
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

233 | P a g e

www.ijacsa.thesai.org

Data Augmentation for Deep Learning Algorithms

that Perform Driver Drowsiness Detection

Ghulam Masudh Mohamed, Sulaiman Saleem Patel* and Nalindren Naicker

Department of Information Systems, Durban University of Technology

Durban, South Africa

Abstract— Driver drowsiness is one of the main causes of

driver-related motor vehicle collisions, as this impairs a person’s

concentration whilst driving. With the enhancements of

computer vision and deep learning (DL), driver drowsiness

detection systems have been developed previously, in an attempt

to improve road safety. These systems experienced performance

degradation under real-world testing due to factors such as

driver movement and poor lighting. This study proposed to

improve the training of DL models for driver drowsiness

detection by applying data augmentation (DA) techniques that

model these real-world scenarios. This paper studies six DL

models for driver drowsiness detection: four configurations of a

Convolutional Neural Network (CNN), two custom

configurations as well as the architectures designed by the Visual

Geometry Group (VGG) (i.e. VGG16 and VGG19); a Generative

Adversarial Network (GAN) and a Multi-Layer Perceptron

(MLP). These DL models were trained using two datasets of eye

images, where the state of eye (open or closed) is used in

determining driver drowsiness. The performance of the DL

models was measured with respect to accuracy, F1-Score,

precision, negative class precision, recall and specificity. When

comparing the performance of DL models trained on datasets

with and without DA in aggregation, it was found that all metrics

were improved. After removing outliers from the results, it was

found that the average improvement in both accuracy and F1

score due to DA was +4.3%. Furthermore, it is shown that the

extent to which the DA techniques improve DL model

performance is correlated with the inherent model performance.

For DL models with accuracy and F1-Score ≤ 90%, results show

that the DA techniques studied should improve performance by

at least +5%.

Keywords—Data augmentation; deep learning; computer

vision; drowsiness detection; road safety

I. INTRODUCTION

Road accidents represent a major socio-economic challenge
for individuals, industries, and nations [1]. Commuters
involved in road accidents are affected in a variety of ways;
such as death, sustaining physical injuries, psychological
trauma, as well as incurring financial burdens from damage to
property [1-4]. For industries, road accidents adversely affect
supply chain performance and logistics, reducing operational
efficiency [5-7]. The net result of this adversely impacts the
economy of a country. Furthermore, for national authorities,
road accidents cause traffic congestion; resulting damage to
infrastructure and increased environmental pollution. Road
accidents are a greater concern in developing countries,
wherein more than 90% of accidents result in fatalities [1]. Of
all developing countries, the World Health Organisation

reports that South Africa has the poorest road safety record,
with approximately 14 000 deaths per annum and an accident
fatality rate of 3.2% [2, 8, 9].

The factors that cause road accidents need to be identified
before an effective solution can be developed. Studies, such as
those presented by Machetele and Yessoufou [1] and Verster
and Fourie [2], highlight that driver-related accidents account
for 80% to 90% of fatal road accidents. A key cause of driver-
related accidents is drowsiness (which may result from
excessive alcohol consumption), as this impairs a person‘s
concentration and focus [2, 10]. The detection of driver fatigue
or drowsiness is hence essential towards improving road safety
and reducing the accident rate [11, 12].

In light of the fourth industrial revolution, technology is
becoming more ubiquitous and there is growing motivation to
utilize artificial intelligence and machine learning to solve
social problems, such as driver drowsiness detection. To this
end, there have been a range of studies that apply deep learning
(DL) techniques to solve the problem of driver drowsiness
detection [13-19]. DL is a subset of machine learning that
mimics the neural network of the human brain, thus creating an
artificial neural network [14]. Artificial neural networks
comprise of multiple nodes that model neurons of the human
brain, which are organized into layers [20]. Data is propagated
from the input layer to the output layer. These artificial neural
networks have the potential to solve regression and
classification problems, including image classification
problems [20, 21]. In the context of image classification, each
layer trains upon the output of the previous layer, enabling
latter layers to identify more intricate elements of the images
[21].

At a technical level, the aforementioned studies perform
driver drowsiness detection by considering images of a driver‘s
eye, and using DL algorithms to determine the eye state (i.e.
whether the eye is opened or closed). By applying this
technology to frames from a video feed of the driver, it is
possible to determine whether eyes are closed for extended
periods of time, which is an indicator of drowsiness. Some of
the DL algorithms used in literature include: (i) convolutional
neural networks (CNNs) of different configurations [14-16, 18,
22, 23]; (ii) the multi-layer perceptron (MLP) [13, 24]; (iii) the
respective Visual Geometry Group 16 (VGG16) [25, 26] and
19 (VGG19) [17, 26] models; as well as (iv) the generative
adversarial network (GAN)[27]. The reported accuracies of the
models in these studies range between 75% and 96%.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

234 | P a g e

www.ijacsa.thesai.org

Despite the high accuracies reported in the studies, real-
world challenges during implementation were reported that
adversely affected the accuracy of the trained models. Among
these challenges were: (i) poor lighting, where lighting is either
too bright or too dim [13, 14, 17, 19]; (ii) changes to the
driver‘s seat position [22]; (iii) a change in the angle of the
driver‘s face while driving [13, 22] the use of spectacles and/or
sunglasses by drivers [14, 17-19, 24].

In this paper, the authors proposed to address these real-
world challenges by performing data augmentation (DA) on
the training image sets that are input into DL models for driver
drowsiness detection. DA techniques introduce artificial
images that simulate real-world effects [28], such as different
lighting environments and changes to face orientation. This
study also uses a training dataset containing images of drivers
with and without eyewear to address the challenges associated
with drivers wearing spectacles or sunglasses. The DA
techniques are tested on CNN models, GAN models, MLP
models and both the VGG16 and VGG19 models.
Hyperparameter tuning is performed on all models to optimize
their learning rate and enhance their overall performance.
Literature has shown that careful selection of hyperparameters
has a significant impact on model performance [28, 29]. The
effect of the DA is evaluated by comparing the performance of
models trained with and without DA in with respect to the
following metrics: (i) accuracy, (ii) precision, (iii) negative
class precision, (iv) recall, (v) specificity, and (vi) F1-score. It
is hypothesized that the use of DA will result in improved
performance of all models.

It is noted that previous studies in literature [14, 25, 27]
have incorporated the use of DA in improving the performance
of their specific driver drowsiness detection models. However,
to the best of the authors‘ knowledge, there are no
comprehensive studies that investigate DA techniques for a
wide range of DL algorithms in the context of driver
drowsiness detection, as is done in this paper.

The research in this paper makes the following
contributions:

1) Presenting an overview of DA techniques to model the

specific real-world scenarios that cause challenges for driver

drowsiness detection systems.

2) Studying the DA techniques on a wide range of DL

models that perform driver drowsiness detection and

statistically analyzing the effects of the DA techniques.

3) Demonstrating the extent to which the DA techniques

studied are able to improve DL models that perform driver

drowsiness detection and proposing a design guideline for DL

model developers on that conditions under which the DA

techniques should be considered.
The rest of this paper is organized as follows. In Section II,

a review of existing literature was presented. Section III
presents the materials and methods used in this study,
including providing an overview of a real-world drowsiness
detection system. In Section IV the results of the investigations
are presented and finally, conclusions and insights that were
drawn from this study are presented in Section V. Section V
also makes recommendations for future work.

II. RELATED WORK

This section reviews the DL algorithms that have been
extensively used in previous studies, to implement models and
applications, for drowsiness detection in motorists.

A study by Jabbar et al. [14] proposed a drowsiness
detection system that could be implemented on the driver‘s
dashboard, using an Android phone. The system was able to
predict the drowsiness of the driver based on their eye state.
This study made use of a CNN network to implement a binary
classification model that was able to classify the drowsiness in
facial images. Data augmentation techniques were applied to
the images, before they were trained on the model. The Dlib
C++ library was used to extract the driver‘s facial landmarks
from the images. These facial features were fed into the
algorithm for training. The dataset was created using the
extracted eye features. This model achieved an accuracy of
83.3%. A similar study by Zhang, Su, Geng and Xiao [18] was
conducted to detect the drowsiness of a person, using the eye
state. This proposed model was implemented on an Infrared
video camera. The AdaBoost algorithm was used to extract
facial landmarks from the images. The extracted eye landmarks
were used to create the image dataset, to train the model on.
The CNN model was used as the binary classifier for
drowsiness. An accuracy of 95.8% was achieved by this study.

