
(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 1, 2023

153 | P a g e

www.ijacsa.thesai.org

Investigating the Input Validation Vulnerabilities in

C Programs
Input Validation in C

Shouki A. Ebad

Department of Computer Science

Faculty of Science, Northern Border University

Arar, Saudi Arabia

Abstract—Input validation is a fairly universal programming

practice that helps reduce the chances of producing protection-

related vulnerabilities in software. In this paper, an experiment is

conducted to specifically determine the input validation issues

found in programs and the problematic functions that lead to

such issues. The experiment evaluated 12 arbitrarily selected

open source C projects written by different programmers. The

top two most common input validation problems are buffer

overflow/XSS and potential memory mismanagement. In

addition, the functions that caused the first problem are:

(a) strings/text functions (e.g., strcpy and strcmp), and

(b) functions that read from standard input, STDIN (e.g., scanf

and gets). In contrast, the functions that caused the second

problem are (a) memory allocation/deallocation functions (e.g.,

memmove and malloc), and (b) file manipulation functions (e.g.,

fopen and fseek). Furthermore, the goto construct—to a small

extent—plays a role. The recommendations are that

(a) developers are encouraged to use memory-safe programming

languages, otherwise, they should perform different types of

checks for the validity of inputs as soon as they are entered, and

(b) they should have the required knowledge of secure source

code and use tools/suites to manage malformed strings.

Keywords—Input validation; buffer overflow; memory

mismanagement; safe C functions

I. INTRODUCTION

Input validation is accepted as good programming practice
when writing reliable software. This practice is fairly
universal and helps reduce the chances of introducing
protection-related vulnerabilities in delivered software [1][2].
This practice can be applied regardless of the programming
language (PL) used in development, although the way it is
used depends on the specific PL and notations that are used
for software development. Every software takes input from its
environment and processes it. The specification of such an
input makes assumptions about this input that reflects its real-
world use. For instance, it may be supposed that an employee
ID is always a 10-digit positive integer. However, the software
specification does not determine the steps that should be taken
in case of wrong input. The user often makes mistakes and
sometimes enters the data incorrectly. Regardless of the type
of source of unexpected inputs (human, IoT devices, sensors,

the system itself1, or other systems), the software can behave
in an unanticipated way and provide incorrect values. Such
inputs may lead to many security issues. One of these is
memory error exploitation, which still ranks among the top
three most dangerous software vulnerabilities [1][3].

Buffer overflow and SQL injection are two examples of
memory and string-based attacks. The former may be
executed using long input strings, and the latter may be
performed when a user enters a piece of SQL that is
interpreted by a server [4]. The decision that one makes if any
validation check fails relies on the software type being
developed. For example, while reporting the issue and
requesting to re-input the value may be enough in a business
application, the input value might have to be estimated
according to previous data in a real-time system that should be
operated continuously. In contrast, if the source of the input
value is a sensor, the most recent valid value could be enough
to use. The paper is structured as follows. Section II reviews
the existing literature. The research approach is stated in
Section III. In Section IV, the results are analyzed and
discussed. Section V discusses threats to the study‘s validity.
Finally, Section VI summarizes the article and presents plans
for future work.

II. RELATED WORK

Scholte et al. [4] proposed a technique to prevent the
exploitation of cross-site scripting (XSS) and SQL injection
vulnerabilities based on the automated data type detection of
input parameters. They implemented the technique for PHP
and validated it on five web applications with known XSS and
SQL injection vulnerabilities. Their technique prevented 83%
of SQL injection vulnerabilities and 65% of XSS
vulnerabilities while incurring no developer burden. Veen et
al. [3] presented memory errors and considered attacks,
defenses, and statistics. During a short period in the 70s, they
discussed buffer overflows and established CERTs, Bugtraq,
and various important methods and countermeasures. A set of
related research areas is also explored. Tirronen [6] proposed a
technique to eliminate SQL injection attacks by enabling web
applications to work with abstract syntax trees while ensuring
uniform interpretation of the result. The method involved
moving away from processing data as strings to implement a

1 For configuration, a mobile app can directly read the inputs from itself

[5]

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 1, 2023

154 | P a g e

www.ijacsa.thesai.org

non-trivial XSS-protected application with the method in a
limited resource. Braz et al. [2] designed an online survey
involving 146 participants to understand the extent to which
programmers can(not) discover improper input validation
vulnerabilities. The participants were assigned to changes with
one of two vulnerabilities: (a) SQL injection, and (b) improper
validation of specified quantity input. Only 45% of the
participants found the vulnerability. There was a lack of
knowledge and practices to detect vulnerabilities when an
attack scenario is not visible.

