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Abstract—Hadoop’s MapReduce implementation has been
employed for distributed storage and computation. Although
efficient for parallelizing large-scale data processing, the chal-
lenge of handling poor-performing jobs persists. Hadoop does
not fix straggler tasks but instead launches equivalent tasks
(also called a backup task). This process is called Speculative
Execution in Hadoop. Current speculative execution approaches
face challenges like incorrect estimation of tasks run times, high
consumption of system resources and inappropriate selection
of backup tasks. In this paper, we propose a new speculative
execution approach, which determines task run times with
consistent global snapshots and K-Means clustering. Task run
times are captured during data processing. Two categories of tasks
(i.e. fast and stragglers) are detected with K-Means clustering.
A silhouette score is applied as decision tool to determine
when to process backup tasks, and to prevent extra iterations
of K-Means. This helped to reduce the overhead incurred in
applying our approached. We evaluated our approach on different
data centre configurations with two objectives: i) the overheads
caused by implementing our approach and ii) job performance
improvements. Our results showed that i) the overheads caused
by applying our approach is becoming more negligible as data
centre sizes increase. The overheads reduced by 1.9%, 1.5% and
1.3% (comparatively) as the size of the data centre and the task
run times increased, 7i) longer mapper tasks runs have better
chances for improvements, regardless of the amount of straggler
tasks. The graphs of the longer mappers were below 10% relative
to the disruptions introduced. This showed that the effects of the
disruptions were reduced and became more negligible, while there
was more improvement in job performance.

Keywords—MapReduce; Hadoop; speculative executions; strag-
glers; consistent global snapshots; K-means algorithm

I. INTRODUCTION

The Hadoop software environment provides a widespread
implementation for distributed data storage and MapReduce
computing [1], [2], [3]. However, the challenge of handling
poor-performing jobs persists. Hadoop launches equivalent
tasks (also called a backup task) in place of straggler tasks
to finish the computation faster. This process is Hadoop’s
speculative execution [4].

Previous research into speculative execution has shown
efforts to improve job performance in MapReduce. Past strate-
gies such as LATE [5] and MCP [6] recognize straggler
tasks based on self-estimation of the tasks’ remaining time.
SAMR [7] and ESAMR [8] use historical information to
classify nodes into slow map and reduce nodes. SECDT [9]
predicts the remaining time of running tasks based on real-
time information on tasks. However, these previous approaches

have various problems. Most have challenges with the accurate
estimation of the remaining time of slow tasks. Some have
significant overheads during the estimation of straggler tasks’
remaining times.

Our work proposes a new speculative execution approach,
which estimates task runtimes with consistent global snapshots
and K-Means clustering. Task progress is captured consistently
during data processing. Two categories of tasks (fast and
straggler) are identified with K-Means. A silhouette score is
applied as decision tool to determine when to process backup
tasks. This helped to reduce the overhead incurred in applying
our approached since, the stragglers were quickly detected and
rescheduled.

We evaluated our approach on different data centre con-
figurations. The data centre configurations were selected after
considering Hadoop cluster requirements from the industry. We
focused our experiments on two objectives: (¢) the overheads
caused by implementing our approach and (i7) job performance
improvements. Two categories of backup tasks were consid-
ered in our experiments. (¢) backup tasks that can transfer their
states when shifting from one node to another and (iz) backup
tasks that need to restart after their transfer (i.e. tasks supported
by Hadoops original speculative execution).

We experimented with mappers as there are typically
more of them in a Hadoop application than reducers. Since
reducer handling is done the same way as mapper handling in
Hadoop, our results are applicable to both. We also focused
on different durations of mappers, which provided the details
of how long the mappers took to process data. From these,
we concluded on the following (¢) the overheads caused by
applying our approach is becoming more negligible as data
centre sizes increase. The overheads reduced by 1.9%, 1.5%
and 1.3% (comparatively) as the size of the data centre and the
task run times increased. (i) longer mapper tasks runs have
better chances for improvements, regardless of the amount
of straggler tasks. The graphs of the longer mappers were
below 10% relative to the disruptions introduced. This showed
that the effects of the disruptions were reduced and became
more negligible, while there was more improvement in job
performance.

The remainder of this paper is structured as follows. In
Section II, we reviewed concepts and related works about
MapReduce and Speculative Executions. In Section III, we
present our methodology for detecting straggler tasks and
proposed improvements. In Section IV, we discussed the
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Fig. 1. MapReduce structure.

procedure for evaluating our approach via experiments and
we analysed the results. Section V concludes the paper with
recommendations for future work.

II. CONCEPTS AND RELATED WORKS
A. Concepts

In this subsection, we briefly discuss few concepts related
to the MapReduce programming model.

1) MapReduce: MapReduce (MR) is a programming
model for massive data computing used in Apache Hadoop.
MapReduce is used for writing applications that process and
analyse large data sets. These applications ran in a parallel
fashion on large clusters in a scalable and fault-tolerant man-
ner. A MapReduce job breaks and divides the input data into
chunks which are first processed by the “Map phase” in parallel
and then by the “Reduce phase” [10], [11] as seen in Fig. 1.

