
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

AMIM: An Adaptive Weighted Multimodal
Integration Model for Alzheimer’s Disease

Classification

Dewen Ding1, Xianhua Zeng2, Xinyu Wang3 and Jian Zhang4
Chongqing University of Posts and Telecommunications

Chongqing Key Laboratory of Image Cognition, China, Chongqing

Abstract—Alzheimer’s disease (AD) is an irreversible neu-
rological disorder, so early medical diagnosis is extremely im-
portant. Magnetic resonance imaging (MRI) is one of the main
medical imaging methods used clinically to detect and diagnose
AD. However, most existing computer-aided diagnostic methods
only use MRI slices for model architecture design. They ig-
nore informational differences between all slices. In addition,
physicians often use multimodal data, such as medical images
and clinical information, to diagnose patients. The approach
helps physicians to make more accurate judgments. Therefore,
we propose an adaptive weighted multimodal integration model
(AMIM) for AD classification. The model uses global information
images, maximum information slices and clinical information
as data inputs for the first time. It adopts adaptive weights
integration method for classification. Experimental results show
that our model achieves an accuracy of 99.00% for AD versus
normal controls (NC), and 82.86% for mild cognitive impairment
(MCI) versus NC. The proposed model achieves best classification
performance in terms of accuracy, compared with most state-of-
the-art methods.

Keywords—MRI; global information images; maximum infor-
mation slices; adaptive weights; integration method

I. INTRODUCTION

Alzheimer’s disease, a chronic neurodegenerative disease
causing the death of nerve cells and tissue loss throughout
the brain, usually starts slowly and worsens over time. AD is
expected to affect 1 out of 85 people in the world by the year
2050 [1]. The progression of AD gradually leads to memory
degradation and impairment of cognitive function, eventually
leading to irreversible neuronal damage [2]. Although no
treatment has been proven to be effective in preventing the
progression of AD [3], the early diagnosis of AD remains
important for subsequent treatment to delay the onset of
cognitive symptoms [4].

Since 2013, deep learning has begun to gain considerable
attention in AD detection research, with the number of pub-
lished papers in this area increasing drastically since 2017 [5].
Early unsupervised methods used autoencoders or restricted
Boltzmann machine methods to extract features that were
then used for the classification of Alzheimer’s disease [6]–[8].
Supervised learning applied to the diagnosis of Alzheimer’s
disease has been particularly well studied compared to unsu-
pervised methods. Convolutional neural networks (CNNs) are
the most successful deep models for image analysis, aiming
to make better use of spatial information by taking 2D/3D
images as input and extracting features by stacking several

convolutional layers; the result is a hierarchy of progressively
abstracted features [9], [10]. Most studies on Alzheimer’s
disease have been mainly architected by 2D CNNs or 3D
CNNs as depth models. A large number of studies have
performed feature extraction of MRI slices by 2D CNNs for
ADNI classification [11]–[16]. Since MRI provides 3D images,
how to select MRI slices is a question worth thinking about.
Meanwhile, 2D slices cannot contain all the information of
3D MRI, so it is missing the global information. 3D CNN is
widely used for diagnosis of 3D MRI, which does not require
slice selection and also contains global information. However,
AD detection must take the whole image or some ROI as input
[17], [18]. This results in a steep increase in the number of
parameters, which can create problems such as large amount of
computation, time-consuming, and overlapping data. The joint
2D-3D CNN [19]–[21] first performs 3D feature extraction by
multiple 3D data inputs, and then obtains the final classification
result by 2D CNN. Likewise, there are also problems such as
large amount of computational cost and time consuming. In
addition, in the early detection of Alzheimer’s disease, the
degree of brain atrophy is less variable, and assessment by
a single modality of MRI alone may have a certain bias; a
combined assessment with multiple modalities will yield a
relatively more accurate diagnosis.

Based on slice-level classification, there is a lack of three-
dimensional spatial information and the subjective uncertainty
of slice selection. We proposed to effectively superimpose all
slices to generate a dynamic 2D picture containing multiple
slice information changes, i.e. a global information image. At
the same time, the slice with the largest amount of information
is also selected through the method of image entropy, and
the clinical information is used as the input of the multi-
dimensional feature auxiliary integrated approach. From our
experiment, the proposed AMIM model has improved the
performance significantly. The main contributions of our study
are summarized in the following three folds.

