extracted information is normally used
as information to generate test cases or test data. For instance,
considering variable Age which has data type as an integer,
there are four possible test cases to be considered, the age in
the range of 0-17, 18-120 and out of the range that are less
than 0 and greater than 120.

Step 2: Two Versions of Use Case File Comparison.
This step performs consistency checking in order to identify
the variables affected from the change of requirement. Two
versions of the extracted variable information between before-
change and after-change of the used case diagram from the
previous step are compared and analysed. This results in the

www.ijacsa.thesai.org 972 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

TABLE VIII. DATA DICTIONARY OF UC01 (VERSION 2)

Variable
Name

Description Data Type Data Range

Sex Gender of patients Varchar(1) F, M
Age Age of patients Integer 1-120
Pulse Pulse Rate Integer 60-100 for

children aged
18 years old,
90-130 for
adult aged
above 18 years

old
RR Respiratory Rate Integer 0-120
Temp Body Temperature Integer 35-46
BP upper Systolic blood pres-

sure
Integer 0-350

BP lower Diastolic blood
pressure

Integer 0-350

Weight Weight
of patients

Float 0.0-200.0

Height Height
of patients

Float 0.0-300.0

WL Waist of patients Integer 5-80′′

BMI Body Mass Index Float 18.50-30.00
VisitType Service Type Varchar(255) Self, Relative,

Other
VisitStatus Service Status Varchar(255) Walk,

Wheelchair,
Other

Normal Normal Status Boolean 1=true,0=false
Datetime Recorded Date

Time
Varchar(2) CD, UD

Triage Triage Level Varchar(1) 1-5
Pain Score Pain Level Integer 1-10
BMI Level BMI Level Varchar(2) L1-L5

Fig. 8. The XML file of UC001 (Version 2)

cause of changes to be identified and analysed. There are
five patterns of atomic changes for determining the cause of
changes that are 1) change of variable name, 2) change of
variable type, 3) change of variable range value, 4) change
of number of variables and 5) change of variable order. The
possible cause of change patterns affects to the addition,
deletion and modification of target variables.

Considering the changed GFR calculation formulas in KFD
subsystem as shown in Table IV, for example, the comparison
of two versions of use case enables us to discover the causes

of variable changes. 1) the modification of variable value is
detected as the range value of variable Age was changed from
0-120 to 0-17 and 18-120. Furthermore, 2) the addition of
variable is identified as variable Height for GFR calculation.
The before-changed test cases directly affected from these
variable changes are later discovered to be re-generated.

Fig. 9. Procedure of impact analysis of test cases

Step 3: Impact Analysis of Test Cases. After the variable
affected by the change is identified and considered, the change
impact of test cases is analysed. Fig. 9 shows the procedure of
the change impact of test cases that is divided into three steps.

(1) Retrieve Inputs for Impact Analysis: this step retrieves
and prepares the necessary inputs used for analysing the
change impact of test cases. Two sets of data are prepared
in this step: the information of changed variables and a set of
before-changed test cases. To prepare this, the information of
the changed variables together with the cause of changes is
input from the previous step, whereas a set of before-changed
test cases is retrieved from the test case database. This results
in the information of changing data in affected variables and
changing test cases to be generated and used in the next step.

(2) Impact Analysis of Test Cases: the information of
changed variables prepared from the previous steps is used
to analyse and validate the impact on the before-changed test
cases. This results in these test cases being classified into
four groups that are no-change, delete, update and create
categories. Our developed tool also supports this step to
analyse effectively the change impact from the multiple various
change patterns occurring in parallel at the same time. The
patterns for identifying the action of effect on test cases based
on type of change impact are summarised in Table IX. The
percentage of estimated reusability is also calculated for each
pattern.

Considering in the case of 1) the change of variable name,
the impact of this case affects the corresponding test cases
of this variable to be not changed. Thus, they can be totally
reused (100%). For 2) the change of data type, the existing