Sharan, Viji, Pradeep and Sajith [15] proposed a similar
drowsiness detection system to Jabbar et al. [14] that could be
implemented on the driver dashboard. However, this study
proposed that a Raspberry Pi camera module be used to capture
the drivers face. The drowsiness prediction was also based on
the eye state. The Haar Cascade classifier was used for facial
extraction during the implementation of this system and the
CNN network was implemented as the binary classifier.
Contrast Level Adaptive Histogram Equalization was applied
to remove the noise and improve the picture quality, before
they were trained on the CNN model. The CNN model was
trained on an existing dataset, comprising of eye images. The
study by Seetharman, Sridhar and Mootha [22] made use of a
CNN network to classify the drowsiness in images. The
prediction was based on the eye and mouth state of the
extracted faces. The Dlib library was utilized to extract the
facial regions from the images, similar to the study done by
Jabbar et al. [14]. A dataset for the model was then generated
using the extracted eye regions. The trained CNN model
achieved an accuracy of 92.4%. In addition, this proposed
model was intended to be implemented on a dashboard video
camera. Chirra, Uyyala and Kolli [16] proposed a similar
model for drowsiness detection, as a CNN network was used to
predict the drowsiness in images. The eye state was the metric
for prediction, with the Viola-Jones algorithm used to extract
the facial landmarks from the images, during the
implementation of this system. An existing dataset of eye
images was used to train the CNN model. The model produced
an accuracy of 96.42%. This model was also proposed to be
implemented on a video camera for drowsiness detection, like
the study conducted by Seetharman, Sridhar and Mootha [22].

A model using the VGG 19 model to detect driver
drowsiness, based on the eye state, was proposed by Hashemi,
Mirrashid and Shirazi [17]. This study made use of the Viola-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

235 | P a g e

www.ijacsa.thesai.org

Jones algorithm to extract the facial landmarks from the
images. The extracted eye landmarks were then used to create
the dataset for this model. The Viola-Jones algorithm has been
utilised in previous work [16]. This model obtained an
accuracy of 94.96%, with its intended application in driver
dashboard monitoring. A study by Ahuja, Saurav, Srivastava
and Shekhar [26], proposed an approach to improved
drowsiness detection, by using a knowledge distillation
technique to reduce the size of DL models, whilst maintaining
high accuracy. A large model will have high memory
consumption and longer response times. Therefore, there was a
need to reduce the size of the DL model. The Histogram of
Gradient algorithm was used to extract the facial regions from
the images, during system implementation. VGG19 and Visual
Geometry Group 16 (VGG16) were the algorithms used to
train their respective models, to classify the drowsiness in
images. These models were trained on an existing dataset,
consisting of eye images. The predictions were based on the
eye state for both models. The VGG19 and VGG16 models,
obtained the accuracy of 92.5% and 95% respectively.

Bajaj, Ray, Shedge, Jaikar and More [25] proposed a real-
time drowsiness prediction system that will be implemented on
an Android application, to monitor the driver‘s face from the
dashboard. This system can predict the drowsiness using the
driver‘s eye state. A comparative analysis of three DL
algorithms, specifically: Inception, ResNet-50 and VGG 16
were performed. Data augmentation techniques were applied to
the images, before they were trained on the models. The
models were trained on an existing dataset, comprising of face
images. The accuracy achieved by the Inception, ResNet-50
and VGG 16 models were 89%, 56% and 91%, respectively.

A study by Jabbar et al. [13] proposed a system for
drowsiness detection that could be implemented on an android
application, for dashboard monitoring. The prediction of this
system was based on the driver‘s eye state. The Dlib C++
library was used to extract the person‘s facial landmarks from
the images. This library has been used for facial feature
extraction in previous work [14,25]. These facial features were
used to create the dataset, which was fed into the MLP
algorithm for training. The model was able to classify a driver
as either drowsy or non-drowsy. An accuracy rate of 80.92%
was achieved by this model. A similar study by Ghourabi,
Ghazouani and Barhoumi [24] made use of the MLP algorithm
to detect drowsiness in the images. The eye and mouth state
were used to classify the drowsiness. The Histogram of
Gradient algorithm was used to extract the facial regions from
the images. These extracted facial regions were used to create
the dataset that was fed into the model for training. The model
is intended to be implemented for dashboard monitoring. This
study obtained an accuracy rate of 74.9%.

Ngxande, Tapamo and Burke [27] proposed a framework to
reduce the biasness of a model during the training process. A
Generative Adversarial Network (GAN) model was trained on
an image dataset. This model made predictions using facial
landmarks and the eye state in particular. The extracted facial
landmarks were used to create the dataset for model training.
Data augmentation techniques were applied to the images
before they were loaded into the GAN model. This helped to
improve the performance of the binary classification model. An
accuracy rate of 91.62% was achieved by this model.

Many of the studies have used facial and eye extraction
algorithms, to create image datasets from real-time data, to
train their models on. However, this study aimed to use
existing datasets that were available online, to train the DL
models. The reason for this was because, this study aimed on
improving the performance of trained models, regardless of the
source of data. Therefore, no facial and eye extraction
algorithms were used on real-time data, in this study.

Literature has shown that many drowsiness detection
models faced issues with prediction accuracy, due to poor
lighting and the use of sunglasses [13,14,17,18,24]. The other
challenge that affected accuracy was the positioning of the
driver‘s face [13,22]. Another gap identified is the lack of pre-
processing and data augmentation applied on the data before
training. Data augmentation was used in [14,25,27], to create
more comprehensive models that exhibits improved
performance. DA was used to remove biasness from the
models, thus improving the performance. However, not many
of the previous studies have comprehensively studied DA to
model real-world scenarios to improve model performance, on
a wide range of DL algorithms that detect driver drowsiness, as
done in this study.

Therefore, this study aimed to develop an improved
approach towards drowsiness detection by using data
augmentation. Data augmentation techniques were used to
create training data that replicate real-life scenarios that
correlate with the challenges faced in previous studies.

III. MATERIALS AND METHODS

This section first provides an overview of a real-world
driver drowsiness detection system and isolates the role of the
DL algorithms that this study focuses on. The data sources and
DA techniques utilized in this paper are then discussed.
Thereafter, a technical summary of the DL algorithms
considered is provided, along with the parameters used in this
study. Finally, the authors present the different evaluation
metrics that are used to quantify the performance of the DL
algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

236 | P a g e

www.ijacsa.thesai.org

Fig. 1. Overview of a real-world driver drowsiness detection system

A. An Overview of a Real-World Drowsiness Detection

System

Fig. 1 illustrates the process flow for a real-world driver
drowsiness detection system. The process starts with a camera
that captures a video of the driver‘s face, which serves as the
input to the system. The camera can either be mounted to the
dashboard or steering wheel of the vehicle. The captured video
is then stored on cloud-hosted infrastructure, typically in some
form of unstructured blob storage.

At the start of the processing stage of the system, the video
file is passed on to an artificial intelligence engine, consisting
of three sub-units. The first sub-unit extracts individual frames
from the video file, which will then be treated as a series of
sequential images. The second sub-unit uses image detection
techniques to isolate the eye from each image of the driver‘s
face. This produces a series of sequential images of the driver‘s
eyes. Finally, the third sub-unit utilizes a pre-trained DL model
to analyze the images and determine the state of the driver‘s
eye (open or closed) in each frame. The eye state determined in
each frame is then logged in a database, which is also typically
cloud-hosted.

In the final stage of the system, the eye states stored in the
database are analyzed and interpreted to detect the drowsiness
of the driver. Drowsiness detected when the driver‘s eyes are in
the ‗closed‘ state for extended periods (multiple consecutive
frames from the video feed).