• We propose an adaptive weighted multimodal en-
semble model. The model uses an adaptive weighted
method to optimize the different branches weights. It
can effectively reduce the large amount of computa-
tional cost and time, compared with the grid search
method.

• For the first time, we propose a new MRI image
preprocessing method, which uses dynamic images
and maximum information entropy slices as the input
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of MRI images; at the same time, clinical information
modality is introduced to obtain better classification
performance.

• A comprehensive evaluation is conducted on ADNI
dataset. Experiments show that our method achieves
best classification performance in terms of accuracy,
compared with most state-of-the-art methods.

The rest of the paper is structured in sections and repre-
sented as follows. In Section II, related work describes the
research status of Alzheimer’s disease classification in detail.
Section III introduces the structure and algorithm of the AMIM
model. Section IV introduces the classification performance
of the model on the ADNI dataset. Section V discusses the
performance analysis of different views. Section VI concludes
the paper.

II. RELATED WORK

With the rapid development of deep learning since 2012,
there are more and more researches on the diagnosis of
Alzheimer’s disease. Researches based on Alzheimer’s disease
classification can be divided into the following branches ac-
cording to input: ROI level, Patch level, 3D Subject level and
2D slice level. With ROI models [22], [23], manual selection of
regions is required to extract the region of interest of the orig-
inal brain image as the input of CNN model, which is a time-
consuming task. With patch models [19]–[21], multiple patches
can be obtained from the entire 3D MRI, but there is a problem
of data overlap. It is much more straightforward and desirable
to use the entire image as input. At the 3D subject level,
Korolev et al. [17] adopted 3D VGG and 3D ResNet as the
backbone network for feature extraction, but the classification
accuracy was only more than 80. Spasov et al. [18] proposed
a method combining 3D MRI with clinical information, which
can obtain good classification results. However, regardless of
single mode or multi-mode 3D MRI, there is a large amount
of calculation and long running time. In 2D slice classification
method, it can reduce the number of hyperparameters to a
certain extent. Due to the small sample size of medical dataset,
Hon et al. [11] proposed to apply transfer learning to the
classification of Alzheimer’s disease. 32 slices were taken from
each object as the dataset, and the model performed well.
However, this result was only for the image level, without
considering the subject level. Islam et al. [12] proposed a deep
convolutional neural network for the diagnosis of Alzheimer’s
disease using brain MRI data analysis, and obtained good
classification results. Zhang and colleagues [13] performed a
systematic evaluation of CNN models with different structures
and capacities, and the experimental results showed that the
advanced structural models with medium capacity performed
better than the models with maximum capacity. Good results
have also been obtained. However, these methods are based
on 2D images and cannot contain all the information of
brain scan. They ignore the spatial information of 3D. The
same situation exists in other slice classification studies [14]–
[16]. According to the above analysis, we propose a new AD
classification network architecture, AMIM, combining 2D-3D
MRI and clinical information.
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Fig. 1. The AMIM for alzheimer’s disease classification based on MRI and
clinical information

III. METHODS

In this paper, we propose an AMIM model that combines
2D-3D MRI to solve the problem of missing 3D spatial
information for slice based classification. Clinical information
is also introduced as the input of another modality. The model
uses an adaptive weighted method to learn the weight shares
of different classifier. Its architecture is shown in Fig. 1. Our
proposed method is flexible and can in principle integrate
other imaging modalities, such as positron emission computed
tomography (PET), as well as other different clinical datasets.
With the inspiration of the idea of transfer learning, we use
the classical neural network pre-trained by ImageNet and
removing the last classification layer as the backbone network
of feature extraction [24]. Resnet18 as a backbone network
will be introduced here.

In the following, we present our method in four parts. First,
we introduce the dynamic image generation method and the
maximum information entropy slicing method, respectively.
Then, we present the adaptive weighted multimodal integration
method. Finally, we introduce the training and optimization.

