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Abstract— Driver drowsiness is one of the main causes of 

driver-related motor vehicle collisions, as this impairs a person’s 

concentration whilst driving. With the enhancements of 

computer vision and deep learning (DL), driver drowsiness 

detection systems have been developed previously, in an attempt 

to improve road safety. These systems experienced performance 

degradation under real-world testing due to factors such as 

driver movement and poor lighting. This study proposed to 

improve the training of DL models for driver drowsiness 

detection by applying data augmentation (DA) techniques that 

model these real-world scenarios. This paper studies six DL 

models for driver drowsiness detection: four configurations of a 

Convolutional Neural Network (CNN), two custom 

configurations as well as the architectures designed by the Visual 

Geometry Group (VGG) (i.e. VGG16 and VGG19); a Generative 

Adversarial Network (GAN) and a Multi-Layer Perceptron 

(MLP). These DL models were trained using two datasets of eye 

images, where the state of eye (open or closed) is used in 

determining driver drowsiness. The performance of the DL 

models was measured with respect to accuracy, F1-Score, 

precision, negative class precision, recall and specificity. When 

comparing the performance of DL models trained on datasets 

with and without DA in aggregation, it was found that all metrics 

were improved. After removing outliers from the results, it was 

found that the average improvement in both accuracy and F1 

score due to DA was +4.3%. Furthermore, it is shown that the 

extent to which the DA techniques improve DL model 

performance is correlated with the inherent model performance. 

For DL models with accuracy and F1-Score ≤ 90%, results show 

that the DA techniques studied should improve performance by 

at least +5%. 

Keywords—Data augmentation; deep learning; computer 

vision; drowsiness detection; road safety 

I. INTRODUCTION 

Road accidents represent a major socio-economic challenge 
for individuals, industries, and nations [1].  Commuters 
involved in road accidents are affected in a variety of ways; 
such as death, sustaining physical injuries, psychological 
trauma, as well as incurring financial burdens from damage to 
property [1-4]. For industries, road accidents adversely affect 
supply chain performance and logistics, reducing operational 
efficiency [5-7]. The net result of this adversely impacts the 
economy of a country. Furthermore, for national authorities, 
road accidents cause traffic congestion; resulting damage to 
infrastructure and increased environmental pollution. Road 
accidents are a greater concern in developing countries, 
wherein more than 90% of accidents result in fatalities [1]. Of 
all developing countries, the World Health Organisation 

reports that South Africa has the poorest road safety record, 
with approximately 14 000 deaths per annum and an accident 
fatality rate of 3.2% [2, 8, 9]. 

The factors that cause road accidents need to be identified 
before an effective solution can be developed. Studies, such as 
those presented by Machetele and Yessoufou [1] and Verster 
and Fourie [2], highlight that driver-related accidents account 
for 80% to 90% of fatal road accidents. A key cause of driver-
related accidents is drowsiness (which may result from 
excessive alcohol consumption), as this impairs a person‘s 
concentration and focus [2, 10]. The detection of driver fatigue 
or drowsiness is hence essential towards improving road safety 
and reducing the accident rate [11, 12]. 

In light of the fourth industrial revolution, technology is 
becoming more ubiquitous and there is growing motivation to 
utilize artificial intelligence and machine learning to solve 
social problems, such as driver drowsiness detection. To this 
end, there have been a range of studies that apply deep learning 
(DL) techniques to solve the problem of driver drowsiness 
detection [13-19]. DL is a subset of machine learning that 
mimics the neural network of the human brain, thus creating an 
artificial neural network [14]. Artificial neural networks 
comprise of multiple nodes that model neurons of the human 
brain, which are organized into layers [20]. Data is propagated 
from the input layer to the output layer. These artificial neural 
networks have the potential to solve regression and 
classification problems, including image classification 
problems [20, 21]. In the context of image classification, each 
layer trains upon the output of the previous layer, enabling 
latter layers to identify more intricate elements of the images 
[21]. 

At a technical level, the aforementioned studies perform 
driver drowsiness detection by considering images of a driver‘s 
eye, and using DL algorithms to determine the eye state (i.e. 
whether the eye is opened or closed). By applying this 
technology to frames from a video feed of the driver, it is 
possible to determine whether eyes are closed for extended 
periods of time, which is an indicator of drowsiness. Some of 
the DL algorithms used in literature include: (i) convolutional 
neural networks (CNNs) of different configurations [14-16, 18, 
22, 23]; (ii) the multi-layer perceptron (MLP) [13, 24]; (iii) the 
respective Visual Geometry Group 16 (VGG16) [25, 26] and 
19 (VGG19) [17, 26] models; as well as (iv) the generative 
adversarial network (GAN)[27]. The reported accuracies of the 
models in these studies range between 75% and 96%. 
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Despite the high accuracies reported in the studies, real-
world challenges during implementation were reported that 
adversely affected the accuracy of the trained models. Among 
these challenges were: (i) poor lighting, where lighting is either 
too bright or too dim [13, 14, 17, 19]; (ii) changes to the 
driver‘s seat position [22]; (iii) a change in the angle of the 
driver‘s face while driving [13, 22] the use of spectacles and/or 
sunglasses by drivers [14, 17-19, 24]. 