Rodr´ıguez et al. [7] analyzed over 50 documents to gather
information on the techniques and tools that were used to
discover XSS attacks. Their results showed that the trend was
increasing in the analysis of content and patterns and
decreasing in the use of artificial intelligence to reduce such
attacks. Zhao et al. [5] demonstrated an important application
of input validation, exposing input-triggered secrets such as
backdoors and blacklists of unwanted items. They proposed a
tool to find both the execution context of user input validation
and the content involved in the validation to expose hidden
functionality. The tool was tested with many mobile apps and
it was found that they contained more than 12,000 and 4,000
backdoor secrets and blacklist secrets, respectively. Pereira et
al. [8] studied a number of buffer overflow vulnerabilities in
the Linux kernel, Mozilla, and Xen open-source C/C++
projects to analyze possible methods of improving their
detection. The results showed that most of the vulnerable
source code units were with defects in checking and dealing
with input data types. Static analysis tools lack rules to detect
missing or incorrect checking logic vulnerabilities. Moreover,
there is no causality between buffer overflow existence and
the value of software metrics. Khalaf et al. [9] explored
detecting/removing bugs from client-side and server-side code
using an input validation mechanism. They supported tests
using easy-to-use and accurate models. A program statement
that was vulnerable in SQL injection was checked according
to static attributes. They also presented a script whitelisting
built into the browser‘s JavaScript engine, where the SQL
injection was detected and the XSS attack resolved using that
mechanism.

In conclusion, in contrast to the existing literature, this
study tries to identify the most common security issues related
to input validation and the functions that are the source of
such issues. This will help programmers and developers to
give more attention to such functions.

III. EXPERIMENTAL APPROACH

An experiment was performed to understand how well C
programs follow input validation practices. The details of the
experiment are discussed in the following subsections.

A. Research Questions (RQs)

The following RQs are investigated:

RQ1: What are the most common input validation
vulnerabilities at source code level?

RQ2: Which functions are the source of the majority of the
above input validation vulnerabilities?

B. Subjects and Variables

As a representative of software source code, C programs
are used; they are collected from the GitHub repository2. C is
still one of the most common PLs in the market [10]. A
controlled experiment is conducted where the subjects of the
experiment are 12 open source software (OSS) programs
written in C; the subjects are arbitrarily selected. The software
developer of the subjects is a factor that could have an impact
on the results because individual developers could use the
same input validation practices for all of their programs.
Therefore, we control this variable by selecting software
programs that were designed and developed by different
people.

C. Data Source and Tools

In order to evaluate the RQs, the data source in our
analysis is restricted to the C PL, since (1) it is widely used,
and (2) it provides input validation functions or constructs.
Additionally, the experiment can be performed without any
confounding factors introduced by different PLs. By
restricting to just one PL, the results can be placed in context,
and we can have more confidence in the conclusions. Table I
describes the data source used for this experiment. There is a
diversity in domains: education, business, management,
tourism, and health. The differences among experimental
subjects (i.e., C programs) were not substantial. The well-
known metric of non-commented lines of code (LOC) was
used to measure the program size. The mean size is 728.2
LOC, indicating the programs are small and medium-sized.

Visual Code Grepper (VCG) was used to collect the input
validation violations of C programs. VCG is a source code
security tool (available on the web 3) to handle different
programs, including those written in C. The statistical data
were analyzed using Microsoft Excel 2016.

IV. RESULTS AND DISCUSSION

Table II shows the memory-related input validation issues
that were discovered by VCG. According to Table II, the top
two most common input validation vulnerabilities are
potential memory mismanagement and buffer overflow.
Before going into the main results in depth, we should first
note that the reader is supposed to be familiar with memory
and string functions in C. Interested readers can refer to any C
textbook for more information.