A. Dynamic Image

In the non-medical field, a popular method to represent a
series of images is to apply a temporal pooling operator to the
features extracted at individual images, for instance, temporal
templates [25], ranking functions [26] and other traditional
pooling operator [27]. We use the Z-dimension of the 3D
MRI as the temporal dimension of the video to extract a fixed
slice representation of each object. Since the extracted fixed
representation retains all the dynamic characteristics of slices
(i.e. the changes from slice to slice), we call it dynamic image.
We calculate the coefficient θt of slice It and assume that the
feature vector of this slice is Vt. Multiply this coefficient with
the average of all feature vectors from V1 to Vt to get the new
feature vector and finally accumulate the new feature vectors
to get the final dynamic image. See Fig. 2 for an example. The
calculation formula is as follows.

ID =

T∑
t=1

θtψ (Vt) (1)
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Fig. 2. MRI sample slices and corresponding dynamic images of AD, MCI
and NC participants

where ψ (Vt) = 1
t

∑t
τ=1 Vτ is the slices average of features

up to slice t, and θt = 2t− T − 1 is the coefficient associated
to feature ψ (Vt).

The algorithm for processing dynamic images is shown in
Algorithm 1.

Algorithm 1 Algorithm for Obtaining Dynamic Images

Input: Origin 3D MRI: {X1
MRI , X2

MRI , · · · , XN
MRI}.

Output: Dynamic images {I1D, I2D, · · · , IND }.
1: for i = 1 to N do
2: IjO ← slice(Xi

MRI), j = {1, 2, · · · , T} // Obtaining
original axial slices.

3: Vj ← quantify(IjO) // Obtaining feature vectors.
4: for t = 1 to T do
5: θt ← 2t− T − 1 // Calculating the coefficient θt of

slice ItO.
6: ψ (Vt)← 1

t

∑t
τ=1 Vτ // Calculating the vector mean

ψ(Vt) of the features vectors V1 to Vt.
7: end for
8: IiD ←

∑T
t=1 θtψ (Vt) // All new feature vectors are

summed to get the final dynamic image by Eq.(1).
9: end for

B. Slice with Maximum Information

Typically, there are a large number of slices to choose from
in 3D MRI scan. One method of slices selection is to manually
select slices based on the highest similarity of anatomical fea-
tures without knowing the clinical diagnosis information [28].
However, this approach needs to be chosen by professionals,
which will cost a lot of labor and be subjective. Instead, we use
image entropy to extract the most informative slices to train
the network. Therefore, we will calculate the image entropy
of each slice. Generally speaking, for a set of M symbols with
probabilities P1, P2, · · · , Pm. Entropy can be calculated as
[29] :

H = −
255∑
i=0

Pi logPi (2)

where H is the one-dimensional gray-scale entropy and Pi

is the proportion of grayscale value i.

C. Adaptive Weighted Multimodal Integration

In this section, we introduce the composition of classifiers
and the adaptive weighted integration of the classifier, respec-
tively.

For these classifiers we use the same composition structure.
We add relu activation function and dropout between each
layer of mapping to reduce the potential overfitting risks.
Specifically the feature images are first dropout, and then
through three layers of mapping, relu and dropout are added
between each layer of mapping. Finally, softmax activation
function is used to obtain the category probability value.
Dropout set to 0.5. The output expression of each of these
classifiers is shown as follows:

Oi = φi (Fi, Ci) i ∈ {1, 2, 3} (3)

where Fi stands for the input of the feature map, Ci is the
weight parameter of the i-th classifier, φi (Fi, Ci) represents a
function to be learned in an effort to transform the input, Fi,
to probability value Oi.

O4 = φ4 (Xcli, C4) (4)

where O4 is the probability value in the 4-th classifier,
Xcli is the clinical information. C4 is the weight parameter
of the 4-th classifier. φ4 denotes the operation of the 4-
th classifier. We normalized for clinical characteristics, i.e.
demographic, neuropsychological, and the apolipoprotein E
(APOE4) genotyping data. They all followed the same feature
scaling procedure, with values normalized between [0, 1] for
each independent clinical factor.

We propose an ensemble learning method with adaptive
weights to improve the performance of the model and the
confidence of prediction. For the probability values of multiple
classifiers, we use the integration method of soft voting for the
final output. Suppose we have M classifiers, the soft voting
can be computed as:

Ot =

M∑
i=1

αiOi (5)

where Oi is the probability value in the i-th classifier,
αi represents the weight given to the i-th classifier. Ot

stands for the total output after overall soft voting integration.
First we initialize the weights. To automatically compute the
hyperparameter αi, we use a simple but effective approach:
setting the hyperparameter αi as a trainable parameter in order
to automatically and adaptively coordinate the importance
learning of each attribute task. When multiple branch tasks
are learned simultaneously, the “important” branches should
be given high weights (i.e. αi) to increase the loss size of
the corresponding branch. We take a small learning rate for
updating the network parameters and automatically learn the
score weights for different classifiers.