2) Hadoop: Apache Hadoop is an open-source software
implementation of MapReduce. The core of Hadoop includes
a distributed file system, and a MapReduce processor [1]. The
Hadoop distributed file system (HDFS) works closely with
MapReduce by distributing storage and computation across
large clusters [12], [13]. During job processing on Hadoop,
if a task of a job requires an abnormally long execution time,
the total completion time of the job is affected. Such a task is
called a straggler task. MR reruns straggler tasks on a different
machine to finish the computation faster. The process of
diagnosing straggler tasks and assigning them to other nodes is
called speculative execution [14]. These faults are mainly due
to IO contentions, background services, hardware behaviours,
unbalanced load or uneven distribution of resources and other
reasons [15]. Some straggler tasks run significantly slower than
other tasks as shown in Fig. 2, where the straggler tasks take
more processing times than the normal MR tasks [4].

3) Prior speculative execution strategies: A couple of re-
search activities have been conducted to solve poor-performing
tasks.

The Hadoop Naive Method was implemented with the
Hadoop architecture. However, most of the tasks processed
during runtime were detected as slow tasks and processed as
backup tasks. This affected job completion because there was
no improvement in job completion time after processing the
backup tasks. Also, this strategy is not suitable in heteroge-
neous environments. Therefore, an approach that distinguishes
straggler tasks from the normal tasks during job processing
will ensure job performance improvements.

Zaharia et al. [5] developed the Longest Approximate Time
To End (LATE) algorithm. LATE is a simple, robust scheduling
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algorithm that uses estimated finish times to detect straggler
tasks. LATE is not suitable in heterogeneous environments.
Therefore, a dynamic approach that works in all types of
environments will help estimate the task runtime to ensure
the improvement of job performance.

Chen et al. [7] proposed a Self-Adaptive MR Scheduling
Algorithm (SAMR). SAMR uses historical information to clas-
sify nodes into the slow map- and reduce-nodes. This makes
SAMR dependent on previous tasks information. Therefore, an
approach that applies the information of current tasks without
depending on previous nodes will be welcomed in the research
community.

Sun et al. [8] designed an Enhanced Self-Adaptive MR
Scheduling Algorithm (ESAMR) as an improvement on SAMR
by utilising the K-means clustering algorithm to classify
historical information. Therefore, the reliance of ESAMR on
previous task information makes it only applicable when there
is historical information. Moreover, the K-means clustering
algorithm utilised was not validated to determine the straggler
tasks. Therefore, an approach that is not affected by changes
in dataset and validates the kmeans clustering will allow users
to better assess tasks behaviours.

Chen et al. [16] proposed the Maximum Cost Performance
approach, which considers the cost performance of cluster
computing resources to estimate the slow tasks. However,
in the map phase, task satisfying data localisation executes
faster than those not satisfying data localisation. This provide
an unfair comparison between the tasks at the same level.
Therefore, an approach that considers all tasks at the same
level will ensure an appropriate estimation of task run times.

Huang et al. [9] proposed a new Speculative Execution
Algorithm based on C4.5 Decision Tree (SECDT) to improve
predicted execution times among previous research resulting
in poor job performance. However, navigating the decision
tree implemented by this strategy is prone to significant
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overheads. Therefore, an approach that determines task run
times via snapshot captures will enable the improvement of
job performance.

In summary, the existing speculative execution strategies
still encounter challenges in managing straggler tasks in
Hadoop. We now discuss the design of our proposed approach.

III. METHODOLOGY

This section focuses on the design of our approach which is
designed to improve job performance on MapReduce Hadoop
(MRH). The approach consists of two algorithms that are
interconnected to ensure correct determination of task run
times, appropriate selection of backup tasks and reduction in
the consumption of system resources. The goals of this section
are:

e To design an algorithm that captures task run times
during data processing on mappers and reducers. This
is achieved by repetitive capturing of the task run
times at specific intervals.

e  To design an algorithm that monitors task performance
on their nodes to foster the rescheduling of straggler
tasks to available nodes for reprocessing.

e To implement K-means clustering algorithm to de-
termine straggler tasks. The K-means clustering al-
gorithm is applied with the Silhouette Coefficient to
validate the outputs of the clustered data sets.

e  To assess the algorithms on scalable configurations of
MRH to prove their applicability. A survey of industry
and real-life MRH configurations is conducted to
ensure that the solution is applicable in industry.

A. Consistent Global Snapshots on MapReduce

This approach comprises of snapshot capturing and
task performance monitoring algorithms as seen in Algo-
rithms 1 to 2, and Fig. 3 to 5. Fig. 4 shows state transitions
during the capturing of task run times. The two algorithms
work together to ensure that straggler tasks are detected
correctly and processed as backup tasks.

This approach is designed to dynamically collects real-time
data from all types of environments. The collected real-time
data fosters the early detection of straggler tasks to reduce high
consumption of system resources. Moreover, this approach is
applicable in most environments compared to a few existing
approaches which struggle in heterogeneous environments.
Additionally, some of the existing approaches have limitations
with accurate estimation of remaining time of straggler tasks.
Also, some have significant overheads during the estimation of
straggler tasks’ remaining times. The details of the algorithms
are discussed below.