www.ijacsa.thesai.org 973 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

TABLE IX. SUMMARY OF FIVE PATTERNS OF AUTOMATIC CHANGES
WITH EFFECT ON TEST CASES

Type of Impact Action

%
E

st
.R

eu
se

N
o

C
ha

ng
e

U
pd

at
e

D
el

et
e

N
ew

Change of variable name - × 100
Change of data type - × 100

Change of number of variables Add × × 0
Delete × × 0

Change of variable value
Add × × × 50
Delete × × × 50
Update × 100

Change of variable order - × × 0

test cases can be 100% reused with only updating their data
type. 3) the change of number of variables, in both cases of
adding and deleting the variables, results in all existing test
cases not to be totally reused. This is because of the Cartesian
product used for generating test cases needs to recalculate
the multiplication of all variable range value to support the
deletion or addition of variable. This affects the existing test
cases corresponding to these variables to be the deleted and the
new test cases to be generated. 4) The change of range value
of variables is divided into three possible cases (4.1) adding
a new range value in which the valid partition is added or
extended from the other valid partition. This results in all test
cases generated from this partition are totally reused as there
is no change in the valid partition. However, this case causes
the intersection of range values between the addition valid
partition and the other invalid partition. This, therefore, results
in the range value of affected invalid partition to be reduced by
removing the overlapped value. As a result of this, the existing
test cases affected from this reduced invalid partition to be
updated and new test cases are generated from the additional
valid partition. Similar to this, (4.2) deleting existing range
value affects the existing test cases generated from unchanged
partition to be totally reused and those generated from deleted
partition to be deleted. Furthermore, this case affects the range
value of invalid partition to be expanded to cover the deleted
partition. Therefore, this results in the test case corresponding
to this to be updated. In cases (4.1) and (4.2), the percentage
of reusable test cases is estimated to be 50%. In the case of
(4.3) updating existing range value that one partition is split
into two partitions, this causes the existing test cases to be
updated (100% of reusability). Finally, we have discovered that
the change number of variables as adding new variables and
deleting existing variable affects the order of variable. Thus,
5) the change of variable order affects some exisitng test cases
to be deleted and new test cases to be generated.

(3) Test Case Modification: the before-changed test cases
are considered to be modified based on the result of impact
analysis that is classified into the impact group as mentioned
earlier. For the test case that is classified into no-change group,
it can be totally reused for the new version. However, the
before-changed test cases have their value updated or are
deleted when the result of impact analysis is classified into
the update or delete groups respectively. If the impact analysis
of test cases results in the create group, a new test case is
generated. All modified and created test cases are generated
by using CCTM algorithm.

Table X shows an example of the variable partitions for test
case generation after analysing the impact of test cases. As can
be seen in this table, based on the requirement change request
of GFR Calculation module mentioned before, the range of
variable Age is changed from one partition (partition 5 in
variable before change) for the valid test case, 0-120 years old,
to two partitions (partitions 5 and 6 in variable after change)
for the valid test case, 0-17 and 18-120 years old. This causes
the updated test case to be improved by creating a new version
of test cases corresponding to the updated partition as shown
in Table XI. The new test cases corresponding to the separated
partitions after the change (0-17 and 18-120 years old) are re-
generated as in test cases 2-3 (as shown in the highlighted
row in the table). Furthermore, from the no-change group of
impact analysis, there are two original (unchanged) test cases
that are totally reused in the new set of test cases, test cases
1, 4-5 respectively.

TABLE X. EXAMPLE OF UPDATING THE VALUE OF A VARIABLE AFTER
CHANGING

Variables before change Variables after change
Class Var. Min. Max. Type Class Var. Min. Max. Type

1
Sex

F F Valid 1
Sex

F F Valid
2 M M Valid 2 M M Valid
3 N/A N/A Invalid 3 N/A N/A Invalid
4

Age
-∞ -1 Invalid 4

Age
-∞ -1 Invalid

5 0 120 Valid 5 0 17 Valid
6 121 ∞ Invalid 6 18 120 Valid

7 121 ∞ Invalid

TABLE XI. EXAMPLE OF TEST CASES AFTER CHANGING

#TC Class Variable name Sequence TypeSex Age Sex Age
1 1,4 F -4 1 2 Invalid
2 1,5 F 12 1 2 Valid
3 1,6 F 55 1 2 Valid
4 1,7 F 176 1 2 Invalid
...