2 https://github.com/
3 https://sourceforge.net/projects/visualcodegrepp/

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 1, 2023

155 | P a g e

www.ijacsa.thesai.org

TABLE I. DETAILS OF THE EXPERIMENTAL SUBJECTS (C PROGRAMS)

Subject Project name Domain Program name Program LOC

CP1 Stellarium Science Indiserver.c 1528

CP2 Bank-Management-Program Management bank management system.c 507

CP3 Departmental-store-management-system Business finalProject.c 453

CP4 Library-Management-System Education FINAL PROJECT.c 1668

CP5 Calendar Date and time Calender&age.c 145

CP6 Contact-Management-System Management code.c 204

CP7 Pharmacy management system Health Phamacy Managment System.c 913

CP8 Student-record-system Education main.c 943

CP9 Phonebook Application Management Phonebook Application.c 288

CP10 Personal Diary Management system Personal Personal Diary Managment System.c 618

CP11 Hotel-menu-and-billing-main Business main.c 49

CP12 Tux paint Entertainment onscreen_keyboard.c 1422

Average 728.2

TABLE II. MAIN ERRORS REPORTED BY VCG

Vulnerability

Subject no.

Buffer

overflow

Potential Memory

Mismanagement

Accepting anonymous

internet connection or

unverified input data

Can expose

residual

memory

contents

Facilitate

format

strings bugs

improper

control flow
Sum

CP1 48 3 2 5 2 0 60

CP2 42 0 0 0 0 0 42

CP3 28 0 0 0 0 2 30

CP4 25 0 0 0 0 4 29

CP5 4 0 0 0 0 0 4

CP6 18 0 3 0 0 0 21

CP7 29 0 0 0 0 1 30

CP8 107 1 0 0 0 0 108

CP9 2 0 0 0 0 0 2

CP10 32 0 0 0 0 1 33

CP11 6 0 0 0 0 0 6

CP12 23 10 4 2 3 0 42

Sum 364 14 9 7 5 8 407

Mean 30.3 1.2 0.8 0.6 0.4 0.7 33.9

A. Potential Memory Mismanagement

This problem includes a variety of memory-related errors
such as memory leaks, using memory inefficiently, invalid
deallocation, double frees, heap corruption 4 , memory

4 Memory leaks result from memory that is allocated but never freed.

Using memory inefficiently happens when a program allocates memory and

fails to use it for a long time. It doesn‘t constitute a memory leak, but can

waste a significant amount of memory.

overhead, and file-access violation [3]. The reader is assumed
to be familiar with such type of errors; interested readers can
consult [3] for more information. Table III shows a sample of
lines of code and functions that caused the memory
mismanagement problems in C programs. From Table III, the
functions and constructs that caused this problem can be
divided into three groups:

 Memory allocation/deallocation functions such as
memmove, malloc, free, new, and

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 1, 2023

156 | P a g e

www.ijacsa.thesai.org

delete.

 File manipulation functions such as fopen,

fprint, and fseek.

 The Goto construct.

As a feature in C, the above C programs offered control on
memory usage by allowing the optimization of memory
allocation for their resources. However, this makes the
developers responsible for tracking any memory that their
programs dynamically allocate/deallocate. Otherwise,
memory-related input validation problems will be introduced
as in most cases in Table IV. Some of the above experiment
subjects (e.g., CP12) accessed memory via pointers, which
produced a memory access error. Use of goto should be

minimized as much as possible; programmers have been urged
to abandon the goto statement for more than 50 years on the

advice of Dijkstra [11]. Despite this, it is still very much used
in C projects [12]. Fig. 1 shows a sample of CP2‘s source code
that uses goto in such a case. Use of goto came from the

fact that C is a non-memory-safe PL in the input validation
principle. In particular, it does not have explicit error handling
and cleanup constructs like try/catch (for exceptions and errors
handling) and finally (for cleanup activity) in Java; the
programmers must therefore resort to using goto statements.

Most of the current C projects that used goto are for these

two purposes [12].

In general, tracking memory is not simple—even programs
written by skilled programmers contain such problems. The
issue originates when an unallocated area is corrupted, and a
fatal error often happens in the coming allocation request.
Besides the use of goto in not handling exceptions and input

errors [12], there are three main causes of potential memory
mismanagement problems [8].

 Passing a wrong parameter to an allocation function
such as malloc() and realloc().

 Passing invalid data to a deallocation function such as
free() and delete().

 Writing before/after the start/end of the allocated space,
causing an underrun/overrun error.