D. Training and Optimization

We use cross-entropy as the loss function. We construct
loss function for the output of individual classifier. The loss
function is:

Li = −
1

N

N∑
j=1

[
yj · log

(
Oj

i

)
+ (1− yj) · log

(
1−Oj

i

)]
i ∈ {1, 2, 3, 4}

(6)
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where the label yj = 0 indicates that sample j is a negative
sample and yj = 1 indicates that sample j is a positive sample.
N is the total number of samples in the data set. Oj

i denotes
the output probability value of sample j of the i-th classifier.
In the training phase, with the loss function constructed from
the output of each classifier, i.e., Equation 6, we can optimize
the network parameters in each of them.

For the backbone network, the weights are fixed in the first
stage and are not optimized. The weights are unfrozen in the
second stage, we first optimize the backbone network 1 and
backbone network 2 under the loss functions constructed from
the classifier 1 output and classifier 2 output, respectively. Then
the backbone network is further optimized by the loss function
3.

After we get the output of each classifier, we can get the
final output, which is Equation 5. Then the loss function of
the integrated output is shown below:

L5 = − 1

N

N∑
j=1

[
yj · log

(
Oj

t

)
+ (1− yj) · log

(
1−Oj

t

)]
(7)

where αi is the weight of the output probability values of
the i-th classifier. Oj

t represents the output probability value
of the soft voting integration of sample j through multiple
classifiers. The hyperparameter αi is key part of the network.
If we use the grid search method to obtain αi, this will be time
consuming. We use the adaptive weighted method to update
the network weights. The loss combines these weights as an
integrate one to supervise the process of network training by
adopting the back-propagation algorithm.

IV. EXPERIMENTS

A. Dataset

We use the publicly available dataset from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) for our work. Specif-
ically, we trained CNNs with the data from the “spatially
normalized, masked, and N3-corrected T1 images” category.
The brain MRI image size is 110×110×110. Since a subject
may have multiple MRI scans in the database, we use the
most recent scan of each subject to avoid data leakage. All
the data we used are summarized in Table I. Among them
are 132 men and 92 women, aged between 55 and 90.3 years
old. Friedman’s ANOVA was used to test the difference in
median age between groups, and the Fisher’s exact test was
used to test the gender interaction of the x group. These
interactions are not statistically significant (p > .05). And
the following data: demographic data (age, gender, education
level), neuropsychological cognitive assessment tests such as
the Dementia Rating Scale (CDRSB), Alzheimer’s Disease
Assessment Scale (ADAS11, ADAS13), Rey Auditory Verbal
Learning Test (RAVLT), as well as APOE4 genotyping. All
data used in this study is from baseline assessments.

B. Evaluation Metrics

The proposed AMIM method mainly validates the AD
classification (AD vs. NC), MCI classification (MCI vs. NC).
The performance was evaluated using three metrics. Namely,
accuracy, the percentage of correctly predicted samples; F1,

TABLE I. DEMOGRAPHICS OF THE ADNI DATASET

F/M Education Age APOE4 MMSE CDRSB ADAS11 ADAS13 RAVLT IR RAVLT PF

CN 28/28 16.45±2.95 73.11±5.64 0.16±0.23 28.59±1.82 0.44±1.09 6.32±4.23 9.85±6.19 41.68±10.46 47.48±32.84

MCI 48/75 15.80±2.67 72.95±7.39 0.34±0.34 26.29±3.34 2.23±1.98 11.25±6.45 17.64±9.37 31.50±11.58 66.98±33.84

AD 16/29 15.37±2.89 74.66±8.54 0.39±0.33 21.67±3.94 5.81±2.40 24.07±7.48 34.78±9.01 19.56±6.71 93.68±13.35

the harmonic mean of precision (Eq. 9) and recall (Eq. 10);
Area Under Curve (receiver operating characteristic curve
determined by true positive rate and false positive rate). These
metrics are defined as:

ACC =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1 = 2 · Precision · Recall
Precision + Recall

(11)

where TP, TN, FP and FN stands for true positive, true
negative, false positive and false negative, respectively. A
higher value indicates better performance.