B. Design and Configuration of Study

The research presented in this study focuses on the third
sub-unit of the artificial intelligence engine, viz. the DL

algorithm that determines the driver‘s eye state, as described in
Section III.A. Hence, for the experiments conducted, the inputs
in this study were images of a driver‘s eye and the outputs
were a categorical variable indicating the eye state. A binary
categorical output was used, with the positive class label
indicating the ―open‖ eye state and the negative class label
indicating the ―closed‖ eye state. The experimental
configuration used is depicted in Fig. 2.

In performing the experiments, appropriate datasets of eye
images were first sourced. In selecting the datasets, the authors
ensured that images where the eye was partially obscured by
eyewear (spectacles or sunglasses) were included. By doing
this, the DL models would learn to distinguish between eye
states irrespective of the use of eyewear.

The datasets were then split into training and testing data
using an 80:20 ratio. A copy of the training dataset was
created, and data augmentation techniques were performed to
model the real-world challenges of eye orientation and lighting
conditions. Two DL models were trained: one was trained on
the original (pre-treatment) training dataset, and the other was
trained on the modified (post-treatment) training dataset.
Depending on the architecture of the DL algorithm being
investigated, any necessary data-shaping modifications were
made to the images from the dataset.

The pre-treatment and post-treatment DL models were
applied to the testing dataset to evaluate and compare their
performance. As was the case with the training datasets, any
modifications to the testing dataset required by the DL model
architecture were made.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

237 | P a g e

www.ijacsa.thesai.org

Fig. 2. Configuration of study

TABLE I. PROPERTIES OF DATASETS

Property Dataset 1 Dataset 2

Total number of

images
2 500 1452

Eye Opened 1 250 726

Eye Closed 1 250 726

Image size (pixels) 96 × 96 256 × 256

Colour/Greyscale Greyscale Colour

File format
Portable Network

Graphics (PNG)

Joint Photographic

Experts Group (JPEG)

File compression Lossless compression Lossy compression

The experiments were done using pre-built Python libraries
on the Jupyter Notebooks development environment. A
personal computer equipped with 8 gigabytes of random-access
memory, an Intel Core i5-7200U processor and a 64-bit
Windows 10 operating system.

1) Selection of datasets: There were two datasets utilised

in this study, which were obtained from online repositories

[30, 31]. Both datasets contained images of human eyes with

and without eyewear, and images labelled according to the eye

state. The properties of the datasets are presented in Table I.
The balanced distribution of eye states was preserved when

splitting each of the datasets into respective training and testing

datasets, using an 80:20 ratio. The Scikit-learn Python library
was used to implement the data splitting.

When exploring the datasets, it was also noted that both
sets of data contained images from a diverse range of
ethnicities. Different skin tones and complexions were noted,
as well as different eye shapes. The authors further observed
that among female eyes, the extent to which make-up such as
eyeliner and false eyelashes were used differed.

2) Data augmentation and pre-processing: Data

augmentation improves model performance by generating

variations of training data [14]. This reduces overfitting and

improves the model‘s ability to make generalizations [14, 32].

The specific augmentations performed in this study were

designed to simulate real-world scenarios and overcome some

of the challenges indicated in literature.
The ImageDataGenerator class within the Keras library for

Python [33] was used to implement pre-processing and DA in
this study. The ImageDataGenerator class supports DA in real-
time and makes sure that the model is trained with different
variations of images during each training iteration (epoch) [34,
35].

The following pre-processing and data augmentation
techniques were applied:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

238 | P a g e

www.ijacsa.thesai.org

a) Brightness adjustment: Multiple studies in literature

have shown that poor lighting conditions had a negative

impact on the accuracy of DL models for driver drowsiness

detection [13, 14, 17, 19]. While driving, ambient lighting

conditions can change due to environmental conditions such

as the time of day and the weather. For example, driving at

night results in a very low brightness conditions and driving in

bright sunshine results in very high brightness conditions.

While driving, it is also possible for lighting conditions to

change rapidly, such a when driving under a bridge/overpass

on a sunny day or through the shadow cast by a building or

other large structure.

To model scenarios with different lighting environments,
this study applied a randomized change to image brightness
when augmenting images. This is implemented through adding
a constant, , to all pixels in the image. The brightness
adjustment function is mathematically described as:

 () (()) (1)

In (1), is the value of the pixel and falls in the range
 . Positive values of increase the brightness of
the image while negative values of δ decrease the brightness of
the image. The () and () functions ensure that the
brightness-adjusted pixel value remains in a valid range.

b) Horizontal flips: The shape of a human eye may

differ slightly between the left eye and the right eye. Creating

artificial data by flipping the horizontal orientation allows the

DL model to be trained to analyze either eye of the driver.

c) Rotation, translation and zoom: Literature showed

that changes to the driver‘s face orientation was a real-world

scenario that adversely affected the performance of DL

models [13, 21]. Therefore, in this study, rotation, translation

shifts and zoom transformations were used to model changes

to the driver‘s face orientation. Rotation and translational

shifts are useful to simulate movement of a driver‘s head

while travelling. Zoom transformations model a change in

depth between the camera and the driver‘s face, which may

result from the driver changing their seat position or posture.

d) Normalization, centering and standardization:

Normalization and standardization improve the learning rate

and reduces the number of epochs required to train a DL

model [36, 37]. These processes ensure that no individual

input pixel dominates performance [38]. This is done by

mathematically adjusting data such that it follows a Gaussian

distribution with zero mean and unit variance [39].

Normalization involves rescaling the value of pixels to
have a unit maximum, which reduces the computational power
required to train the DL model. As all pixels have the same
maximum value (), the normalization function is
described by [36]:

 ()

 (2)

Centering ensures that the data has a mean of zero, while
standardization ensures that the data has a unit variance [36].
Setting these statistical properties of the data improves the rate
at which a DL algorithm converges when training, as well as
increasing model accuracy by eliminating statistical bias.

Centering and standardization can be applied to data in with
respect to individual images (sample-wise) or with respect to
the entire set of images (feature-wise). The functions for
sample-wise centering (sc), feature-wise centering (fc), sample-
wise standardization (ss) and feature-wise standardization (fs)
are [39]:

 () ̅ (3)

 () ̅ (4)

 ()

 (5)

 ()

 (6)

In (2) – (6), ̅ represents the mean pixel value and
represents the standard deviation of pixel values. The
subscripts ‗I‘ and ‗D‘ respectively denote statistics calculated
over pixels from a single image (I) and statistics calculated
over the entire dataset (D).

In this study, each of the above pre-processing operations is
performed on input data.

3) Deep learning algorithms: As discussed in Section I,

DL is a subset of machine learning and involves mimicking

the human brain. DL algorithms follow a common structure,

to the extent that they adopt a layered architecture with

multiple nodes at each layer. The DL algorithms for this study

are designed to perform a binary classification in determining

whether the eye state is ‗opened‘ or ‗closed‘. A brief overview

of the different DL algorithms implemented in this study for

image classification is provided below.

a) Convolutional neural network (CNN): The CNN is

the most popular artificial neural network (at the time of

writing). There are typically three classes of layers in a CNN:

convolution layers, pooling layers and fully-connected layers

[16, 40]. Fig. 3, re-produced from [41], illustrates the layout of

these layers.

Convolution and pooling layers work together to perform
feature extraction from the input image [16, 40]. First, input
data representing pixels of an image is multiplying the kernel
filters of a convolution layer to generate feature maps.
Thereafter, a pooling layer is used to group features together
and reduce the size of the feature maps. Pooling features
together improves the computation time of the DL algorithm
[16].