1) Snapshots capturing algorithm: Algorithm 1 is applied
to explain the snapshots capturing process. The algorithm is de-
signed with specific parameters to foster its comprehension. T
and Cj are utilised to model tasks state transitions (Task_state)
and the snapshot capturing state transitions (Snap_state) during
job processing as seen in Fig. 5 and 4. These two parameters
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Algorithm 1 Snapshot Capturing Algorithm

Require: Variables: T = Task_state, Cs = Snap_state,
N = Node
Require: Variables: (); = Tasks_Instances,
1 = counter for Qr
Require: Variables: G, = captured_snapshots
Require: SnapStateFunction:
SnapState : Cs — {snap_ready,
snapping, snap_paused, snap_completed}
1: for i < Q7 do
2. if Ty = ready then

3: C, = snap_ready // Snap_state updates to ready
when tasks processing begins.

4:  else

5: Cs = pause_snapping

6: check the system and restart the task

7 end if

8:  while Ty, = running do

9: Cs := snapping // Snap_state updates to snapping
during tasks processing.

10: Save the captured snapshots

11: Gs = G5 + 1snapping

12:  end while

13: 7 =141
processed.

14: end for

15: if Ty = terminated then

16:  Cs := pause_snapping // Snap_state pauses when a
task is terminated with task_state updated to terminated.

17: end if

18: while i <= Q; do

19:  Cs := snapping // Task run times capturing contines
until all tasks are processed.

20:  Save the captured snapshots

21:  if Ty = completed then

/I Tasks are monitored until they are

22: Cs = snapping_completed // Snap_state updates
to snap_completed when tasks processing ends.

23: Save the captured snapshots

24: G = G5 + 1snapping

25:  end if

26 1=1+1

27: end while

together with the SnapStateFunction and the TaskStateFunc-
tion help to describe the status of task processing and snapshot
capturing at any specific period.

Algorithm 1 initialises with task processing to foster the
capturing of task run times as seen in Fig. 3. Nodes (N)
are monitored before task processing begins. This is done to
capture the commencement of task processing (start times), as
seen in the snapshot capturing state diagram in Fig. 4. When
job processing commences, data is uploaded into the system
for task processing to commence.

SnapStateFunction is activated, which causes Snap_state
(Cs) to be updated to ready_snap as seen in lines 1 to 3 of
Algorithm 1. However, if a task is not ready (due to a fault),
C, is updated to pause_snapping and the system is checked
(for the task to be restarted) as seen in lines lines 4 to 7.

While the updated data is being processed, C is updated
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from snap_ready to start_snapping as as seen in lines 8 to 13.
Task run times are captured and saved as seen lines 9 to 10.
Task run times are captured on all nodes and saved on
snapshots text files. Snapshots are captured repeatedly for all
the tasks running on nodes. The accumulated local snapshots
captured constitute the global snapshots (G;). The details
captured include (7) task start-time, (i) task completion-time,
(#i1) the node (N) on which the task is running, (iv) task
identification, and (v) task status. The task start-time is the
specific time the processing of a particular task ¢ commences.
While the completion-time is the specific time the processing
of t ends. The task identification is the unique key given
to every task ¢ when their processing commences. The task
status is reflective of the current state of ¢ as seen in the state
transition Fig. 5.

Additionally, the TaskStateFunction is activated, which
causes task_state (Ts) to be updated from ready to running
as seen in the task state diagram in Fig. 5. Ty remains
unchanged until all the tasks are completely processed. Then,
it transitions from running to completed. However, when a
task’s run time is unnecessarily longer that expected, the
task is suspended, which causes T, to be updated to fermi-
nated and C to pause_snapping as seen in lines 15 to 17.

When a configurable percentage of the tasks have been
processed with captured run times as seen in Fig. 3; K-means
clustering algorithm is employed to classify the captured data
on the snapshots text files, to determine the straggler tasks.
The straggler tasks identified are then processed as backup
task on available nodes. This causes T to be updated from
terminated to rescheduled as seen in Fig. 5.

When the tasks rescheduling is completed, the re-
processing of the backup tasks commences. This causes T
to transition from rescheduled to ready. The backup tasks are
processed together with the snapshot capturing until all the
tasks are completely processed as seen in lines 18 to 27 of
Algorithm 1.

2) Task performance monitoring algorithm: The task per-
formance monitoring and the snapshot capturing algorithms
work concurrently to ensure job performance improvement, as
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Algorithm 2 T'ask Per formance Monitoring Algorithm

Require: Variables: Q; = Tasks_Instances,
Tr = running tasks, i = counter for Qg
Require: Variables: N; = Node, A, = AvailNodes,
Tec = completed tasks
Require: Variables: Q; = {t1,to,t3,...t,}, Ts = Task_State
Require: Variables: Trr = task execution time,
Tyver = task maximum
execution time
Require: TaskStateFunction:
TaskState : Ts — {ready, running,
terminate, reschedule, completed}
1: Begin Tasks Processing in the Map or
Reduce Phase
2: for i <= Q7 do

3. status < checkTasksStatus

4:  switch (status)

5. Ts:=ready [l task is ready for processing.

6: case still_Running:

7: monitor the progress of the task

8: T := running

9: if T > Ther then

10: terminate the task

11: T, := terminated // straggler tasks are stopped.