Step 4: Test Case Generation. The approach performs test
case generation when test cases need to be recreated. CCTM,
the combination technique of ECP and CTM, is applied to
cover generated test cases with all functions as required. The
main steps are as follows:

Step 4.1: Analyse Requirements using a Classification
Tree:

The classification tree technique basically enables a set of
requirements in the specification to be classified as a branch
in the tree. The top of the tree as a root is the main use case in
the system before the sub use case is considered to extend the
root to create the sub-tree. A lower level of the tree, variables
of the use case are identified as terminal classification. The
terminal class is the range value of the variable and identified
at the lowest level as a leaf of the classification tree. There are
seven principle combination patterns proposed in [16]. One
example of these combination patterns that was revealed by
the tool is shown in Fig. 10. The tool detected two redundant
classification trees that were built to support the calculation
of two age groups as shown in Fig. 10a and 10b respectively.
These redundant terminal classes were eliminated by CTM
enabling in our tool. The terminal class values were combined
into the same tree as shown in Fig. 10c. This influences the

www.ijacsa.thesai.org 974 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

benefit to test case generation step in which the potential
redundancy of generated test cases is reduced.

Fig. 10. Example of a combined use case

Fig. 11 shows an example of classification tree of GFR
calculation module after the analysis of changes. It contains
the variables and their corresponding possible range value
visualising in terminal classification (parent node) and terminal
class (leaf node) respectively. The range value of all relevant
variables demonstrated in this tree can be explained as follows:
Sex = F, M, Age = 0-17, 18-120, Height = 0-300 and SCr = 0-
0.9, 1.0-10.0. These are considered to create equivalence class
partitioning with ECP technique for the next step.

Fig. 11. The classification tree of GFR module

Step 4.2: Generate Test Case from the Equivalence
Class Partitioning: This step generates the test case from the
terminal class by using the ECP technique enabled by CCTM
method. The value of variable indicated in this terminal class is
considered to create the partition. In our developed prototype,
the partition of changed variables is generated automatically
resulting as in Fig. 12. This figure illustrates the partition
created from the terminal class in the updated classification
tree demonstrated in Fig. 11. Variable Age is divided into
four partitions (two valid partitions and two invalid partitions)
corresponding to the changed version of variables. To generate
test cases, ECP performs the Cartesian product of multiplying
a data value selected from all partitions.

IV. PROOF OF CONCEPT

A. Tool Development

A prototype tool was developed to demonstrate the ef-
fectiveness of the CIA framework for test cases explained in
Section III-A. It is a Java based web application implemented
in the Node.js 8.9.42, JavaScript run-time environment which is
widely used as a standard for large-scale application. MySQL

2https://nodejs.org/en/about/

Fig. 12. Example of equivalence class partitioning

version 5.7.223 is used to keep the data of use case version,
variables and test data for test suite export.

Fig. 13 demonstrates an example of our developed proto-
type tool. Fig. 13a is the screen showing two versions (before-
change and after-change) of XML file of use case diagram after
they are uploaded before the consistency checking performs.
Then, the tool performs variable analysis of each version of the
XML file. All variables defined in the use case are analysed.
This includes variable name, variable type and variable range
value as demonstrated in Fig. 13b. Fig. 13c shows the screen of
impact analysis result. It shows the summary of impact analysis
which is divided into two parts. The first part reports the
number of changes classified and grouped into five patterns of
atomic changes as we proposed in the framework as mentioned
in Section III-A. The reuse percentage of test cases affected
from the change is also calculated and reported on this screen.
The latter part reports the number of test cases affected
from the changes grouped by the causes of changes that are
No Change, Delete, Update, New (Create). Finally, test case
generation is performed when test cases need to be recreated.
CCTM technique is used for test case generation. This results
in the classification tree and its corresponding equivalence
class partitions is created and analysed as shown in Fig. 11
and 12, respectively before generating the test cases and test
data.

B. Tool Validation

Before evaluating the the effectiveness and efficiency of our
proposed approach, we validated the correctness of the tool to
confirm whether all functionalities of the tool demonstrated in
Section IV-A perform correctly according to the framework
presented in Section III-A. Therefore, we conducted experi-
mental validation aiming to answer the following question.

EQ1: Are all functionalities implemented in the tool im-
plemented and do they perform correctly according to the
proposed approach?

To accomplish this, three test scenarios corresponding to
four steps of the CIA algorithm described in were designed
as shown in Table XII including 1) TS-01 : Validate Com-
paring Two Versions of Variable Function, 2) TS-02: Validate
Test Case Analysis Function and 3) TS-03: Validate CCTM
function. Test scenario TS-01 aims to validate the comparison

3https://www.mysql.com/

www.ijacsa.thesai.org 975 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

(a) screen of XML version

(b) variable management

(c) impact analysis

Fig. 13. Example of the tool screens

operation of versions of variable XML function according to
Steps 1 and 2 in CIA algorithm, after two versions of the XML
data dictionary containing the data structure of variables are
uploaded. The change of variables is compared based on the
proposed five patterns. For test scenario TS-02 aiming at the
validation from Step 3 of the algorithm, impact analysis of
test case function is validated after the comparison of change
of variable based on five patterns. Test scenario TS-03 is used
to validate the operation of classification tree generation by
CCTM technique. As the main objective of CCTM technique
is to reduce the duplicated test cases by merging the duplicated
classification tree caused from the redundant requirements,
we also created the scenario for validating this tree merging
operation.