Fig. 3. Basic CNN architecture [41]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

239 | P a g e

www.ijacsa.thesai.org

TABLE II. ARCHITECTURAL LAYERS OF CNN-C1

Layer Number Properties

1
Convolutional Layer. 32 nodes, same padding, 3×3

kernel

2 Max pooling layer

3
Convolutional Layer. 32 nodes, same padding, 3×3

kernel

4 Max pooling layer

5
Convolutional Layer. 64 nodes, same padding, 3×3

kernel

6 Max pooling layer

7 Flatten layer

8 Dense layer with 128 units

9 Dense Softmax output layer with two units

TABLE III. ARCHITECTURAL LAYERS OF CNN-C2

Layer Number Properties

1 Convolutional Layer. 8 nodes, same padding, 3×3 kernel

2 Average pooling layer

3
Convolutional Layer. 16 nodes, same padding, 3×3

kernel

4 Average pooling layer

5 Flatten layer

6 Dense layer with 120 units

7 Dense layer with 84 units

8 Dense Softmax output layer with two units

The processed feature maps are then fed into one or more
fully-connected layers. The final layer is referred to as the
output layer, and any fully-connected layers between the
pooling layer and the output layer are referred to as hidden
layers. Each node in a fully-connected layer performs a
mathematical operation on its input data using an activation
function. These activation functions are selected to map inputs
to suitable outputs and perform classification [42].

Two different CNN model configurations were investigated
in this study. For brevity, they are referred to as CNN-C1 and
CNN-C2. Their respective architectures are shown in Table II
and Table III.

Table II describes the first CNN architecture used in this
study. These layers are arranged sequentially in a linear stack
[43]. The first two convolution layers in this model have 32
nodes each, which are responsible for learning multiple spatial
patterns and features from the input image [44]. The last
convolution layer 64 nodes. A 3×3 kernel filter is used in each
convolution layer, to generate the feature maps. Each
convolution layer applied same padding to the input image,
which enabled the image to get completely covered by the
kernel filter, to generate a feature map [45]. Furthermore, each
convolution layer was followed by a pooling layer that applies
a maximum filter (max pooling). Once the convolution was
completed, the data was then passed to the flatten layer to
flatten the multi-dimensional feature map into one dimension

[46]. This single dimensional array was then forwarded into the
dense layer of the network. A dense layer of 128 units is then
used to perform the image classification, using the output from
the convolution layers [47]. The last layer of this network was
a two-unit output layer which made use of a softmax activation
function that calculated the probabilities of each class [48].
There are only two units used in the output layer, because these
models are binary classifiers, with predictions made for only
two class labels. The output produced by the softmax layer, is
represented in the form of a vector, which contains the
probabilities of each class, for every sample data

In addition, a Rectified Linear Unit (ReLU) activation
function was added to each convolution layer and dense layer,
to ensure no negative values were passed to the subsequent
layers [16]. The ReLU activation function is given by:

 () () (7)

In (7), refers to the input data to the activation function.

Table III describes the second CNN configuration used in
this study, which also consists of sequential layers. This
configuration uses fewer convolution layers than CNN-C1, but
more fully-connected layers when performing classification.
CNN-C2 also applies an averaging filter in the pooling layers
(average pooling). A with CNN-C1, a ReLU activation
function was added to each convolutional layer and dense
layer, to ensure no negative values propagated through the
network.

b) Visual geometry group (VGG) networks 16 and 19:

The VGG have conducted extensive research into DL

algorithms for image classifications that improve upon the

traditional CNN [49]. The two VGG algorithms chosen were

VGG16 [50] and VGG19 [51]. The VGG16 model consists of

13 convolution layers, five max pooling layers, two fully-

connected layers and one softmax activation layer at the

output [50]. The VGG19 model comprises of 16 convolution

layers, five max pooling layers, three fully-connected layers

and one softmax activation layer at the output [51].

The VGG19 and VGG16 models used in this study were
built using the Keras pre-trained VGG library. As with CNN-
C1 and CNN-C2, the output layer was configured to have two
units with a softmax output representing the probability on an
image falling into either classification.

c) Generative adversarial network (GAN): GANs are a

class of DL algorithms that has been applied to image

classification problems [52]. The structure of a GAN, shown

in Fig. 4 [53], comprises of two sub-neural networks: a

generator network and a discriminator network.

During training, both the generator and the discriminator
learn concurrently. The function of a generator network is to
produce new, artificial instances of data/images from the input
features [52]. This is a form of data augmentation that occurs
within the network architecture. The artificial images output
from the generator network are evaluated by the discriminator
to determine whether they adequately resemble images from
the true training dataset. Back-propagation is then used to
iteratively train the generator. Generator networks are typically
seeded with randomized noise data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

240 | P a g e

www.ijacsa.thesai.org

Fig. 4. Structure of a GAN [53]

TABLE IV. ARCHITECTURAL LAYERS OF GAN (DISCRIMINATOR)

Layer Number Properties

1
Convolutional Layer. 128 nodes, same padding, 3×3

kernel.

2 Max pooling layer

3
Convolutional Layer. 128 nodes, same padding, 3×3

kernel.

4 Max pooling layer

5
Convolutional Layer. 128 nodes, same padding, 3×3

kernel.

6 Max pooling layer

7 Flatten layer

8 Dense Softmax output layer with two units

The discriminator network is trained with images from both
the actual dataset and the artificial images produced by the
generator. When using a GAN, the discriminator is the final
trained model that is tested and deployed in a system.

In the design of a GAN, the discriminator is often a CNN
model, and the generator is often a de-convolutional neural
network.

The GAN models in this study were built with the
architectural layers described in Table IV. There were three
convolutional layers used in this network with each layer
having 128 nodes. Each convolutional layer was followed by a
pooling layer to perform down-sampling. The data was then
flattened and passed to a two-unit softmax output layer, where
the output prediction was produced. The GAN models
deployed a Leaky ReLU activation function, as described by
(8), which was added to each down-sampling layer and dense
layer. The Leaky ReLU activation function dampens the effect
of negative values [54], but does not force them to zero like the
standard ReLU function in (7).

 () {

 (8)

TABLE V. ARCHITECTURAL LAYERS OF MLP

Layer Number Properties

1 Flatten Layer

2 Dense layer with 128 nodes.

3 Dense Softmax output layer with two nodes.

Fig. 5. Definitions matrix of model output classifications

d) Multi-layer perceptron (MLP): The MLP is a more

basic DL architecture than those derived from the CNN, as it

only consists of fully-connected layers [55, 56]. The typical

structure of an MLP consists of an input layer, an output later

and at least one hidden layer between the input and output

layers. As such, the operation of the MLP is the same as

classification stage of a CNN. As a result, MLPs require data

to be flattened at the input layer.

The MLP models in this study were built according to the
architectural layers described in Table V. The ReLU activation
function was implemented in the hidden layer.

4) Model evaluation: When analysing model

performance, this study considers a range of metrics

collectively to provide a holistic evaluation of performance.

The following performance metrics were used to evaluate the

DL models: accuracy score, precision, negative class

precision, recall, specificity and F1-score. These metrics are

defined in (9) – (14), in terms of the number of true positive

classifications (), the number of true negative

classifications (), the number of false positive

classifications () and the number of false negative

classifications (). These output classifications relate true

eye state (based on the known label associated with an image)

to the detected eye state (based on the output of the model).

The definitions of the different output classifications are

visually represented in Fig. 5.

a) Accuracy score: The accuracy score is a measure of

how many correct predictions were made by the classifier, out

of all the predictions made [57, 58]. This is hence the

percentage of true output classifications with respect to all

output classifications, and is mathematically described as:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

241 | P a g e

www.ijacsa.thesai.org

 (9)

b) Recall and specificity: Recall defines how well the

model can correctly classify positive outcomes [58, 59]. In the

context of this study, recall indicates how many images of

open eyes were correctly classified by the model. In addition,

for a balanced evaluation of the predictions made for both

class labels, the specificity metric was also used. Specificity

indicates how well the model can correctly classify negative

outcomes [58]. In the context of this study, it indicates how

many images of closed eyes were correctly classified by the

model. For the problem of driver drowsiness detection, being

able to correctly identify when the driver‘s eyes are closed is

of equal importance than identifying when the eye state is

open. The mathematical definitions of recall and specificity

are given in (10) and (11), respectively.