12: reschedule straggler tasks on available nodes

13: T, := rescheduled

14: Tr < (Tr +t) // Running tasks list increased.

15: else

16: process all the tasks

17: end if

18:  case finished_Running:

19: Tasks completely processed

20: Ts := completed

21: Output results

22: Ay + (Aq + N;)  // Available nodes list increased
for backup task.

23: Tc < (Tc+t) // Monitor the tasks completed.

24: Q; + (@i —t) [/ Task instance list is reduced.

25:  end switch
26:  if |Qi| = O then

27: Stop tasks monitoring

28:  else

29: Continue with tasks monitoring
30:  end if

3. ¢=14+1 // Counter is increased to process all tasks.
32: end for

seen in Fig. 3.

Algorithm 2 is applied during task processing to monitor
and evaluate task performance. When data processing begins,
all tasks i.e., t = t1,t2,13,.. .1, are expected to process data at
the same rate. These tasks are allocated processes on compute
nodes as seen in lines 1 to 2.

The TaskStateFunction is activated which causes T to be
updated to ready as seen in line 5. Tasks-instances (Q);) are
monitored to determine whether they are still running (7r) or
are completely processed (T¢) as seen in lines 6 and 18.

During task processing, tasks which have relatively longer
run times than the maximum execution times (1;g1) of the
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tasks being processed are terminated as seen in lines 6 to 10.
This causes T to be updated to terminated as seen in line 11
and Fig. 5. The K-means algorithm is applied to cluster all
the captured task run times as seen in Fig. 6 on page 16.
The tasks identified as straggler tasks are rescheduled as seen
in lines 12 to 14. T, transitions from ferminated through
rescheduled to ready as seen in Fig. 5.

The states of the tasks which do not exhibit relative longer
run times, transition from ready through running to completed.
This enables their compute nodes to be availed for processing
backup tasks, and reduces the number of task instances. These
processes are seen in lines 18 to 25.

A vital aspect of this algorithm is the monitoring of task
instances (7). The number of tasks are monitored throughout
their processing stages. When the number of active tasks are
exhausted, job processing ends. Otherwise, the task processing
continues until the jobs generated are completely processed
seen in lines 26 to 32.

B. Identifying Straggler Tasks with K-Means Clustering Algo-
rithm

The identification of straggler tasks during job processing
was a challenge that required addressing in our approach. This
was achieved via the adoption of a clustering technique.

Clustering was considered because it is the type of unsu-
pervised machine learning where its goal is to partition sets
of objects into groups called clusters. These groups can be
mutually exclusive or they may overlap, depending on the
approach used. It is in contrast to the supervised learning
techniques where the goal is to make predictions about output
value y given an input object or instance x [17]. This made the
choice of clustering suitable for our approach since there was
no need for training any data set to achieve our groupings.

Additionally, we considered K-means clustering as the
clustering technique for our approach because it is a hard
clustering algorithm which delivers mutually exclusive group-
ings. K-means partitions a set of n objects into k clusters,
so that the resulting intra-cluster similarity is high but the
inter-cluster similarity is low [18]. It was the most suitable
clustering algorithm for our approach since two distinct groups
are required; thus fast tasks and straggler tasks.

Our approach applied the K-means clustering algorithm to
categorise task run times (dataset) received from the snapshot
capturing algorithm. The dataset saved on snapshots text files
during the map or the reduce phases are clustered into fast
and straggler tasks as seen in Fig. 6. K-means optimizes the
distance between the task run times to their centre points, as
seen in eq. (1) [19].
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(i — y))? (1)
1

J(V) =

i

1j

Also, the K-means algorithm is implemented with a valida-
tion technique as a decision-making tool in our work. It directs
whether to process backup tasks or not. There are cases where
the dataset presented for clustering is uniform. However, K-
means still tries to cluster it. Thus, clustering results require
validation to determine the goodness of fit of the clusters
created as seen in Fig. 7.

In order to ensure the effective creation of clusters, four
clustering validation techniques were considered. These are
Dunn [20], Davie-Bouldin, Calinski-Harabasz indices, and
the Silhouette score [21]. However, the silhouette score was
selected for our approach. The first three were not implemented
because of the following: first, although the Calinski-Harabasz
index defines how dense and separated a cluster is, the absence
of upper- and lower-bounds ranges made it inapplicable. Sec-
ond, the Davies-Bouldin index utilizes zero (0) as the upper
bound; and values closer to zero indicate a better partition.
Moreover, the Davies-Bouldin index did not have a lower
bound. In the case of the Dunn index, higher indices indicate
better clustering. However, the absence of a lower bound
makes it inapplicable in our context. Since, without a closed
range of clustering validation values, a deterministic algorithm
based on them would be unreliable. Also, the presence of
the upper-lower bounds fosters faster determination of the
goodness of fit of clusters created. Its absence introduces extra
overheads into our strategy and makes the choice inappropriate
for our research. Nevertheless, the Silhouette score S; utilizes
an easy-to-evaluate metric to determine the goodness of the
clustering. Silhouette score values have a closed range of -1
to 1 [22]. Thus, the silhouette score was chosen for this work.