Table XIII shows the result of testing. Test cases in test
scenario TS-03 enabled us to reveal the fault in our developed
tool. As can be seen in this table, seven test cases were
designed from merging two classification approach proposed
in [16] and used to validate our merging classification tree

TABLE XII. THE RESULT OF TOOL TESTING

Test Scenario Corresponding
Steps

Result Revision

TS-01 Validate Comparing Two
Versions of Variable Function

Steps 1 and 2 Fail Pass

TS-02 Validate Test Case Analysis
Function

Step 3 Pass -

TS-03 Validate CCTM Function Step 4 Fail Pass

function. We discovered the fault in test case TC-037 regarding
the case that two use cases have the same variable name but
some range value of variable in one use case is overlapped with
that of the other. The expected result of this test case should
result in three sub-trees to be created after merging tree as the
intersection of variable range between two use cases and two
exteriors of variable range in both use cases. The test result
revealed that our tool created only two sub-trees instead of
three sub-trees after merging tree operation. This led us to fix
the code to perform the correct operation of this merging tree
case. Furthermore, the fault was also found in test scenario
TS-01 caused by the problem of XML data dictionary that
could not trace the change of variable. Thus, we redesigned
the XML data dictionary and retested this function. All revision
tests were passed as we expected.

TABLE XIII. THE TESTING RESULT OF TEST CASE IN TEST SCENARIO
TS-03

Test Cases Objective Pass/Fail
TC-031 The integration of two use cases in which the other

use case has no information
Pass

TC-032 The integration of two use cases that have the
same terminal sub-tree

Pass

TC-033 The integration of two use cases in which these
two use cases have the same variable name and
value range

Pass

TC-034 The integration of two sub-use cases in which
share the same use case (parent) but have the
different variable name and value range

Pass

TC-035 The integration of two use cases in which these
two use cases have the same variable name but
different value range

Pass

TC-036 The integration of two use cases in which these
two use cases have the same variable name but all
value range of variable in one use case is in that
of the other

Pass

TC-037 The integration of two use cases in which these
two use cases have the same variable name but
some value range of variable in one use case is
overlap with that of the other

Fail

Based on experimental validation, the testing result of test
scenarios and cases confirms the accuracy and coverage of
functionality in which all functionalities corresponding to the
steps in CIA algorithm were implemented in the tool and they
performed correctly according to the proposed approach.

C. Tool Evaluation

The effectiveness and efficiency of our proposed approach
were evaluated by using two real-world case studies, 1) KFD
and 2) ONA subsystems, explained in Section III-B. The result
of change impact analysis and test case regeneration from
these two case studies generated automatically from the tool
was compared with that of manual operation. Furthermore, we
evaluated the satisfactory level of the developed tool from the
target user for potential application in the future. The aim of
tool evaluation is to answer the following evaluation questions.

www.ijacsa.thesai.org 976 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

EQ2: How error-prone can be identified from the compar-
ison between manual CIA and automated tool?

EQ3: How the impact analysis result can influence the level
of reusability of existing use cases?

EQ4: How do potential users assess a satisfactory result of
CIA from the automated tool compared with the manual CIA?

1) Effectiveness evaluation: To answer EQ2, the com-
parison between the actual result of impact analysis created
by the automatic tool and the expected result calculated by
experts was conducted. The precision, recall and F-measure
computation were calculated by comparing the result produced
by the manual CIA and automated tool. The computation
metrics were adapted from [17] as follows.