 (10)

 (11)

c) Precision: Precision defines how well a model can

make classify positive outputs [60]. In the context of this

study, this indicates the percentage of correct open eye state

classifications from all open eye state classifications, as shown

by (12). Similarly, the negative class precision represents the

percentage of correct closed eye state classifications from all

closed eye state classifications. The formula for negative class

precisions is presented in (13).

 (12)

 (13)

d) F1-Score: The F1-Score represents a weighted

average between precision and recall and is hence considered

the most appropriate measure of model performance in some

literature [57, 61]. Equation (14) presents the mathematical

formula to calculate F1-Score [61, 62].

 (14)

IV. RESULTS AND DISCUSSION

This section presents and analyses the effects of data
augmentation on model performance. Pre-treatment and post-
treatment results are presented in Table VI and Table VII, and
their descriptive statistics are presented in Table VIII. The

change in performance metrics due to treatment is presented in
Table IX. While results for all performance metrics are
presented, the main analysis focuses mostly on accuracy and
F1-score, as the latter provides insight into the underlying
precision and recall.

In the analysis carried out, the authors first confirmed that
the DA techniques adopted in this study have improved the
performance of the DL models that were investigated. Fig. 6
presents a box-and-whisker diagram of the statistical
distribution of all evaluation metrics considered; and compares
pre-treatment results with post-treatment results. From the
results in Fig. 6, Table VII, Table VIII and Table IX, the
following observations and interpretations were made:

1) The post-treatment mean and median values of all

evaluation metrics are higher than the pre-treatment values

(Table VIII and Table IX). This indicates that the average

performance of all DL models studied improved due to the

DA techniques applied. The average improvement of the most

conclusive metrics, accuracy and F1-score, were +6.1% and

+6.8% respectively.

2) The interquartile ranges (IQRs) and standard deviations

of post-treatment results were less than for pre-treatment

results. In terms of the most conclusive metrics, accuracy and

F1-Score, the IQR of both metrics decreased from 13% to 3%.

The standard deviation of accuracy scores decreased from

0.17 to 0.12. Similarly, the standard deviation of F1-Scores

decreased from 0.20 to 0.14. This indicates that there is less

variability in the expected post-treatment performance of all

DL algorithms.

3) Outliers were noted in the results, which are clearly

illustrated in Fig. 6. These arose from the VGG16 and VGG19

models which were trained on Dataset 1 and displayed inferior

performance to the other models studied. Upon investigation,

this has been attributed to the dimensionality mismatch

between Dataset 1 images (96×96 pixels) and the input

dimensions defined by the VGG16 and VGG19 architectures

(224×224). While the application of DA techniques has shown

the greatest improvement to these models, the post-treatment

performance is still low compared to the other models studied.

It is thus concluded that the VGG models are not suitable for

Dataset 1, and in practice, should not be used with low-

resolution cameras that produce smaller video frames/images.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

242 | P a g e

www.ijacsa.thesai.org

TABLE VI. PRE-TREATMENT AND POST-TREATMENT EVALUATION METRICS (ACCURACY, RECALL AND SPECIFICITY)

Algorithm Dataset
Accuracy Score Recall Specificity

Pre-treatment Post-treatment Pre-treatment Post-treatment Pre-treatment Post-treatment

CNN-C1
1 93.8% 97.6% 100% 100% 88% 96%

2 96.5% 97.9% 94% 99% 99% 97%

VGG19
1 47.6% 60.8% 24% 28% 71% 93%

2 82.4% 95.8% 65% 94% 100% 98%

VGG16
1 50.4% 67.8% 10% 44% 91% 91%

2 93.1% 95.2% 88% 92% 98% 99%

CNN-C2
1 91.4% 96.2% 100% 97% 83% 97%

2 95.9% 96.9% 93% 94% 99% 100%

GAN
1 95.4% 97.0% 100% 100% 91% 94%

2 96.2% 97.2% 97% 97% 95% 98%

MLP
1 91.8% 93.8% 100% 93% 84% 94%

2 82.1% 93.4% 97% 90% 67% 97%

TABLE VII. PRE-TREATMENT AND POST-TREATMENT EVALUATION METRICS (PRECISION, NEGATIVE CLASS PRECISION AND F1-SCORE)

Algorithm Dataset
Precision Neg. Class Precision F1-Score

Pre-treatment Post-treatment Pre-treatment Post-treatment Pre-treatment Post-treatment

CNN-C1
1 89% 96% 100% 100% 94% 98%

2 99% 97% 95% 99% 97% 98%

VGG19
1 45% 81% 48% 57% 31% 61%

2 100% 98% 74% 94% 82% 96%

VGG16
1 52% 83% 50% 62% 50% 58%

2 98% 99% 89% 92% 93% 95%

CNN-C2
1 85% 96% 100% 97% 91% 96%

2 99% 100% 93% 94% 96% 97%

GAN
1 92% 94% 100% 100% 95% 97%

2 95% 98% 97% 97% 96% 97%

MLP
1 86% 94% 100% 93% 92% 94%

2 75% 96% 96% 91% 82% 93%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

243 | P a g e

www.ijacsa.thesai.org

TABLE VIII. DESCRIPTIVE STATISTICS OF EVALUATION METRICS

` Accuracy Score Recall Specificity Precision
Neg. Class

Precision
F1-Score

Mean
Pre-Treatment 85% 81% 89% 85% 87% 83%

Post-Treatment 91% 86% 96% 94% 90% 90%

First Quartile
Pre-Treatment 82% 82% 84% 83% 85% 82%

Post-Treatment 94% 92% 94% 94% 92% 94%

Median
Pre-Treatment 92% 96% 91% 91% 96% 93%

Post-Treatment 96% 94% 97% 96% 94% 96%

Third Quartile
Pre-Treatment 96% 100% 98% 98% 100% 95%

Post-Treatment 97% 98% 98% 98% 98% 97%

IQR
Pre-Treatment 13% 18% 15% 16% 15% 13%

Post-Treatment 3% 6% 4% 4% 6% 3%

Standard

Deviation

Pre-Treatment 0.17 0.30 0.10 0.18 0.18 0.20

Post-Treatment 0.12 0.23 0.03 0.06 0.14 0.14

TABLE IX. EFFECT OF TREATMENT ON EVALUATION METRICS

Algorithm Dataset
Accuracy

Change

Recall

Change

Specificity

Change

Precision

Change

Neg. Class Precision

Change

F1-Score

Change

CNN-C1
1 +3.8% 0% +8% +7% 0% +4%

2 +1.4% +5% -2% -2% +4% +1%

VGG19
1 +13.2% +4% +22% +36% +9% +30%

2 +13.4% +29% -2% -2% +20% +14%

VGG16
1 +17.4% +34% 0% +31% +12% +8%

2 +2.1% +4% +1% +1% +3% +2%

CNN-C2
1 +4.8% -3% +14% +11% -3% +5%

2 +1.0% +1% +1% +1% +1% +1%

GAN
1 +1.6% 0% +3% +2% 0% +2%

2 +1.0% 0% +3% +3% 0% +1%

MLP
1 +2.0% -7% +10% +8% -7% +2%

2 +11.4% -7% +30% +21% -5% +11%

Average +6.1% +5.0% +7.3% +9.8% +2.8% +6.8%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

244 | P a g e

www.ijacsa.thesai.org

Fig. 6. Statistical distribution of pre-treatment and post-treatment evaluation metrics

TABLE X. EFFECT OF TREATMENT ON EVALUATION METRICS – OUTLIERS REMOVED

Algorithm Dataset
Accuracy

Change

Recall

Change
Specificity Change

Precision

Change

Neg. Class Precision

Change

F1 Score

Change

CNN-C1
1 +3.8% 0% +8% +7% 0% +4%

2 +1.4% +5% -2% -2% +4% +1%

VGG19 2 +13.4% +29% -2% -2% +20% +14%

VGG16 2 +2.1% +4% +1% +1% +3% +2%

CNN-C2
1 +4.8% -3% +14% +11% -3% +5%

2 +1.0% +1% +1% +1% +1% +1%

GAN
1 +1.6% 0% +3% +2% 0% +2%

2 +1.0% 0% +3% +3% 0% +1%

MLP
1 +2.0% -7% +10% +8% -7% +2%

2 +11.4% -7% +30% +21% -5% +11%

Average +4.3% +2.2% +6.6% +5.0% +1.3% +4.3%

Fig. 7. Statistical distribution of change in evaluation metric scores

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

245 | P a g e

www.ijacsa.thesai.org

Having confirmed the hypothesis that the DA techniques
that were applied have improved the performance of the DL
models studied, the next step was to attempt to quantify the
extent of this improvement. The VGG16 and VGG19 models
trained on Dataset 1 were excluded from this analysis due to
their poor performance, as discussed previously. Table X
presents the change in evaluation metrics due to the application
of DA with these models removed. The statistical distribution
of the data presented in Table X is illustrated in Fig. 7.