In the following, experiments are conducted to evaluate
the performance of the proposed method. Specifically, Sec-
tion IV-D focuses on testing the impact of unimodal and
multimodal on the performance metrics of the experiments,
respectively. Section IV-E1 aims to analyze the classification
performance of the same dataset in different methods.

C. Complements

We use five-fold cross-validation for experiments. Since
the proportion of data samples is unbalanced, a weighted loss
function is used to ensure the balance of the samples. The loss
function uses a cross-entropy loss function. Using the Adam
optimizer, the learning rate is 10 to the negative 5-th power,
except that the learning rate of L5 is adjusted to 5×10−6. The
classifier performs linear mapping, it will perform a dropout
of 0.5 to prevent overfitting. To activate relu, the last layer
uses the softmax function to output the probability value of
the category.

D. Single Modality vs. Multiple Modalities

In this section, the effects of unimodal and multimodal
data on the model are presented separately. For MRI, resnet18,
which has been pre-trained and removed the last classification
layer, is used as the backbone network to extract features. The
output of clinical information is obtained through a multi-layer
perceptron network model. We performed single-modal exper-
iments on dynamic images, slices, and clinical information.
As shown in the Table II, we can see that in the column of
AD versus NC, the evaluation index of clinical information
is very high. Thus we made t-SNE visualization for the data,
as shown in Fig. 3. The data distribution of AD group and
NC group is shown on the left. It is found that the two types
of data have obvious dividing lines. The distributions of the
MCI and NC groups on the right do not have obvious dividing

www.ijacsa.thesai.org 1003 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

TABLE II. COMPARISON OF PERFORMANCE OF SINGLE-MODAL AND
MULTIMODAL CLASSIFICATION METHODS

Methods
AD vs. NC (%) MCI vs. NC (%)

ACC AUC F1 ACC AUC F1

Dynamic 90.00 91.90 88.63 77.10 74.45 84.61
Slice 83.14 82.59 83.09 71.00 62.34 80.76

Clinical Info 97.00 98.03 97.41 77.67 78.65 85.53
Combined 92.00 93.62 91.06 74.29 72.39 82.26

Fusion 99.00 99.12 98.67 81.63 82.41 87.06

Fig. 3. Illustration of t-SNE result for cognitive scores. Blue dots: NC
group. Orange dots: AD/MCI group

lines, and their evaluation indexes in Table II are not very
satisfactory. This remains consistent with our results. Then
we take the dynamic images and slices of medical imaging
as input to obtain the integrated results of medical imaging.
Specifically, the decision fusion of Output 1, Output 2 and
Output 3 of the model in Fig. 1 is carried out. The specific
experiment is introduced in the subsequent result chapter. It
can be seen from the table that the integration results of slices
combined with pictures of 3D spatial information changes
are improved compared with single-mode medical imaging.
Finally, we proposed the method, in which AD/NC accuracy
reached 99.00%, MCI/NC accuracy also reached 81.63%.

E. Comparison of Different Methods

1) Comparison With baseline methods: We compared sev-
eral other methods on the same dataset. Korolev et al. proposed
a deep three-dimensional convolutional neural network struc-
ture for brain MRI scan classification [17]. In this work [18],
structural magnetic resonance imaging (MRI), demography,
neuropsychology and APOE4 gene were used as data inputs,
and 3D separable convolutional layers were used as backbone
networks for classification. Xing et al converted the 3D full im-
age into 2D dynamic image, and then took the classical neural
network and attention mechanism as the network model [30].
For these baseline methods, we maintain the parameter settings
of the original paper. The results of evaluation indicators are
shown in Table III. It can be found that our proposed method
is the best in most indicators.

2) Comparison with state-of-the-art methods: In this sec-
tion, we focus on comparing the classification performance
of other widely used methods. The work investigated [31]–
[37] and other MRI monomodal classification performance,
see Table IV below. Multi-modality [32]–[34], [36], [38]–
[41] includes MRI + PET, MRI + PET + biomarkers, MRI
+ DTI, and MRI + Cognitive scores, as shown in Table V.