Precision =
|{Expert Identified} ∩ {Tool Identified}|

|{Tool Identified}|
× 100 (1)

Recall =
|{Expert Identified} ∩ {Tool Identified}|

|{Expert Identified}|
× 100 (2)

F − measure =
2 × Precision × Recall

Precision + Recall
(3)

Table XIV demonstrates the result of impact analysis. We
compared the number of actual test cases after performing
impact analysis generated automatically by the tool with the
number of expected test cases calculated manually by experts.
Considering the calculated F-measure with precision and re-
call of KFD case study, the accuracy of the automatic tool
performing with this case study is very high. This is because
the KFD case study is not a complex case study containing
basic changes such as renaming a variable name and change
the variable type which did not affect much to the test cases.
However, as ONA is a more complex case study containing
change of variable range value that was not specified in KFD
case study, the accuracy of the automatic tool performing with
ONA case study in that pattern is low. This also affected the
accuracy of analysing pattern change of variable order to be
low. After we revealed the tool, we discovered that that tool
excluded the additional range value affected from the adjusted
value of variables. This led us to correct the tool to include
this case when the tool performs test case generation. After
fixing the tool, the number of regenerated test cases by the
tool is the same as that of expected test cases hand-operated
by experts. The result produced by the corrected tool is shown
in Table XV.

2) The level of reusability: To answer question EQ3 regard-
ing the level of reusabiliy, we considered the impact analysis
result of test case evaluated from two case studies as shown
in Table XV. This table shows the total number of test cases
generated after change impact analysis of all use cases of two
case studies obtained from the developed tool. The amount of
reuse equation adapted from [18] is used to assess the level of
reusability of test cases as shown in Eq. (4).

%Reuse =
of Reused TestCases

of Total TestCases
× 100 (4)

In KFD subsystem, 185 test cases were generated. Based on
this number, three types of changes are discovered by the tool.
(1) Changing variable name in use case UC003 resulted in 6

test cases of the first version to be totally reused. Furthermore,
35 test cases to be updated due to changing data type in use
case UC002. Considering the case of (3) adding a new variable
(as Height) in use case UC001, 27 test cases of version 1 were
deleted and 144 of new test cases were generated for version
2. Furthermore, the reusability level of test cases was also
measured from the no-change and update group of test cases
resulted from the impact analysis. Around 22% of existing
test cases for KFD subsystem testing can be reused in the
new version of test cases. The reusability rate is low. This is
because of the effect from the addition of new variable. As
the Cartesian product of multiplying all variable range value
is used to generate test cases, all existing test cases affecting
to this change were not totally reused. All existing test cases
regarding to these variable to be deleted and new test cases to
be created by recalculating the Cartesian product instead.

In ONA subsystem, five types that cover all possible
changes were identified by the tool. (1) Changing variable
name in use case UC023 affected to 21 test cases of the first
version to be totally reused. (2) Changing data type in use case
UC023 resulted in 9 test cases to be updated. Furthermore,
(3) adding a new variable as in use case UC011 caused 6 of
new test cases to be generated for after-changed version. (4)
Deleting an existing variable in use case UC01 resulted in
2,592 of test cases to be deleted and 288 of new test cases to
be created for version 2. Lastly, there was (5) the addition of
variable range value occurred in use case UC02 of this case
study, in which the first case study did not have, was revealed
by the tool. This resulted in 4,374 test cases in version 1 to
be reused 100 percent (no change), another 4,374 test cases
in this before-changed version to be updated and 17,496 of
new test cases to be generated. The resuability level of test
cases for ONA subsystem is approximately 33% of existing
test cases being reused in the new version. This is because
there was change of variable range value. This affects half of
existing test cases related to this change effect can be totally
reused.

3) Satisfaction evaluation: To answer EQ4, we evaluated
the satisfaction of our proposed approach and tool from the
target user. Practical specialists who have experience in HIS
system development for more than five years were selected
as the target user. This was also chosen from the wide range
of the role in the development team that are 1 development
manager, 2 software testers and 1 developer. The evaluation
process started with the tool being demonstrated and trained
to specialists before they used the tool with the prepared case
study. The satisfactory level with the tool was evaluated by
using the evaluation form. Likert scale ranking from strongly
agree (5) to strongly disagree (1) indicated a satisfactory level
in each question of the evaluation form.