When analyzing the results, the following was observed:

1) A few instances were observed where applying DA

treatment caused a reduction in individual evaluation metrics

(recall, precision, specificity and negative class precision), as

indicated by shaded backgrounds within Table X. However,

despite this, the F1-Score increased for all models, indicating

that these performance reductions were compensated for. The

average increase in both accuracy and F1-Score was +4.3%,

and the median increase in each of these metrics were +2.1%

(accuracy) and +2.0% (F1-Score).

2) The box-and-whisker diagrams in Fig. 7 indicated that

there is significantly more variability for recall, specificity,

precision and negative-class precision than for accuracy and

F1-Scores. As such, attempts at quantifying the expected

improvement in DL model performance using the methods in

this study can only reasonable be performed for accuracy and

F1-Score. However, these are the most conclusive metrics to

evaluate the DL models studied.

3) By analyzing the distribution of the change in accuracy

and F1-Scores, it was observed that the data for these

evaluation metrics was positively skewed. This resulted from

the high pre-treatment accuracy scores and F1-Scores of some

of the DL models studied, where there was not much room for

improvement without over-fitting the model to the training

dataset.
Prompted by the final observation listed above, the final

analysis investigated the relationship between the change in
evaluation metric scores and pre-treatment metric scores. The
scatterplot presented in Fig. 8 illustrates this relationship, using
data from Table VI, Table VII and Table X and excluding the
outlier results resulting from the VGG16 and VGG19 models
that were trained on Dataset 1. The trend lines show that all
evaluation metrics exhibited a strong negative correlation,
indicated by the R2 values of the correlation trend lines (R2 >
0.7 for all evaluation metrics). From this, it is concluded that
the DA techniques under study have a marginal improvement
when applied to DL models that already exhibit strong
performance, but are much more powerful in enhancing
weaker-performing DL models. From Fig. 8, an improvement

of ≥ +5% to an evaluation metric occurs when the pre-

treatment value of the metric is ≤ 90%. This indicates the type

of DL models for driver drowsiness detection that will benefit
most from the DA techniques presented in this study, and is
recommended to developers as a design guideline when
considering the implementation of the DA techniques
presented in this paper.

Fig. 8. Relationship between pre-treatment evaluation metric score and change in evaluation metric score

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

246 | P a g e

www.ijacsa.thesai.org

The results confirm that by modelling real-world scenarios
using the data augmentation techniques described in
Section II.B.2, it is possible to train more robust deep learning
algorithms that perform driver drowsiness detection. With
respect to implementation of driver drowsiness detection
systems, the deep learning model development and training
would be performed before the model is deployed in the driver
drowsiness detection system hardware.

V. CONCLUSION

Many road accidents are caused by driver drowsiness.
Previous studies have considered applying deep learning
techniques to detect driver drowsiness and improve road traffic
safety. In practically testing their systems, many previous
studies have indicated that real-world scenarios such as
unfavourable ambient lighting and movement of the driver
while driving cause inaccuracies when detecting driver
drowsiness.

In this study, the authors focussed on the deep learning
algorithms that determine driver drowsiness based on the eye
state of the driver. It was hypothesised that by modelling the
real-world scenarios and using data augmentation techniques
on a standardised image dataset, the performance of the DL
models would improve. This study considered two different
datasets, six different DL models: two CNN variations (CNN-
C1 and CNN-C2), two architectures designed by the VGG
(VGG16 and VGG19), a GAN and an MLP.

The performance of the DL models was evaluated primarily
using accuracy and F1-Score, although other metrics such as
precision, recall, specificity and negative class precision were
also considered. In analyzing the results in aggregation,
improvements across all metrics were noted. The average
improvement in accuracy across all DL models was +6.1% and
the average improvement in F1-Score was 6.8%, and the
variability in model performance was reduced. However, there
were some challenges noted when training the VGG models.
These models trained on low-resolution images, exhibited poor
performance and distorted these results. A more realistic
indication of the benefits of DA for the DL models studied was
obtained by excluding these outliers, yielding an average
improvement of +4.3% for both accuracy and F1-Score.

The results further indicated that the extent to which the
DA techniques studied improve DL model performance is
strongly correlated with the pre-treatment DL model
performance. From the analysis conducted, the data
augmentation techniques presented are best suited for

improving models with accuracy and F1-Scores ≤ 90% -

although they are applicable to any DL model for driver
drowsiness detection.

It was thus concluded that the use of DA techniques
improves the performance of DL models for driver drowsiness
detection under the isolated conditions of this study. However,
since the conditions of this study focussed on testing the DL
models on images from datasets, rather than testing being done
on captured data from a real-world driver drowsiness detection
system, this opens the possibility for future research. Future
works should look at implementing the trained DL models

proposed in this study in practical driver drowsiness detection
systems to validate these results.

DATA AVAILABILITY

The drowsiness detection dataset (Dataset 1) is available
online at: https://www.kaggle.com/prasadvpatil/mrl-dataset.

The yawn eye dataset (Dataset 2) is available online at:
https://www.kaggle.com/serenaraju/yawn-eye-dataset-new.

FUNDING

All funding in support of this research was provided by the
Durban University of Technology.

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest.

ACKNOWLEDGMENT

The authors acknowledge the support of the wider Faculty
of Accounting and Informatics at the Durban University of
Technology, and Mr Shaldon Wade Naidoo for his assistance.

REFERENCES

[1] D. Machetele and K. Yessoufou, "A Decade Long Slowdown in Road
Crashes and Inherent Consequences Predicted for South Africa," (in
English), Frontiers in Future Transportation, Original Research vol. 2,
2021-November-03 2021, doi: 10.3389/ffutr.2021.760640.

[2] T. Verster and E. Fourie, "The good, the bad and the ugly of South
African fatal road accidents," South African Journal of Science, vol.
114, pp. 63-69, 2018. [Online]. Available:
http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-
23532018000400017&nrm=iso.

[3] M. Mokoatle, V. Marivate, and M. E. Bukohwo, "Predicting Road
Traffic Accident Severity using Accident Report Data in South Africa,"
presented at the Proceedings of the 20th Annual International
Conference on Digital Government Research, Dubai, United Arab
Emirates, 2019. [Online]. Available:
https://doi.org/10.1145/3325112.3325211.

[4] L. Weisberg. "The Long-Term Effects of Car Accident Injuries."
Weisberg Cummings, P.C. Emplyment Law
Attorneyshttps://www.weisbergcummings.com/long-term-effects-car-
accident-injuries/ (accessed 10 November, 2022).

[5] A. B. Boye, "The Effect of Road Traffic Delay on Supply Chain
Performance of Manufacturing Firms in Lagos State, Nigeria,"
International Journal of Management Technology, vol. 5, no. 3, pp. 9-20,
2018. [Online]. Available:
https://www.eajournals.org/journals/international-journal-of-
management-technology-ijmt/vol-5-issue-3-september-2018/the-effect-
of-road-traffic-delay-on-supply-chain-performance-of-manufacturing-
firms-in-lagos-state-nigeria/.

[6] MiWay. "The truth about truck accidents on SA roads."
https://www.miway.co.za/blog/business-insurance/the-truth-about-truck-
accidents-on-sa-roads (accessed 10 November, 2022).