Algorithm 3 is utilised to identify the suitability of a
clustering output for fast and straggler tasks. This algorithm
validates the silhouette scores after the clustering exercise. It
utilizes the values to decide whether to process backup tasks
or not. For instance, Fig. 7 shows two very close data clusters
which is difficult to ascertain the fast tasks or poor-performing
ones. However, Fig. 8a to 8d on page 17 show well defined
data clusters which will require rescheduling of straggler tasks.

Algorithm 3 Kmeans Clustering Validation Algorithm

Require: Set the S; threshold lower — bound as

Z, = 0.685
Require: Set the S; threshold upper — bound as
Zy =0.99

1: Initialize the clustering output as an array Al[k]
2: for k=1 to A.length do
3: if S, >7, & S; < Zy then

4 Reschedule tasks on available nodes
5 else

6: Run the tasks on current nodes

7 end if

8: end for

The results from the silhouette score are utilized to deter-
mine the goodness of the K-means clustering. If the silhouette
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score is higher than a threshold lower-bound value Z, but
less than a threshold upper bound value Z,; backup tasks are
required for the cluster with the straggler tasks as seen in line 3.
Otherwise, no intervention is applied to the task executions.
The remainder of the tasks are then processed on their original
nodes as seen in line 6.

Our silhouette score threshold (i.e., lower and upper bound)
values were determined from several clustering experiments
carried out on our dataset to ensure that the range given
satisfies all possible scenarios.

IV. EVALUATION

The goal of our evaluation was to assess our approach
via two major experiments to prove its applicability. They
are (i) strategy implementation overheads experiments (%%)
job performance experiments. The experiments enabled us
to draw the necessary conclusions on the benefits of using
our approach. The experiments aimed to detect and process
straggler tasks as backup tasks to improve job performance.
The experimental setup is described below.
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A. Experimental Setup

The following objectives were considered in order to
achieve the goal of the experiment:

° To determine the start-time of task processing.
° To determine the completion-time of task process-
ing.

To capture snapshots of task execution times.
To capture task run times at specific intervals.
To terminate straggler tasks.

To restart straggler tasks on available nodes.

The first two bullet points foster the determination of the
overheads introduced by this approach. The last four bullet
point ensures the measurements of the jobs improvement
performance. The termination and restart of the straggler tasks
reduces the high consumption of system resources. The experi-
ment was conducted on our extension of HDMSG MapReduce
(a MapReduce simulator with Simgrid as the main backbone)
available on GitHub'.

In order to utilise HDMSG for the development of this ap-
proach, a couple of features had to be added to the simulator to
make it applicable. Several methods and classes were created
for specific functions. A task monitoring method was created
to monitor the tasks running on nodes on the MapReduce
Hadoop cluster. This method was responsible for terminating
long running tasks. A task rescheduling method was created
to move the terminated task to available nodes to be processed
as backup tasks. A snapshot capturing method was created to
capture the start times and completion times of tasks on nodes.
These captured task run times were saved on text files for k-
means clustering. A disruption injection method was created
to send extra tasks unto arbitrary nodes to serve as background
activities. These extra tasks caused the map or reduce task on
those nodes to experience longer run times. The methods for
the creation of map and reduce tasks were extended to foster
the scalability of the framework. A node scheduling class was
created to foster the chronological processing of data nodes
to enable the capturing of snapshots. Also the class fosters
the selection of available nodes as exhibited in the Hadoop
infrastructure.

Tasks were divided into ten-equal-length subtasks to sim-
ulate the snapshot capturing behaviour with simgrid. This was
done to ensure that the snapshot could capture the start-times
and completion-times of subtasks. The experiments required
the capturing of task processing timelines (i.e. when a par-
ticular subtask ends and when the other begins). Therefore,
dividing a task into ten-equal-length allowed the runtime
behaviours of each subtask to be monitored and captured as
snapshots.

In setting up the experiments, the infrastructure of HDMSG
with Simgrid were defined. The infrastructure was defined
in terms of the following: the number of nodes, CPU cores,
bandwidth, latency metrics, and the nodes’ speed. Additionally,
the number of mappers and reducers, file input size (in
megabytes), and block size (HDFS chunk size in megabytes)
were configured to foster MR computations.

Thttps://github.com/EbenezerKomlaGavua/MapReduce_Snapshots

www.ijacsa.thesai.org

17|Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

To determine real life MR cluster infrastructure and ap-
plication configurations, two surveys about Hadoop cluster
requirements were carried out. The first survey focused on
identifying typical hadoop configurations and the second one
focussed on organisations actively utilising Hadoop clusters
for their data processing in industry.