B. Buffer Overflow/XSS

Buffer overflow is a form of memory mismanagement
problem. It happens when code goes beyond the portion of
data assigned to a buffer. In particular, code with a limited-
size buffer accepts unlimited length input. In such a case, the
program can crash or malicious code can be executed. In
recent years, this issue has grown rapidly with web
applications; it is known as XSS attacks, which allow an
attacker to insert client-side scripts into web pages that the
victim can access; it is also known as internet buffer overflow
[9]. As mentioned earlier, writing data to memory beyond a
buffer occurs with non-memory-safe PLs like C and C++ that
have no bounds checking. Table V shows a sample of lines of
code and functions that cause the buffer overflow problem in
C programs.

From Table IV, several C functions are known to be
unsafe and the source of the vast majority of buffer overflow
attacks. They can be divided into two groups:

 Functions to read from STDIN (standard input) such as
scanf(), fscanf(), sscanf() and gets()

where inputs are taken from the keyboard or file.

 Functions to manipulate strings/texts such as
strcpy(), strcmp(), strlen(), and
strtok().

The advice herein is that C programmers should never use
these functions. Fortunately, there are safer alternatives to
such unsafe functions. The safer alternatives to strcpy()

and strcmp(), for example, are strncpy() and

strncmp(), respectively. However, the safer functions are

not completely safe because strncpy() was a cause for

buffer overflow in CP1 in Table V. This finding has been
confirmed by previous researchers [8]. In particular, the
unsafe strcpy() takes two arguments—destination and

source—and the function copies the source, including the
NULL character, to the destination. Contrary to this, the safe

strncpy()function takes the same two arguments as well as

n, an unsigned integral type; the function copies the
first n characters of source to destination i.e., at most, n bytes
of the source are copied. If there is no NULL character in the

first n characters of source, the string placed in the destination
will not be NULL-terminated. Therefore, there is no guarantee

that the destination will be NULL-terminated i.e., a non-

terminated string in C is waiting to destroy the program. The
question is why such functions were then built in C? The
answer comes from C‘s history; those functions were
particularly designed to address specific problems in
manipulating strings stored in the manner of original UNIX
directory entries, which use a short limited-size array of 14
bytes, and a NULL-terminator was only used when the

filename was less than the array.

C. Timely Recommendations

Although this problem has been known for decades, it is
still found in C/C++ software, as has been seen in this study.
Any application must not be vulnerable to input validation-
based attacks. Therefore there are three timely
recommendations herein:

 Use memory-safe PLs. Developers should try not to
use non-memory-safe PLs that fail to validate inputs;
such a failing can not only lead to buffer overflow
attacks (due to long input) but also DoS attacks (due to
low memory). In contrast, safe PLs can address these
challenges because they check, at runtime, that any
access to the memory is within the declared bounds;
they remove most buffer overflows at source.

 Perform input validation checks. The first
recommendation would not always be a good choice
due to the trade-off between performance and security.
With memory-safe PLs, there is a necessary
performance penalty for this validation, and, for that
reason, much code will continue to be written in C. In
such a case, the validity of the input should be checked

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 1, 2023

157 | P a g e

www.ijacsa.thesai.org

as soon as it is read. This check includes the
specification of the format and structure of the
expected inputs, especially considering there are
different sources for input, as mentioned in Section 1.
Input validation then relies on different checks; used in
input checks when the software is implemented, four
types of checks [1][5] are shown in Table V.

 Undergo training in writing secure code: The findings
have indicated a lack of knowledge and practices to
find vulnerabilities. This finding has also been
confirmed by a recent study [8] that showed that most
buffer overflow vulnerabilities are associated with
missing checks (e.g., missing if construct around a

statement) or incorrect checking (e.g., the wrong

logical expression used as a branch condition).
Regardless of the PLs used in coding, developers
should have the required knowledge, training, and
practices of secure source code.

 Use appropriate security tools: they should also use
static and dynamic analysis security tools that include
the use of suites of prebuilt attacks and malformed
strings that can quickly discover and eliminate
different software vulnerabilities [13]. Examples of
such tools that can help developers in this regard
include Clang-Tidy, FlawFinder, and Loggly by
SolarWinds, which focus on insufficient input
validation, XNU memory, and log file analysis and
SQL injection, respectively [14].