[7] Dovetail. "6 Road Freight Challenges in South Africa."
https://dovetail.co.za/6-road-freight-challenges-in-south-africa/
(accessed 10 November, 2022).

[8] Daily News Reporter. "SA has the world's poorest road safety records -
WHO report." IOL News. https://www.iol.co.za/thepost/news/sa-has-
the-worlds-poorest-road-safety-records-who-report-18631896 (accessed
10 November, 2022).

[9] L. Rondganger. "South Africa‘s roads deaths are a ‘national crisis‘." IOL
News. https://www.iol.co.za/news/south-africa/kwazulu-natal/south-
africas-roads-deaths-are-a-national-crisis-cefc54fe-bafe-45c6-b0d9-
f7c4b1ce7ea8 (accessed 10 November, 2022).

[10] B. Alshaqaqi, A. S. Baquhaizel, M. E. A. Ouis, M. Boumehed, A.
Ouamri, and M. Keche, "Driver drowsiness detection system," in 2013

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

247 | P a g e

www.ijacsa.thesai.org

8th International Workshop on Systems, Signal Processing and their
Applications (WoSSPA), 12-15 May 2013 2013, pp. 151-155, doi:
10.1109/WoSSPA.2013.6602353.

[11] L. J. Hurwitz. "Driver Fatigue: A Leading Cause of Accidents and Death
in the Transportation Industry." Segal McCambridge.
https://www.segalmccambridge.com/blog/driver-fatigue-a-leading-
cause-of-accidents-and-death-in-the-transportation-industry/ (accessed
10 November, 2022).

[12] M. Ramzan, H. U. Khan, S. M. Awan, A. Ismail, M. Ilyas, and A.
Mahmood, "A Survey on State-of-the-Art Drowsiness Detection
Techniques," IEEE Access, vol. 7, pp. 61904-61919, 2019, doi:
10.1109/ACCESS.2019.2914373.

[13] R. Jabbar, K. Al-Khalifa, M. Kharbeche, W. Alhajyaseen, M. Jafari, and
S. Jiang, "Real-time Driver Drowsiness Detection for Android
Application Using Deep Neural Networks Techniques," Procedia
Computer Science, vol. 130, pp. 400-407, 2018/01/01/ 2018, doi:
https://doi.org/10.1016/j.procs.2018.04.060.

[14] R. Jabbar, M. Shinoy, M. Kharbeche, K. Al-Khalifa, M. Krichen, and K.
Barkaoui, "Driver Drowsiness Detection Model Using Convolutional
Neural Networks Techniques for Android Application," in 2020 IEEE
International Conference on Informatics, IoT, and Enabling
Technologies (ICIoT), 2-5 Feb. 2020 2020, pp. 237-242, doi:
10.1109/ICIoT48696.2020.9089484.

[15] S. S. Sharan, R. Viji, R. Pradeep, and V. Sajith, "Driver Fatigue
Detection Based On Eye State Recognition Using Convolutional Neural
Network," in 2019 International Conference on Communication and
Electronics Systems (ICCES), 17-19 July 2019 2019, pp. 2057-2063,
doi: 10.1109/ICCES45898.2019.9002215.

[16] V. R. R. Chirra, S. R. Uyyala, and V. K. K. Kolli, "Deep CNN: A
Machine Learning Approach for Driver Drowsiness Detection Based on
Eye State," Revue d'Intelligence Artificielle, vol. 33, no. 6, pp. 461-466,
2019, doi: 10.18280/ria.330609

[17] M. Hashemi, A. Mirrashid, and A. B. Shirazi, "Driver Safety
Development: Real-Time Driver Drowsiness Detection System Based on
Convolutional Neural Network," SN Computer Science, vol. 1, no. 5, p.
289, 2020/08/31 2020, doi: 10.1007/s42979-020-00306-9.

[18] F. Zhang, J. Su, L. Geng, and Z. Xiao, "Driver Fatigue Detection Based
on Eye State Recognition," in 2017 International Conference on
Machine Vision and Information Technology (CMVIT), 17-19 Feb.
2017 2017, pp. 105-110, doi: 10.1109/CMVIT.2017.25.

[19] W. Kongcharoen, S. Nuchitprasitchai, Y. Nilsiam, and J. M. Pearce,
"Real-Time Eye State Detection System for Driver Drowsiness Using
Convolutional Neural Network," in 2020 17th International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology (ECTI-CON), 24-27 June 2020 2020, pp.
551-554, doi: 10.1109/ECTI-CON49241.2020.9158265.

[20] M.-C. Popescu, V. E. Balas, L. Perescu-Popescu, and N. Mastorakis,
"Multilayer perceptron and neural networks," WSEAS Transactions on
Circuits and Systems, vol. 8, no. 7, pp. 579-588, 2009, doi:
10.5555/1639537.1639542.

[21] T. Guo, J. Dong, H. Li, and Y. Gao, "Simple convolutional neural
network on image classification," in 2017 IEEE 2nd International
Conference on Big Data Analysis (ICBDA), 10-12 March 2017 2017,
pp. 721-724, doi: 10.1109/ICBDA.2017.8078730.

[22] R. Seetharaman, S. Sridhar, and S. Mootha, "Detection and State
Analysis of Drowsiness using Multitask Learning with Neural
Networks," in 2020 Fourth International Conference On Intelligent
Computing in Data Sciences (ICDS), 21-23 Oct. 2020 2020, pp. 1-8,
doi: 10.1109/ICDS50568.2020.9268740.

[23] T. Vesselenyi, S. Moca, A. Rus, T. Mitran, and B. Tătaru, "Driver
drowsiness detection using ANN image processing," IOP Conference
Series: Materials Science and Engineering, vol. 252, no. 1, p. 012097,
2017/10/01 2017, doi: 10.1088/1757-899X/252/1/012097.

[24] A. Ghourabi, H. Ghazouani, and W. Barhoumi, "Driver Drowsiness
Detection Based on Joint Monitoring of Yawning, Blinking and
Nodding," in 2020 IEEE 16th International Conference on Intelligent
Computer Communication and Processing (ICCP), 3-5 Sept. 2020 2020,
pp. 407-414, doi: 10.1109/ICCP51029.2020.9266160.

[25] P. Bajaj, R. Ray, S. Shedge, S. Jaikar, and P. More, "Synchronous
System for Driver Drowsiness Detection Using Convolutional Neural
Network, Computer Vision and Android Technology," in 2021 7th
International Conference on Advanced Computing and Communication
Systems (ICACCS), 19-20 March 2021 2021, vol. 1, pp. 340-346, doi:
10.1109/ICACCS51430.2021.9441670.

[26] H. Ahuja, S. Saurav, S. Srivastava, and C. Shekhar, "Driver Drowsiness
Detection using Knowledge Distillation Technique for Real Time
Scenarios," in 2020 IEEE 17th India Council International Conference
(INDICON), 10-13 Dec. 2020 2020, pp. 1-5, doi:
10.1109/INDICON49873.2020.9342263.

[27] M. Ngxande, J. R. Tapamo, and M. Burke, "Bias Remediation in Driver
Drowsiness Detection Systems Using Generative Adversarial
Networks," IEEE Access, vol. 8, pp. 55592-55601, 2020, doi:
10.1109/ACCESS.2020.2981912.

[28] P. Chen, S. Liu, H. Zhao, and J. Jia, "Gridmask data augmentation,"
arXiv preprint arXiv:2001.04086, 2020.

[29] H. J. Weerts, A. C. Mueller, and J. Vanschoren, "Importance of tuning
hyperparameters of machine learning algorithms," arXiv preprint
arXiv:2007.07588, 2020.

[30] P. V. Patil. Drowsiness Detection Dataset, Kaggle. [Online]. Available:
https://www.kaggle.com/prasadvpatil/mrl-dataset

[31] S. Raju. yawn_eye_dataset_new, Kaggle. [Online]. Available:
https://www.kaggle.com/serenaraju/yawn-eye-dataset-new

[32] A. Takimoglu. "What Is Data Augmentation? Techniques, Benefit &
Examples." AIMultiple. https://research.aimultiple.com/data-
augmentation/ (accessed 8 November, 2022).