TABLE III. COMPARISON OF PERFORMANCE OF DIFFERENT
CLASSIFICATION METHODS

Methods Type
AD vs. NC (%) MCI vs. NC (%)

ACC AUC F1 ACC AUC F1

Korolev et al. [17] 3D 70.00 69.54 67.57 73.75 67.40 82.64
Spasov et al. [18] 3D+Cli Info 98.00 99.38 97.70 80.62 83.91 84.52
Xing et al. [30] 3D 86.25 85.93 86.08 78.13 70.25 84.58

Proposed 3D+2D+Cli Info 99.00 99.12 98.67 81.63 82.41 87.06

TABLE IV. PERFORMANCE COMPARISON OF DIFFERENT METHODS IN
SINGLE-MODALITY STUDY

Study Modality
Group

Method
Accuracy(%)

AD MCI NC AD vs. NC MCI vs. NC

Liu et al. [31] MRI 97 234 128
multi-view;

multi-template;SVM
93.83 -

Zhu et al. [32] MRI 51 99 52
ROI-based;Relational

regularization feature selection
93.70 79.70

Liu et al. [33] MRI 93 204 100
Patch-based;

Cascaded CNNs
84.97 -

Aderghal et al. [34] MRI 188 399 228
Hippocampus;CNN;

Transfer learning
90.00 72.50

Basaia et al. [35] MRI 295 510s + 253p 352 Patch-based;CNN 99.20 76.10s 87.10p

Shao et al. [36] MRI 160 460 160
Hypergraph;

Multikernel SVM
88.30 69.14

Al-Khuzaie et al. [37] MRI 170 - 70 Slices-based;CNN 99.30 -

Group: as + bp: the number of sMCI is a and the number of pMCI is b; Accuracy:
cs: the accuracy of sMCI/NC is c; dp: the accuracy of pMCI/NC is d.

TABLE V. PERFORMANCE COMPARISON OF DIFFERENT METHODS IN
MULTI-MODALITY STUDY

Study Modality
Group

Method
Accuracy(%)

AD MCI NC AD vs. NC MCI vs. NC

Zhang et al. [38] MRI+PET+CSF 51 99 52
ROI-based;

Kernel combination
93.20 76.40

Zhu et al. [32] MRI+PET 51 99 52
ROI-based;Relational regularization

feature selection
95.70 79.90

Shi et al. [39] MRI+PET 51 99 52
ROI-based;

Multimodal SDPN
97.13 87.24

Liu et al. [33] MRI+PET 93 204 100
Patch-based;

Cascaded CNNs
93.26 74.34

Aderghal et al. [34] MRI+DTI 48 108 58
Hippocampus; CNN;

Transfer learning
92.50 80.00

Shi et al. [40] MRI+PET+CSF 51 99 52
ROI-based; Coupled boosting;

Coupled metric ensemble
94.85 79.88

Shao et al. [36] MRI+PET 160 460 160
Hypergraph;

Multi-kernel SVM
92.51 82.53

Hett et al. [41] MRI+Cognitive scores 130 216 213
Patch-based;

Multiscale graphs
91.60 -

Proposed MRI+Cognitive scores 45 123 56
CNN;Transfer learning,

Ensemble
99.00 81.63

CSF = Cerebrospinal fluid

For AD/NC classification, the accuracy of the single-modal
methods listed in Table IV has classification results below
90.00%, while the accuracy of most multi-modal methods
is above 90.00%. For MCI/NC classification, the accuracy
of most single-modal methods is below 80.00%, while the
accuracy of most multi-modal methods is above 80%. Among
the listed studies, Zhu et al. [32], Liu et al. [33], Aderghal
et al. [34] and Shao et al. [36] performed single-modal and
multi-modal tests on the proposed method. The results show
that, compared with single-modal data, the use of multi-modal
data can obtain higher classification accuracy. In addition,
our method achieves the best performance of 99.00% in the
AD/NC classification and 81.63% in the MCI/NC classification
with resnet18 as the backbone network. It is worth noting that,
due to potential differences in data selection, preprocessing and
even data set division, the results obtained by different methods
are actually incomparable. The purpose of the comparison is
only to provide an overview of other results and to show the
baseline of existing methods.
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3) Different backbone neural networks: We performed
other backbone neural network training. To evaluate the clas-
sification performance of different backbone neural networks,
we used a five-fold cross-validation strategy to calculate the
classification performance. Specifically, the entire subject sam-
ple set was divided into five subsets equally, and the subject
samples within one subset were selected as test samples each
time, and all remaining subject samples within the other four
subsets were used to train the classifiers. This process was
repeated five times independently to avoid any bias introduced
by randomly dividing the dataset in cross-validation. We take
the average of the three experiments as the final result of the
data. The results are shown in the Table VI and Table VII.