Table XVI demonstrates the question used in a satisfactory
evaluation form and the evaluation analysis result is shown in
Fig. 14. Most specialists strongly agreed that the tool enables
the accurate and appropriate impact analysis of changes in test
cases and recommends the accurate and appropriate results
based on this impact analysis (Q1 and Q2 respectively).
Furthermore, all specialists strongly agreed (Q3) that they are
confident in the high accuracy level of test case generation
provided by this tool. For future application (Q4), 75% of
specialists agreed that the tool will be applied to other systems

www.ijacsa.thesai.org 977 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

TABLE XIV. THE RESULT OF IMPACT ANALYSIS

System Type of atomic changes # Test cases Precision Recall F-measureidentified by an
expert

identified by the
tool

KFD

Change of variable name 6 6 100% 100% 100%
Change of variable type 35 35 100% 100% 100%
Change of variable range value - - - - -
Change of number of variables 144 144 100% 100% 100%
Change of variable order 185 185 100% 100% 100%

ONA

Change of variable name 21 21 100% 100% 100%
Change of variable type 9 9 100% 100% 100%
Change of variable range value 26,244 8,748 100% 33.33% 50%
Change of number of variables 294 294 100% 100% 100%
Change of variable order 26,568 9,072 100% 34.15% 52%

TABLE XV. SUMMARY OF THE IMPACT ANALYSIS OF TEST CASE BASE ON REQUIREMENT CHANGING

System #Test Cases Impact
Type of Changes (Number of Test Cases)

Variable Name Data Type Number of Variable Variable Value Variable OrderAdd Delete Add Delete Update

KFD 185

No Change 6 - - - - - - -
Update - 35 - - - - - 185
Delete - - 27 - - - - -
New - - 144 - - - - -

ONA 26,568

No Change 21 - - - 4,374 - - -
Update - 9 - - 4,374 - - 26,568
Delete - - - 2,592 - - - -
New - - 6 288 17,496 - - -

in the future. Moreover, specialists also gave feedback in
the questionnaire (Q5). Most specialists said that the tool
is accurate, reliable and easy to use. The tool enables the
benefit in which the test case from the previous can be
reused. However, some of them gave very useful feedback
for the future improvement. They suggested that the tool
should support other input file formats rather than just XML
file format. We will use all feedback and suggestions from
the specialists to improve the tool in the future. Overall, the
specialists were mostly satisfied with our impact analysis tool.

TABLE XVI. SATISFACTION QUESTIONS

Questions Average
Q1. The tool provides accurate and appro-

priate analysis of the impact of changes
in test cases.

Likert scale (Mandatory)

Q2. The tool can offer accurate and ap-
propriate results and recommendations
based on the impact analysis.

Likert scale (Mandatory)

Q3. The tool can generate accurate and ap-
propriate test cases.

Likert scale (Mandatory)

Q4. The tool can be applied to other system
case studies in the future.

Likert scale (Mandatory)

Q5. Comments and suggestions for the tool
application and improvement

Open-ended question

Fig. 14. Results of the four Likert scale questions

V. LESSON LEARNED AND DISCUSSION

A. Discussion

The key findings discovered from our developed tool is the
ability to analyse the impact of test cases based on changes of
use case based requirement specification that conforms to the
proposed approach and framework. Based on the analysis and
evaluation results, the developed tool can perform the impact
analysis from the change of the requirements in two versions
as before-change and after-change of the use case specification
model according to the proposed five patterns of the cause of
changes. These patterns are designed specifically for use case
based specification including 1) change of variable name, 2)
change of variable type, 3) change of variable range value,
4) change of number of variables and 5) changes of variable
order. Compared with the study work of [8], they classified
the cause of changes into seven patterns in which the first five
patterns are the same as our proposed patterns. The other two
patterns were not included as they are related to the change on
web tag a link that is specific to web application. The decision
after the impact analysis is also classified by this tool into four
groups as no-change, update, delete and create groups as we
expected.

Furthermore, CCTM is integrated into this tool to support
automatic generation when new test cases require to be created.
The validation and evaluation results confirm the key findings
that our proposed approach supports all cases for merging two
classification trees proposed by [19] as explained in Section
IV-B and IV-C. From the validation and evaluation results,
we can confirm that CCTM influences the benefit that reduces
the time and increases the testing coverage for new test case
generation. However, it has the limitation of testing a large
and complex system that may not complete with a single
classification tree as found in [6], [7]. We suggest that it needs
to separate the testing into several testing units. From our
experiences, for example, we separated the testing of our SUT,

www.ijacsa.thesai.org 978 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

MRS, into two testing units, one is for KFD subsystem and
the other for ONA subsystem.

B. Comparison of the Proposed Approach and Other Ap-
proaches

This section describes the comparison of our proposed
approach with other approaches by [11], [9], [8]. Five criteria
are considered for this comparison including Impact Analysis
Methods, System Domain, Source Type, Test Case Generation
Techniques and Reusablity Supports as shown in Table XVII.