[33] N. Ketkar, "Introduction to Keras," in Deep Learning with Python:
Springer, 2017, pp. 97-111.

[34] A. Bhandari. "Image Augmentation on the Fly Using Keras
Imagedatagenerator." Analytics Vidhya.
https://www.analyticsvidhya.com/blog/2020/08/image-augmentation-on-
the-fly-using-keras-imagedatagenerator/ (accessed.

[35] F. Chollet. "Building powerful image classification models using very
little data." The Keras Blog. https://blog.keras.io/building-powerful-
image-classification-models-using-very-little-data.html (accessed 8
November, 2022).

[36] J. Brownlee. "How to Normalize, Center, and Standardize Image Pixels
in Keras." Machine Learning Mastery.
https://machinelearningmastery.com/how-to-normalize-center-and-
standardize-images-with-the-imagedatagenerator-in-keras/ (accessed 10
November, 2022).

[37] J. Brownlee. "A Gentle Introduction to Batch Normalization for Deep
Neural Networks." Machine Learning Mastery.
https://machinelearningmastery.com/batch-normalization-for-training-
of-deep-neural-networks/2020 (accessed 10 November, 2022).

[38] M. Alam. "Data Normalization in Machine Learning." Towards Data
Science. https://towardsdatascience.com/data-normalization-in-machine-
learning-395fdec69d02 (accessed 7 November, 2022).

[39] TheAILearner. "Data Augmentation with Keras Imagedatagenerator."
TheAILearner. https://theailearner.com/2019/07/06/data-augmentation-
with-keras-imagedatagenerator/ (accessed 7 November, 2022).

[40] S. Albawi, T. A. Mohammed, and S. Al-Azawi, "Understanding of a
convolutional neural network," in 2017 International Conference on
Engineering and Technology (ICET), 21-23 Aug. 2017 2017, pp. 1-6,
doi: 10.1109/ICEngTechnol.2017.8308186.

[41] M. K. Gurucharan. "Basic CNN Architecture: Explaining 5 Layers of
Convolutional Neural Network." upGrad Education Private Limited.
https://www.upgrad.com/blog/basic-cnn-architecture/ (accessed 1
December, 2021).

[42] Y. Wang, Y. Li, Y. Song, and X. Rong, "The Influence of the Activation
Function in a Convolution Neural Network Model of Facial Expression
Recognition," Applied Sciences, vol. 10, no. 5, p. 1897, 2020. [Online].
Available: https://www.mdpi.com/2076-3417/10/5/1897.

[43] F. Chollet. "The Sequential Model." Keras.io.
https://keras.io/guides/sequential_model/ (accessed 8 November, 2022).

[44] R. Keshari, M. Vatsa, R. Singh, and A. Noore, "Learning Structure and
Strength of CNN Filters for Small Sample Size Training," in 2018

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

248 | P a g e

www.ijacsa.thesai.org

IEEE/CVF Conference on Computer Vision and Pattern Recognition,
18-23 June 2018 2018, pp. 9349-9358, doi: 10.1109/CVPR.2018.00974.

[45] A. Wiranata, S. A. Wibowo, R. Patmasari, R. Rahmania, and R.
Mayasari, "Investigation of Padding Schemes for Faster R-CNN on
Vehicle Detection," in 2018 International Conference on Control,
Electronics, Renewable Energy and Communications (ICCEREC), 5-7
Dec. 2018 2018, pp. 208-212, doi: 10.1109/ICCEREC.2018.8712086.

[46] Z. J. Wang et al., "CNN 101: Interactive visual learning for
convolutional neural networks," in Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems, 2020, pp. 1-7.

[47] G. Dumane. "Introduction to Convolutional Neural Network (CNN)
Using Tensorflow." Towards Data Science.
https://towardsdatascience.com/introduction-to-convolutional-neural-
network-cnn-de73f69c5b83 (accessed 8 November, 2022).

[48] S. Sharma, S. Sharma, and A. Athaiya, "Activation Functions in Neural
Networks," International Journal of Engineering Applied Sciences and
Technology, vol. 4, no. 12, pp. 310-316, 2020.

[49] OpenGenus IQ. "Understanding the VGG19 Architecture." OpenGenus
IQ: Computing Expertise & Legacy. https://iq.opengenus.org/vgg19-
architecture/ (accessed 31 October, 2021).

[50] T. J. Perumanoor. "What Is VGG16? — Introduction to VGG16." Great
Learning. https://medium.com/@mygreatlearning/what-is-vgg16-
introduction-to-vgg16-f2d63849f615 (accessed 17 November, 2021).

[51] L. Wen, X. Li, X. Li, and L. Gao, "A New Transfer Learning Based on
VGG-19 Network for Fault Diagnosis," in 2019 IEEE 23rd International
Conference on Computer Supported Cooperative Work in Design
(CSCWD), 6-8 May 2019 2019, pp. 205-209, doi:
10.1109/CSCWD.2019.8791884.

[52] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, "Generative Adversarial Networks: An Overview," IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 53-65, 2018, doi:
10.1109/MSP.2017.2765202.

[53] C. Nicholson. "A Beginners Guide to Generative Adversarial Networks
(GANs)." Pathmind. https://wiki.pathmind.com/generative-adversarial-
network-gan (accessed 4 March, 2022).

[54] A. K. Dubey and V. Jain, "Comparative Study of Convolution Neural
Network‘s Relu and Leaky-Relu Activation Functions," in Applications

of Computing, Automation and Wireless Systems in Electrical
Engineering, Singapore, S. Mishra, Y. R. Sood, and A. Tomar, Eds.,
2019// 2019: Springer Singapore, pp. 873-880.

[55] H. Zhu, D. Gao, and S. Zhang, "A Perceptron Algorithm for Forest Fire
Prediction Based on Wireless Sensor Networks," Journal on Internet of
Things, vol. 1, no. 1, 2019, doi: 10.32604/jiot.2019.05897.

[56] J. Brownlee. "Perceptron Algorithm for Classification in Python."
Towards Data Science. https://machinelearningmastery.com/perceptron-
algorithm-for-classification-in-python/ (accessed 4 April, 2022).

[57] D. R. Govinda and Z. Waheed, "Increasing Trend in Accuracy Score for
Machine Learning Algorithms," International Journal of Development
and Public Policy, vol. 1, no. 5, pp. 180-182, 10/23 2021. [Online].
Available:
https://www.openaccessjournals.eu/index.php/ijdpp/article/view/429.

[58] S. Raschka and V. Mirjalili, Python machine learning: Machine learning
and deep learning with Python, scikit-learn, and TensorFlow 2. Packt
Publishing Ltd, 2019.

[59] K. Roth, T. Milbich, S. Sinha, P. Gupta, B. Ommer, and J. P. Cohen,
"Revisiting Training Strategies and Generalization Performance in Deep
Metric Learning," presented at the Proceedings of the 37th International
Conference on Machine Learning, Proceedings of Machine Learning
Research, 2020. [Online]. Available:
https://proceedings.mlr.press/v119/roth20a.html.

[60] M. Dua, Shakshi, R. Singla, S. Raj, and A. Jangra, "Deep CNN models-
based ensemble approach to driver drowsiness detection," Neural
Computing and Applications, vol. 33, no. 8, pp. 3155-3168, 2021/04/01
2021, doi: 10.1007/s00521-020-05209-7.

[61] S. Panda and M. Kolhekar, "Feature Selection for Driver
Drowsiness Detection," in Proceedings of International Conference on
Computational Intelligence and Data Engineering, Singapore, N. Chaki,
N. Devarakonda, A. Sarkar, and N. C. Debnath, Eds., 2019// 2019:
Springer Singapore, pp. 127-140.

[62] D. Chicco and G. Jurman, "The advantages of the Matthews correlation
coefficient (MCC) over F1 score and accuracy in binary classification
evaluation," BMC Genomics, vol. 21, no. 1, p. 6, 2020/01/02 2020, doi:
10.1186/s12864-019-6413-7.