TABLE VI. PERFORMANCE OF DIFFERENT BACKBONE NEURAL
NETWORKS FOR AD VS. NC (%)

Methods ACC AUC F1 PRECISION RECALL AP

AMIM+resnet18 98.33 98.75 98.01 96.85 99.48 96.67
AMIM+resnet34 98.33 98.75 98.03 97.50 98.79 96.95
AMIM+resnet50 98.67 99.27 98.35 97.50 99.39 97.23
AMIM+resnet101 99.00 98.68 98.67 97.50 1.0 97.50

AMIM+vgg11 98.33 99.12 98.08 97.50 98.88 97.05
AMIM+googlenet 97.00 99.19 96.67 97.38 96.20 95.72

AMIM+alexnet 98.00 98.75 97.38 96.09 99.05 95.60

TABLE VII. PERFORMANCE OF DIFFERENT BACKBONE NEURAL
NETWORKS FOR MCI VS. NC (%)

Methods ACC AUC F1 PRECISION RECALL AP

AMIM+resnet18 80.51 80.73 86.72 84.52 95.42 81.86
AMIM+resnet34 82.52 82.78 88.18 86.51 96.85 83.65
AMIM+resnet50 78.61 79.98 85.30 87.18 95.76 83.10
AMIM+resnet101 78.40 80.33 85.54 86.52 96.15 81.66

AMIM+vgg11 80.09 80.74 86.97 82.44 97.95 80.83
AMIM+googlenet 79.71 77.80 86.24 84.02 97.11 81.45

AMIM+alexnet 82.86 82.71 88.19 85.57 93.90 83.84

V. DISCUSSION

A. Performance analysis of different views

3D MRI exists three views (axial, coronal and sagittal
view). We used the axial view. The different views of the
3D global information and the maximum information slice are
shown in Fig. 4. Pan et al. [42] proposed a Multi-view Separa-
ble Pyramid Network (MiSePyNet), in which representations
are learned from axial, coronal and sagittal views of PET scans
so as to offer complementary information and then combined
to make a decision jointly. The experimental results show that
the performance of the axial view is the best and multi-view
fusion effect is better than the single-view. Next, this paper will
discuss and analysis the classification performance of different
views through experiments.

We performed experiments for different views by using
the same parameter settings. The overall experimental results
of AD versus NC and MCI versus NC are shown in Table
VIII and Table IX. The classification performance of different
views for each model has been given in the table. The best
evaluation metrics are shown in bold. The experimental results
show that AD versus NC and MCI versus NC experimental

Axial Coronal Sagittal

Fig. 4. Different views of the global information image and the maximum
information slice

TABLE VIII. PERFORMANCE OF DIFFERENT VIEWS FOR AD VS. NC (%)

Type Views ACC AUC F1

Slice
Axial view 83.14 82.59 83.09

Coronal view 85.24 87.49 82.39
Sagittal view 81.19 86.23 79.41

Dynamic
Axial view 90.00 91.90 88.63

Coronal view 86.05 87.49 86.44
Sagittal view 89.05 93.82 88.58

Fusion
Axial view 92.00 93.62 91.06

Coronal view 86.10 84.33 85.45
Sagittal view 86.14 85.48 85.39

TABLE IX. PERFORMANCE OF DIFFERENT VIEWS FOR MCI VS. NC (%)

Type Views ACC AUC F1

Slice
Axial view 71.00 62.34 80.76

Coronal view 72.10 67.71 81.35
Sagittal view 69.89 63.97 80.89

Dynamic
Axial view 77.10 74.45 84.61

Coronal view 72.65 66.63 82.23
Sagittal view 72.10 62.72 82.66

Fusion
Axial view 74.29 72.39 82.26

Coronal view 71.54 55.46 81.14
Sagittal view 70.44 54.81 79.65

classification performance are similar. In the model with only
slices as input, the overall evaluation metrics of coronal view
are the best, the evaluation metrics of the other two views have
small differences with them. In the model with only dynamic
images as input, the AUC and F1 metrics of the axial view are
the highest. In the whole hybrid model of dynamic image and
slices, all evaluation metrics of the axial plane is the highest.