Several keywords such as hadoop clusters (requirements),
industry cluster infrastructure (setup, configurations) were em-
ployed on several search engines to locate current MRH cluster
configurations. The first survey identified Hadoop cluster con-
figurations such as basic or standard deployments, advances
deployments, hadoop cluster hardware recommendations for
batch processing, in-memory processing, medium data size
and large data size. The first survey found that the most used
CPU speed was 2-2.5Ghz, data block sizes were between 128-
256MB, network bandwidth was 1-10Gbps, cluster nodes was
4-40, number of mappers and reducers were 5-12 per node,
disk capacity range was 32 GB to 1.2TB and total system
memory was 16-512 GB. All hadoop cluster configurations
modes were fully distributed.

The second survey found over one hundred and twenty
top companies actively utilising hadoop clusters from several
websites. Notable companies amongst the list include Alibaba,
AOL, Yahoo, Spotify, Last.fm, Ebay, University of Glasgow-
Terrier Team and Criteo. From this list, the modal CPU cores
per node identified was eight and the modal cluster nodes was
forty.

The findings of the survey fostered the selection of four
infrastructure scenarios (displayed in Table I) for our ex-
periments. The experimental scenarios comprise data nodes
that ranges from 20 to 100 nodes. The range of CPU cores
was 8 to 16. Aside the values displayed in the infrastructure
scenarios table, network bandwidth of 10Gbps was simulated
for all infrastructure scenarios. The smallest data block size
employed was 128MBs. All the experiments were run on fully
distributed hadoop cluster mode to foster conformance with
industry standard.

The details identified from the survey ensure the modelling
of real life applications on the above infrastructures as de-
scribed below. The number of mappers per node was obtained
via eq. (2), as stipulated in’:

_ 3Cores

Y ;
2

(@)

where Y is a positive rational number that represents the
number of mappers per node. C'ores is a positive integer which
represents the CPU cores per node.

The number of reducers per node was obtained via eq. (3),
as stipulated in®:

R=095x N xT, 3)

Where R is a positive rational number representing the
number of reducers per node, T is a positive rational number

Zhttps://data-flair.training/forums/topic/how-one-can-decide-for-a-job-how-
many-mapper-reducers-are-required/

3https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/
JobConf .html
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TABLE I. EXPERIMENTAL INFRASTRUCTURE SCENARIOS

Features 20N X 8¢ 20Nx16c  40NX8c 100N x 8¢
No. of Nodes 20 20 40 100
No. of Cores 8 16 8 8
Mappers per node 5 5 11 5
Total Reducers 38 38 76 190
Total Mappers 107 213 213 533
Input Size 13696 27264 27264 68224

Overheads Introduced on the.
Map Pha

se

Input ; output
i Reduce Phase | (HDFS)

Fs) Map Phase

ks 3 wapper |

Chunk 1

Chunk 2

Chunk 3 j Mapper

Chunk 4

Chunk 5 2l Mapper
Saved
Snapshots

Fig. 9. Structure of algorithm implementation with expected overheads.

processed data

YV vyl

representing the mapred tasktracker reduce tasks maximum
value. T' is the maximum number of reduce tasks that will be
run simultaneously by a task tracker (2 was used, since it is the
default maximum value). IV is a positive integer representing
the number of nodes running on the cluster.

The proposed approach applies to both mappers and reduc-
ers. However, the evaluation was centred on mappers; since
the number of mappers are bigger than reducers. Hence, the
effects of our approach are expected to be more on mappers
than reducers.

B. Determining the Overheads of our Strategy

This experiment determined the overheads introduced into
the infrastructure by the implementation of this approach.
The overheads were caused by the effects of the snapshots
capturing process on the infrastructure as seen in Fig. 9. The
comprehension of the effects of the overheads fosters the
appreciation of the challenges and benefits in applying this
approach on MRH.

The experiment was conducted on the four data centre
scenarios discussed in sub-section IV-A. Mapper tasks with
execution times from 0.5 to 2000 seconds were utilized. The
range for the experiment was derived via the multiplication of
the single values of one, two and five with the power series of
ten. The value of negative one produced 0.5 seconds and we
scaled the task run times until the graph converged at 2000
seconds. This process was done in order to obtain a scalable
range of task run times.

Since this approach involves capturing snapshots during the
processing of subtasks, two measurements were taken. These
are (1) the commencement of tasks processing and (¢2) The
completion of task processing. To determine the overhead on a
single mapper, the differences between the completion-times of
the processed portion of the task and the start-times of the next
portion of that same task are determined (i.e. the period for
snapshot capturing). The summation of the differences of these
values (i.e. differences between completion-times and start-
times) is subtracted from the task’s run times (which is the ten-
equal-length subtasks) as shown in Fig. 10. The value realized

www.ijacsa.thesai.org

18| Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE II. STRATEGY IMPLEMENTATION OVERHEADS

Scenario overheads (%)

Map time (ms) 20N x 8¢ 20N X 16¢ 40N x 8¢ 100N x 8¢
0.5 96 66 66 51
1 53 53 53 39
2 45 36 36 23
5 28 29 29 16
10 24 20 20 12
20 18 15 15 8
50 8 7 7 3
100 7 5 5 1
200 5 3 3 ~ 0
500 3 1 1 ~0
1000 1 ~ 0 ~0 ~ 0
2000 ~0 ~ 0 ~0 ~ 0
U = starttime of Task H Task (H) V= completion time of Task H
u
a b . a . 1 Task (H) processed in parts .
u <_><_><_,,4_>,<_,4_>4_>4_>4_>‘:_,V

X 2 x 3 Xa X5 X5 X7 Xg Xg

Te = run time a = start time oft, ¢ = start time of t, first overhead, x1 = c-b

Te=V-U t .t = portions of Task (H) b= completion time of t; d = completion time of t, ¢ oot overheads = X1,XgXg

Fig. 10. Strategy overheads.

is the overhead on a single mapper as shown in eq. (4) and
Fig. 10.