TABLE III. MAIN ERRORS OF POTENTIAL MEMORY MISMANAGEMENT REPORTED BY VCG TOOL

Subject no. Problematic statement Problematic function Error description

CP1

memmove(ptr, ptr + 1, --len);

memmove

malloc

Unrestricted memory copy function. Can facilitate buffer overflow

conditions and other memory mismanagement situations.

CP2 goto account_no; goto

Use of the goto construct. The goto construct can result in

unstructured code that is difficult to maintain and can result in

failures to initialize or de-allocate memory.

CP3
file2 = fopen("tempfile.txt",

"rb");
fopen

Unsafe temporary file allocation.The application appears to build a

temporary file with a static, hard-coded name. This causes security

issues in the form of a classic race condition (an attacker creates a

file with the same name shared between the application's creation

and attempted usage) or a symbolic link attack where an attacker

creates a symbolic link at the temporary file location.

CP4 rewind(fp);

rewind

fopen

The rewind function is considered unsafe and obsolete. Using

rewind makes it impossible to determine if the file position

indicator was set back to the beginning of the file, potentially

resulting in improper control flow. fseek is considered a safer

alternative.

CP5, 6, & 11 Buffer overflow (See the next section)

CP7 fmeds=fopen("Medicines.txt","r"); fopen

Function used to open a file. Carry out a manual check to ensure

that the user cannot modify filename for malicious purposes and

that the file is not 'opened' more than once simultaneously.

CP8
new_node = (struct node

*)malloc(sizeof(struct node));

malloc

fopen

Potential memory mismanagement. Variable name: new_node

malloc without free.

CP9 ft=fopen("temp","wb+"); fopen

Unsafe temporary file allocation. The application appears to build

a temporary file with a static, hard-coded name. This causes

security issues in the form of a classic race condition (an attacker

creates a file with the same name shared between the application's

creation and attempted usage) or a symbolic link attack where an

attacker creates a symbolic link at the temporary file location.

CP10 rewind(fp);
rRewind

fopen

The rewind function is considered unsafe and obsolete. Using

rewind makes it impossible to determine if the file position

indicator was set back to the beginning of the file, potentially

resulting in improper control flow. fseek is considered a safer

alternative.

CP12

layout->keysymdefs =

realloc(layout->keysymdefs,

sizeof(keysymdefs) * (i + 1));

realloc

malloc

Potential memory leak. On failure, the realloc function returns

a NULL pointer but leaves memory allocated. The code should be

modified to free the memory if NULL is returned.

Dangerous use of realloc: the source and destination buffers are

the same. A failure to resize the buffer will set the pointer to

NULL, possibly causing unpredictable behavior.

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 1, 2023

158 | P a g e

www.ijacsa.thesai.org

Fig. 1. Sample of goto procedure in CP2

TABLE IV. MAIN ERRORS OF BUFFER OVERFLOW REPORTED BY VCG TOOL

Subject

no.
Problematic LOC

Problematic

function
Error description

CP1

strncpy(dp->host, "localhost", MAXSBUF);

strcpy

sscanf

memmove

gets

strncpy

The function appears in

Microsoft's banned

function list. Can

facilitate buffer

overflow conditions.

While ―safer‖, the

current "n" functions

include non-null

termination of

overflowed buffers and

no error returns on

overflow.

CP2 scanf("%d/%d/%d",&add.deposit.month,&add.deposit.day,&add.deposit.year);
scanf

fscanf

The function directs

user defined input to a

buffer and so can

facilitate buffer

overflows.

CP3 strcpy(item.product_code, code);
scanf

strcpy
As CP1

CP4 scanf("%d",&i);
scanf

gets

As CP2

CP5 scanf("%d",&c); Scanf

CP6 scanf("%d",&choice);
scanf

strcpy

CP7 gets(c1.name);
gets

scanf

CP8 scanf("%f", &new_node-> university_current_result);
gets

scanf

CP9 scanf("%ld",&p.mble_no); Scanf

CP10 gets(e.duration);
gets

scanf

CP11 scanf("%d",&a); scanf

CP12 #define strtok_r(line, delim, pointer) strtok(line, delim

strtok

sscanf

strcpy

add_invalid:

printf("\n\n\n\t\tEnter 1 to go to the main menu and 0 to exit:");

scanf("%d",&main_exit);

system("cls");

if (main_exit==1)

menu();

else if(main_exit==0)

close();

else

{

printf("\nInvalid!\a");

goto add_invalid;

}

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 1, 2023

159 | P a g e

www.ijacsa.thesai.org

TABLE V. CHECK TYPES FOR INPUT VALIDATION

Check type Description

1 Range checks
Inputs may be within a particular range. For example, any ratio should be between 0.0 and 1.0; the grade of student should be within

the range 0 to 100, the date should be legal (e.g., not February 31st), and so on.