For the overall results obtained from these three different
views, we can find that the classification performance of each
view is not very different and the axial view is relatively better.
In this paper, we only conducted experiments for one view. In
the future, we will analyze three views of the image together.
Different views show different information and how to obtain
more comprehensive information plays a more important role
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for Alzheimer’s disease diagnostic.

B. Data Pairing

The dataset we used is from the “Spatially normalized,
masked and N3-corrected T1 images” category in the ADNI
public dataset. The dataset in this category contain paired MRI
and clinical information. However, for the other categories
of dataset in the ADNI, there were cases where subjects
had not undergone the MMSE, ADAS11 examination. For
patients with clinical information, we effectively combined the
clinical information, which helped to improve the classification
performance of the model. In the future, we will try to improve
the diagnostic performance of ADNI with only some of the
subjects’ basic information (gender, age, etc.).

VI. CONCLUSION

In this paper, we proposed a multimodal adaptive weighted
model, which takes global information images, maximum in-
formation slices and clinical information as multimodal inputs
for the first time. Our model can effectively solve the problem
of missing global information in slice classification. At the
same time, the use of image information entropy selection
slices can solve the subjective uncertainty of human selection.
Using an adaptive weighting method to optimize the weights,
it can combine the weights of different models more accurately
than the grid search method. Our model achieves the best
results in terms of classification performance, compared with
the latest methods. The combination of medical images and
clinical information for Alzheimer’s disease classification is
the future trend. Next, we will try to investigate how to better
combine clinical information with medical images.
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parameter-efficient deep learning approach to predict conversion from
mild cognitive impairment to Alzheimer’s disease,” NeuroImage, vol.
189, pp. 276–287, 2019.

[19] D. Cheng and M. Liu, “Cnns based multi-modality classification for
AD diagnosis,” in 2017 10th International Congress on Image and
Signal Processing, BioMedical Engineering and Informatics (CISP-
BMEI), 2017, pp. 1–5.

[20] M. Liu, D. Cheng, K. Wang, and Y. Wang, “Multi-modality cascaded
convolutional neural networks for Alzheimer’s disease diagnosis,” Neu-
roinformatics, vol. 16, no. 3, pp. 295–308, 2018.

[21] S. Qiu, P. S. Joshi, M. I. Miller, C. Xue, X. Zhou, C. Karjadi, G. H.
Chang, A. S. Joshi, B. Dwyer, S. Zhu, M. Kaku, Y. Zhou, Y. J. Alderazi,
A. Swaminathan, S. Kedar, M.-H. Saint-Hilaire, S. H. Auerbach,
J. Yuan, E. A. Sartor, R. Au, and V. B. Kolachalama, “Development and
validation of an interpretable deep learning framework for Alzheimer’s
disease classification,” Brain, vol. 143, no. 6, pp. 1920–1933, 2020.

[22] J. M. Rondina, L. K. Ferreira, F. L. de Souza Duran, R. Kubo, C. R.
Ono, C. C. Leite, J. Smid, R. Nitrini, C. A. Buchpiguel, and G. F.
Busatto, “Selecting the most relevant brain regions to discriminate
Alzheimer’s disease patients from healthy controls using multiple
kernel learning: A comparison across functional and structural imaging
modalities and atlases,” NeuroImage: Clinical, vol. 17, pp. 628–641,
2018.

[23] B. Duraisamy, J. V. Shanmugam, and J. Annamalai, “Alzheimer disease
detection from structural MR images using FCM based weighted
probabilistic neural network,” Brain imaging and behavior, vol. 13,
no. 1, pp. 87–110, 2019.

[24] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models
transfer better?” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 2656–2666.

www.ijacsa.thesai.org 1006 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

[25] A. Bobick and J. Davis, “The recognition of human movement using
temporal templates,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 23, no. 3, pp. 257–267, 2001.

[26] B. Fernando, E. Gavves, M. José Oramas, A. Ghodrati, and T. Tuyte-
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