100(TH — (007 8 — ¢li))

Q7 =100 —
T

“)

Where Q¥ is the overhead of applying our approach on a
mapper H in percentage. T4 is the task runtime of the given
mapper. t/5% is the time the i*" snapshot of the mapper H
was started to be captured. Similarly, tZ+!is the time when we
finished capturing the snapshot of the same task. Equation 4
is exemplified in Fig. 10. T# is obtained from subtracting U
from V. The letters a and c¢ are the start times of the first
two subtasks, whilst b and d are the completion times of the
first two subtasks. Hence subtracting b from ¢ produces the
first gap (x1) introduced because of our approach. These gaps
1 to g are summed up and divided by the task run times to
generate the overhead of a task.

C. Discussion of the Overheads of our Strategy Experiment
Results

The overheads of a single mapper were measured on the
four data centre scenarios as seen in Tables II and illustrated
in Fig. 11.

e  Scenario 20Nx8c: The impact of applying our ap-
proach was gradual. The overheads were high at the
initial stages of the experiment. However, the impact
of the approach caused the high overheads to reduce
gradually with longer runtimes, as seen in Fig. 11.
Therefore, in such small infrastructures, our approach
is only advisable to use with long run times.

e  Scenarios 20N x16c and 40Nx8c: The two scenar-
ios exhibited similar overhead behaviours during task
runs. Therefore, only the 40 nodes by 8 cores set up
was shown in Fig. 11. The initial overheads observed
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Fig. 11. Cluster overheads.

were 1.5% lower (relatively) than the 20N x8c data
centre scenario. The figure shows that the larger infras-
tructure scenarios converged faster than the previous.
Also, this graph shows that the overheads of larger
data centres improve better than smaller ones when
our approach is applied. Moreover, the overheads of
applying our approach with long run times have a
higher chance of improving than smaller ones.

e  Scenario 100N x8c: This demonstrates how our ap-
proach deals with larger data-centres. The overhead
further reduced over the above scenarios. The initial
overheads were 1.9% lower (relatively) than scenario
20N x8c and 1.3% lower (relatively) than the other
two scenarios (i.e. 20N x16¢ and 40N x8c). Also, as
the task run times increased, the overheads reduced
drastically. Therefore, applying our approach to this
scenario shows that initial overheads are mostly lower
in large data centres. Additionally, the graph shows
that with the large configurations, the overheads re-
duce faster with long mapper run times than in the
other scenarios.

Therefore, from the experiments and industry surveys, it is
recommended that infrastructures with 14 to 20 cluster nodes
(with eight cores) should use scenario 20N x8c data centre
configuration. Infrastructures with 25 to 35 cluster nodes (with
eight or sixteen cores) should use our 20Nx 16¢c data centre
configuration. Infrastructures with 40 to 60 cluster nodes (with
eight cores) should use 40N x8c data centre configuration. Fi-
nally, infrastructures with 100 to 150 cluster nodes (with eight
cores) should use 100N x8c data centre configuration. Aside
the above recommendations, our approach is customizable to
suit user data configurations preferences.

D. Application Performance Experiments

This experiment determined the impact of our approach on
job performance. Four measurements were taken to evaluate
our approach. These are:

e  Total execution times when there was no disruption on
the MapReduce set-up (i.e. a dedicated Hadoop cluster
scenario).
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e Total execution times when disruptions were intro-
duced on arbitrarily nodes on the infrastructure. These
disruptions were created to interfere with task pro-
cessing so that the task will have long run times than
expected (this experiment was meant to represent a
Hadoop cluster hosted in a multi-tenant environment).
These disruptions were introduced via the running of
extra tasks on arbitrarily nodes which were not linked
to the original map or reduce tasks. The extra tasks
were designed to consume extra system resources
during the map and reduce phase. Also, the disrup-
tions represent background services, IO contentions
or uneven distribution of resources on data nodes for
industry research.

e  Total execution times when tasks were terminated and
processed as backup tasks (reschedule) on a different
node. This represents situations where mappers can
restore their mid-execution states. This is applied by
applications with the capabilities of storing their states
during data processing. When such applications get
terminated abruptly (due to factors contributing to
speculative execution); the applications resume task
processing on available nodes from the point they were
halted.

e Total execution times when tasks were terminated
and processed as backup tasks (restart) on a differ-
ent nodes (providing insight into applications which
cannot take advantage of state restoration).