2 Size checks
Inputs are expected to be a given number of characters or upper limit. For instance, an employee ID should be represented with 10

integers, no name with more than 40 characters including family name, no address with more than 100 characters, and so on.

3 Format checks

Inputs may be of specific types; if a number is expected, no alphabetic characters should be allowed. For example, email address

should include @ sign, the person‘s name must be alphabetic with no numbers or punctuation (apart from a hyphen) allowed, and so

on.

4 Semantic checks

This check concentrates on the meaning of inputs. As an example, the reading of a household electricity meter should not be so far

from that in the corresponding duration in the past year because it is known that the amount of electricity used is expected to be

approximately the same.

V. THREATS TO VALIDITY

Here, we present two threats to the validity of the study‘s
results.

 Internal validity: Individual developers would probably
carry out the same (insufficiently robust) practices in
all programs. This variable was controlled by selecting
programs that were written by different developers. In
addition, the selection of subjects was arbitrary. The
expected threat to internal validity, if there is one, may
come from errors in the VCG tool.

 External validity: The 12 OSS projects are chosen from
different domains to minimize the effect of domain-
specific issues. Two factors may affect the
interpretation and reduce the generality of the results;
studying the input validation practices of developers
from 12 OSS projects may not be sufficient, and all
projects considered herein are OSS, i.e., not
representative of all industrial domains.

VI. CONCLUSION AND FUTURE WORK

An indicator of secure source code quality is input
validation. It is believed that good practices improve program
protection, which directly affects recoverability and reliability.
In particular, it helps reduce the chances of producing security
vulnerabilities in software. This paper conducts an experiment
to identify the input validation vulnerabilities in programs and
the problematic functions that lead to such issues. The
experiment assessed 12 OSS projects written in C, a widely-
used PL that provides input validation functions and
constructs. The projects have different authors. The results
show that buffer overflow (or XSS) and potential memory
mismanagement are the top two most common input
validation problems. The two types of functions that caused
the buffer overflow problem are (a) strings/text functions such
as strcpy and strcmp, and (b) functions that read from

standard input, STDIN, such as scanf and gets. In

contrast, the functions that caused the memory
mismanagement are threefold: (a) memory
allocation/deallocation functions such as memmove and

malloc, (b) file manipulation functions such as fopen and

fseek, and (c) the goto construct used in handling input

errors or exceptions. Two main recommendations are
discussed: (a) programmers are encouraged to use memory-
safe PLs. Otherwise, they should perform different types of
checks for the validity of inputs as soon as they are entered

(four checks are presented in this paper), and (b) in addition
they should have the required knowledge of secure source
code and should be able to use tools/suites for malformed
strings. The results may not be very surprising for skilled C
developers, but it is important that there is experimental
evidence about the use of a set of C functions and constructs.

There is an open point for further research to examine the
problems of using different mechanisms for (a) more than 12
software projects, and (b) real-world systems (not only OSS).
However, in the second mechanism, there might be a ―data
scarcity‖ research problem due to a lack of sufficient data
[14].

REFERENCES

[1] I. Sommerville, Software Engineering, Pearson, UK, 2015

[2] L. Braz, E., Fregnan, G. Çalikli, A. Bacchelli, ―Why don‘t developers
detect improper input validation? drop table papers‖, The IEEE/ACM
43rd International Conference on Software Engineering (ICSE), Madrid,
22-30 May 2021, DOI: 10.1109/ICSE43902.2021.00054

[3] V. D. Veen, N. Dutt-Sharma, L. Cavallaro, and H. Bos, ―Memory errors:
the past, the present, and the future‘, in: Balzarotti, D., Stolfo, S.J.,
Cova, M. (eds) ‗Research in Attacks, Intrusions, and Defenses RAID‘.
Lecture Notes in Computer Science, Volume 7462. Springer, Berlin,
Heidelberg, 2012.DOI: https://doi.org/10.1007/978-3-642-33338-5_5