Our approach performs the impact analysis from the change
of the requirements and classifies the cause of the change
into five patterns as mentioned earlier. Comparing this with
the approach proposed by [8], the cause of changes of a web
application is classified into seven patterns in which the first
five patterns are the same as our proposed patterns. Unlike the
work of [11] and [9], it does not classify the cause of change
into patterns during impact analysis. The existing test cases
affected from the change is only analysed whether they can be
reused.

Furthermore, as new test cases are required to be generated
in the case that new features or requirements are added,
CCTM, the hybrid testing approach that integrates ECP with
CTM test case generation technique, is integrated into this tool
to support automatic generation when new test cases require
to be created. With the CTM technique, classification trees
merging approach enables the test case redundant from two
classification trees to be eliminated. Moreover, ECP technique
in the CCTM provides the test case coverage of all possible
scenarios as well as failure scenario. Comparing our imple-
mented test case generation technique with the work of [8],
[11] and [9]. In the work proposed by [8], their impact analysis
framework provides ECP and BVA. These testing techniques
only provide the test case coverage of all possible scenarios
from the various range of separated partition. Unlike the work
proposed by [11] and [9], they only focus on the impact
analysis methodology that results in only the consideration
of the affected test cases in the old version to be usable or
unusable. Their framework, therefore, does not provide test
case generation technique for the new test case generation.

Lastly, considering the comparison in terms of the reusabil-
ity supports as demonstrated in Table XVII, our proposed
approach provides the reusability level of test cases as a
percentage from the impacted test cases that are implemented
in a similar way with the work proposed by [8]. In the work
proposed by [11] and [9], they classified only two levels
of reusability of the existing test cases that are resuable or
unusable.

VI. CONCLUSION AND FUTURE WORK

This paper has demonstrated an automatic impact analysis
approach of test cases based on changes of use case based
requirement specification. Our experiment results with two
case studies, KFD and ONA, have shown that the developed
tool enables the benefits in which the impact on changes of
test cases is analysed from the change of variables in use case
specification. Two versions as before-change and after-change
of the use case model are compared for consistency checking
to detect the change. This results in the cause of variable

changes to be classified into five patterns of atomic changes are
encoded in this tool. These classified patterns enable the impact
on changes of the existing test cases to be analysed whether
the existing test cases to be completely reused, partly updated
as well as additionally generated. Consequently, the level of
reusability of existing test cases is measured and the time to
create the whole new cases for the after-changed version is
reduced. Furthermore, CCTM, the hybrid test case generation
technique encoded in the tool for generating new test cases
influences the benefit to increase the level of testing coverage
with a minimised number of test cases and reduces the redun-
dant test cases as demonstrated. The beneficial contribution
delivered by our proposed approach and tool is also confirmed
by the validation and evaluation results from the practical
specialists which are consistency with the results discovered
from the researchers’ perspective.

As our proposed approach and developed CIA tool supports
the impact analysis of change of variable types that are only
primitive programming data types including integer, floating-
point number, boolean, character and string, the adjustment
of the tool to support the ready-made “real world” data type
e.g. date and time have been considered for the future work.
To increase the capability and reliability of the tool, another
research issue is the further evaluation of the tool with different
system domains as suggested by the practical specialists.

DEPLOYMENT AND AVAILABILITY

Our developed tool is available at
https://sites.google.com/phuket.psu.ac.th/testciatool/. User
guide manual document and source of example case studies
(KFD and ONA subsystems) are also available on the website.

REFERENCES

[1] P. Jorgensen, Software Testing: A Craftsman’s Approach, 3rd ed. Boca
Raton, NY: Auerbach Publications, 5 2013.

[2] I. Dewi, Y. Miftahuddin, M. Fattah, C. Palenda, and S. Erawan, “Point of
sales system in inhome café website using agile methodology,” Journal
of Innovation and Community Engagement, vol. 1, no. 1, pp. 01–19,
Mar 2021.

[3] S. Purwanti, A. Febriani, M. Mardeni, and Y. Irawan, “Temperature
monitoring system for egg incubators using raspberry pi3 based on
internet of things (iot),” Journal of Robotics and Control (JRC), vol. 2,
no. 5, pp. 349–352, 2021.

[4] I. R. Munthe, B. H. Rambe, R. Pane, D. Irmayani, and M. Nasution,
“Uml modeling and black box testing methods in the school payment
information system,” Jurnal Mantik, vol. 4, no. 3, pp. 1634–1640, 2020.