These measurements were utilized to draw the graphs
shown in Fig. 12. The graphs of no disruption, reschedule
and restart were drawn relative to the disruption graphs which
are shown in Fig. 13. The graphs were drawn relative to the
disruption graphs, because we wanted to observe the levels of
job improvements in light of the disruptions introduced into
the system. The details of the various scenarios are discussed
in the next sub-section.

E. Discussion Performance Experiments Results

First, Fig. 12a displays the behaviour of scenario 20N x8c
data centre when our approach was applied. The task im-
provement on this data centre was gradual as seen in the
figure. In relation to the disruption graph, the slope began from
above 80% and reduced gradually below 10%. Furthermore,
reschedule backup tasks improve better with our approach than
restart backup tasks after disruption.

Second, scenario 20N x 16¢ data centre demonstrated con-
siderably more job performance improvement than the previ-
ous data centre as most of the graphs were below the 80%
mark as seen in Fig. 12b. Also, tasks that transfer their states
perform better with our approach than those that cannot. Tasks
with long run times exhibited big improvements as their values
were below 10% relative to disruption. This means that as
the tasks are processed for long run times, the effects of the
disruptions were reduced as the graphs approached the 0%
mark. For industry practitioners, it is advisable to apply our
approach for long run times.

Third, scenario 40N x8c data centre improved more com-
pared to the previous two scenarios as seen in Fig. 12¢. Finally,
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(c) 40 nodes by 8 cores. (d) 100 nodes by 8 cores.

Fig. 12. Tasks improvement experimental scenarios.

TABLE III. KMEANS CLUSTERING SILHOUETTE SCORES

Fig. Silhouette Scores

7 0.685
8a 0.985
8b 0.985
8c 0.985
8d 0.985

scenario 100N x 8c improved more than all the previous scenar-
ios as the graph showed a gradual improvement from below
the 60% as seen in Fig. 12d. The figure showed that tasks
with long run times had higher chances of improvement in this
data centre. As most of the graphs were below 10% relative
to disruption. Also, reschedule backup tasks improved much
better than the (restart) backup tasks. Since the reschedule
backup tasks have the capability to save their states, it was
easily for them to continue data processing when they were
moved to other nodes. In contrast, the restart backup tasks do
not store their states, hence they could not reschedule their
states, which delayed their task processing durations when
moved to other nodes.

In conclusion, larger data centres have a higher chance
of improvement when applying this approach. This approach
works better with larger data centres because the sizes fosters
scalability with long run times, which also ensures reduction
in system overheads.

FE. Disruption Identification with K-Means Clustering

The task run times captured during the experiments were
utilized for the K-means clustering. Two categories of re-
sults were observed after the clustering. Disruption-induced
and disruption-free categories. The straggler tasks formed the
disruption-biased data clusters are seen in Fig. 8a to 8d on
page 17. The large magnitudes of the straggler tasks, enabled
k-means to properly create the two categories.

Silhouette score was applied to validate the data clusters
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Fig. 13. Scenario disruptions.

and to foster overhead reduction in the application of the
kmeans clustering algorithm. Once the dissimilarities between
the dataset was detected, the clustering process was stopped.
Table III shows the disruption-free and disruption-induced map
task runtime data clusters and their respective silhouette scores.
The result of Fig. 7 was closer to our silhouette score threshold
lower-bound value. Since the data clusters created were not
separated enough to ensure task transfer, the task were not
shifted to other nodes. However, the rest of the experiments
show significantly higher silhouette scores resulting in identi-
fiable straggler tasks. The straggler tasks were then moved to
available nodes as either a reschedule or restart backup tasks.

V. CONCLUSION

This paper proposed a new speculative execution approach
to estimate task run times with consistent global snapshots and
K-Means clustering. Our approach applied two algorithms to
monitor and capture task run times as snapshots. A K-means
clustering technique was applied to classify the captured run
times into two categories (fast and straggler tasks). We applied
a silhouette score as a decision-making tool to determine when
to process backup tasks on available nodes. The silhouette
scores also helped to reduce the number of iterations by the
K-means. We evaluated our approach on different data centre
configurations. These were selected based on a survey of
industry requirements for Hadoop clusters and applications.
Our experiments were focused on two objectives; (¢) the
overheads caused by implementing our approach and (i¢) job
performance improvements. Our experiments enabled us to
show that (7) the overheads caused by applying our approach
were reduced faster with large data centres than the smaller
data centres. The overheads reduced by 1.9%, 1.5% and 1.3%
(comparatively) as the size of the data centre and the task
run times increased. (i¢) Mapper tasks with typical longer task
durations had better chances for improvements. The graphs of
the longer mappers were below 10% relative to the disruptions
introduced. This showed that the effects of the disruptions were
reduced and became more negligible. This approach measured
the job performance improvement achieved via the restart back
up tasks. A further work was done for applications capable of
transferring their states as reschedule back up tasks. Most of
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the previous approaches did not consider measurements for
reschedule back up tasks.

For future work, we consider implementing auto-scaling
algorithms on MapReduce Hadoop clouds. Our Snapshot cap-
turing algorithm will be applied to foster a comparison with
the job performance approach. Also, a couple of classification
and clustering techniques will be considered to provide further
extensions.
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