[4] T. Scholte, R. William, B. Davide, and K. Engin, ―Preventing input
validation vulnerabilities in web applications through automated type
analysis‖, The Proceeding of the 36th International Conference on
Computer Software and Applications, Izmir, Turkey, pp. 233-243, 16-20
July 2012, DOI: 10.1109/COMPSAC.2012.34

[5] Q. Zhao, C. Zuo, B. Dolan-Gavitt, G. Pellegrino, Z. Lin, ―Automatic
uncovering of hidden behaviors from input validation in mobile apps‖,
The IEEE Symposium on Security and Privacy (SP), San Francisco, CA,
USA, 18-21 May 2020, DOI: 10.1109/SP40000.2020.00072

[6] V. Tirronen, ―Stopping injection attacks with code and structured data‘,
in M. Lehto, & P. Neittaanmäki (Eds.), Cyber security: power and
technology, 2018, pp. 219-231. Springer. Intelligent Systems, Control
and Automation: Science and Engineering, 93. DOI:
https://doi.org/10.1007/978-3- 319-75307-2_13

[7] G. E. Rodr´ıguez, J. Torres, P. Flores, D. E. Benavides, ―Cross-site
scripting (XSS) attacks and mitigation: a survey‘, Computer Networks,
Volume 166, 15 January 2020, 106960. DOI:
https://doi.org/10.1016/j.comnet.2019.106960

[8] J. D. Pereira, N. Ivaki, and M. Viera, ‖Characterizing buffer overflow
vulnerabilities in large C/C++ projects‘, IEEE Access, vol. 9. 2021,
DOI: 10.1109/ACCESS.2021.3120349

[9] O. I. Khalaf, M. Sokiyna, Y. Alotaibi, A. Alsufyani, and S. Alghamdi,
―Web attack detection using the input validation method: DPDA
theory‖, Computers, Materials & Continua, vol. 68, no. 3, 2012,
DOI:10.32604/cmc.2021.016099

[10] S. A. Ebad, A. A. Darem, and J. H. Abawajy, ―Measuring software
obfuscation quality–a systematic literature review‖, IEEE Access, vol. 9,
2021, 99024–99038.

https://doi.org/10.1109/ICSE43902.2021.00054
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1109/COMPSAC.2012.34
https://doi.org/10.1109/SP40000.2020.00072
https://doi.org/10.1007/978-3-%20319-75307-2_13
https://doi.org/10.1016/j.comnet.2019.106960

(IJACSA) International Journal of Advanced Computer Science and Applications

Vol. 14, No. 1, 2023

160 | P a g e

www.ijacsa.thesai.org

[11] E. W. Dijkstra, ―Goto statement considered harmful‘, Communications
of ACM: Letters to the editor, 1968, vol. 11, no. 3, pp. 147–148.

[12] M. Nagappan, R. Robbes, Y. Kamei, É, Tanter, S. McIntosh, A.
Mockus, A.E. Hassan, ―An empirical study of goto in C code from
GitHub repositories‘, The Proceedings of the ESEC/FSE'15: Joint
Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering, Bergamo, Italy, Aug. 30- Sep. 4, 2015, DOI:
https://doi.org/10.1145/2786805.2786834

[13] A. Rashid, H. Chivers, G. Danezis, E. Lupu, A. Martin, ―The Cyber
Security Body of Knowledge‖, CyBOK Version 1.0. 2019. [Online].

Available: https://www.cybok.org/media/downloads/CyBOK-version-
1.0.pdf, accessed 20 Jan 2023.

[14] M. Taeb, and H. Chi, ―A personalized learning framework for software
vulnerability detection and education‖, International Symposium on
Computer Science and Intelligent Controls (ISCSIC), 12-14 November
2021, Rome, Italy. DOI:
https://doi.org/10.1109/ISCSIC54682.2021.0003

[15] S. A. Ebad, ―An exploratory study of ICT projects failure in emerging
markets‖, Journal of Global Information Technology Management, vol.
21, no. 2, 2018, pp. 139-160. DOI:
https://doi.org/10.1080/1097198X.2018.1462071

https://doi.org/10.1145/2786805.2786834
https://www.cybok.org/media/downloads/CyBOK-version-1.0.pdf
https://www.cybok.org/media/downloads/CyBOK-version-1.0.pdf
https://doi.org/10.1109/ISCSIC54682.2021.0003
https://doi.org/10.1080/1097198X.2018.1462071