[5] S. Sutiah and S. Supriyono, “Software testing on e-learning madrasahs
using blackbox testing,” IOP Conference Series: Materials Science and
Engineering, vol. 1073, no. 1, p. 012065, Feb 2021.

[6] M. Grochtmann and K. Grimm, “Classification trees for partition
testing,” Software Testing, Verification and Reliability, vol. 3, no. 2,
pp. 63–82, 1993.

[7] M. Grochtmann, K. Grimm, J. Wegener, and D.-b. Ag, “Tool-supported
test case design for black-box testing by means of the classification-tree
editor,” in Proceedings of the EuroSTAR (EuroSTAR, 1993), 1993.

[8] S. Phetmanee and T. Suwannasart, “A tool for impact analysis of test
cases based on changes of a web application,” in Proceedings of the
International MultiConference of Engineers and Computer Scientists
2015, 2015, pp. 497–500.

[9] T. Sakkarinkul and T. Suwannasart, “Test case impact analysis from
use case description changes,” in Proceedings of the International
MultiConference of Engineers and Computer Scientists 2015, 2015, pp.
523–527.

www.ijacsa.thesai.org 979 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

TABLE XVII. COMPARISON OF FEATURES AND CAPABILITIES OF OUR PROPOSED APPROACH WITH COMPARABLE WORK

Features Proposed Approach [8] [11] [9]
Impact Analysis
Methods

Indicate and classify the impact
analysis result into five patterns

Use seven patterns of the
change of a web application
to classify the impact analysis
result

Analyse the impact from the
change list of use case speci-
fication but do not classify the
pattern of changes

Analyse the impact from the
change list of use case speci-
fication but do not classify the
pattern of changes

System Domain Hospital Information System Web Application Web Application Web Application
Source Type Use Case Spec. GUI spec. Use Case Spec. Use Case Spec.
Test Case Generation Techniques Use the CCTM (ECP and CTM)

technique
Use ECP and BVA techniques No test case generation No test case generation

Reusablity Supports Calculate the percentage of the
reusability level of test cases

Calculate the percentage of
the reusability level of test
cases

Only indicate that the im-
pacted test cases can be
reused or updated

Only indicate that the im-
pacted test cases can be usable
or unusable

[10] A. Intana and T. Sriraksa, “Impact analysis framework of test cases
based on changes of use case based requirements,” in Proceedings of
the 23rd International Computer Science and Engineering Conference
(ICSEC, 2019). IEEE, 2019, pp. 230–235.

[11] M. Raengkla and T. Suwannasart, “A test case selection from using use
case description changes,” Lecture Notes in Engineering and Computer
Science, vol. 2202, pp. 507–510, Mar 2013.

[12] C. Sriarpanon and T. Suwannasart, “A source code and test cases
impact analysis tool for database schema changes,” Lecture Notes in
Engineering and Computer Science, vol. 1, pp. 466–469, Mar 2015.

[13] A. Kampeera and T. Suwannasart, “Impact analysis to database schema
and test cases from inputs of functional requirements changes,” in
Proceedings of the International MultiConference of Engineers and
Computer Scientists 2016, Mar 2016, pp. 449–453.

[14] N. Cherdsakulwong and T. Suwannasart, “Impact analysis of test cases
for changing inputs or outputs of functional requirements,” in 2019
20th IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing

(SNPD). IEEE, 2019, pp. 179–183.
[15] WHO, “Mean body mass index,” https://www.euro.who.int/en/health-

topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-
bmi, Jun 2021.

[16] B. Ramadoss and P. Prema, “An approach for merging two
classification-trees,” in Proceedings of the IEEE International Advance
Computing Conference 2009, 2009, pp. 1602–1607.

[17] K. M. Ting, Precision and Recall. Boston, MA: Springer US, 2010,
pp. 781–781. [Online]. Available: https://doi.org/10.1007/978-0-387-
30164-8 652

[18] A. L. Imoize, D. Idowu, and T. Bolaji, “A brief overview of software
reuse and metrics in software engineering,” World Scientific News, no.
122122, p. 56–70, 2019.

[19] B. Ramadoss, P. Prema, and S. R. Balasundaram, “Combined classifi-
cation tree method for test suite reduction,” in Proceedings on Inter-
national Conference and workshop on Emerging Trends in Technology
(ICWET, 2011), no. 11, 2011, pp. 27–33.

www.ijacsa.thesai.org 980 | P a g e