In this paper, the authors proposed to address these real-
world challenges by performing data augmentation (DA) on 
the training image sets that are input into DL models for driver 
drowsiness detection. DA techniques introduce artificial 
images that simulate real-world effects [28], such as different 
lighting environments and changes to face orientation. This 
study also uses a training dataset containing images of drivers 
with and without eyewear to address the challenges associated 
with drivers wearing spectacles or sunglasses. The DA 
techniques are tested on CNN models, GAN models, MLP 
models and both the VGG16 and VGG19 models. 
Hyperparameter tuning is performed on all models to optimize 
their learning rate and enhance their overall performance. 
Literature has shown that careful selection of hyperparameters 
has a significant impact on model performance [28, 29]. The 
effect of the DA is evaluated by comparing the performance of 
models trained with and without DA in with respect to the 
following metrics: (i) accuracy, (ii) precision, (iii) negative 
class precision, (iv) recall, (v) specificity, and (vi) F1-score. It 
is hypothesized that the use of DA will result in improved 
performance of all models. 

It is noted that previous studies in literature [14, 25, 27] 
have incorporated the use of DA in improving the performance 
of their specific driver drowsiness detection models. However, 
to the best of the authors‘ knowledge, there are no 
comprehensive studies that investigate DA techniques for a 
wide range of DL algorithms in the context of driver 
drowsiness detection, as is done in this paper. 

The research in this paper makes the following 
contributions: 

1) Presenting an overview of DA techniques to model the 

specific real-world scenarios that cause challenges for driver 

drowsiness detection systems. 

2) Studying the DA techniques on a wide range of DL 

models that perform driver drowsiness detection and 

statistically analyzing the effects of the DA techniques. 

3) Demonstrating the extent to which the DA techniques 

studied are able to improve DL models that perform driver 

drowsiness detection and proposing a design guideline for DL 

model developers on that conditions under which the DA 

techniques should be considered. 
The rest of this paper is organized as follows. In Section II, 

a review of existing literature was presented. Section III 
presents the materials and methods used in this study, 
including providing an overview of a real-world drowsiness 
detection system. In Section IV the results of the investigations 
are presented and finally, conclusions and insights that were 
drawn from this study are presented in Section V. Section V 
also makes recommendations for future work. 

II. RELATED WORK 

This section reviews the DL algorithms that have been 
extensively used in previous studies, to implement models and 
applications, for drowsiness detection in motorists. 

A study by Jabbar et al. [14] proposed a drowsiness 
detection system that could be implemented on the driver‘s 
dashboard, using an Android phone. The system was able to 
predict the drowsiness of the driver based on their eye state. 
This study made use of a CNN network to implement a binary 
classification model that was able to classify the drowsiness in 
facial images. Data augmentation techniques were applied to 
the images, before they were trained on the model. The Dlib 
C++ library was used to extract the driver‘s facial landmarks 
from the images. These facial features were fed into the 
algorithm for training. The dataset was created using the 
extracted eye features. This model achieved an accuracy of 
83.3%. A similar study by Zhang, Su, Geng and Xiao [18] was 
conducted to detect the drowsiness of a person, using the eye 
state. This proposed model was implemented on an Infrared 
video camera. The AdaBoost algorithm was used to extract 
facial landmarks from the images. The extracted eye landmarks 
were used to create the image dataset, to train the model on. 
The CNN model was used as the binary classifier for 
drowsiness. An accuracy of 95.8% was achieved by this study. 

Sharan, Viji, Pradeep and Sajith [15] proposed a similar 
drowsiness detection system to Jabbar et al. [14] that could be 
implemented on the driver dashboard. However, this study 
proposed that a Raspberry Pi camera module be used to capture 
the drivers face. The drowsiness prediction was also based on 
the eye state. The Haar Cascade classifier was used for facial 
extraction during the implementation of this system and the 
CNN network was implemented as the binary classifier. 
Contrast Level Adaptive Histogram Equalization was applied 
to remove the noise and improve the picture quality, before 
they were trained on the CNN model. The CNN model was 
trained on an existing dataset, comprising of eye images. The 
study by Seetharman, Sridhar and Mootha [22] made use of a 
CNN network to classify the drowsiness in images. The 
prediction was based on the eye and mouth state of the 
extracted faces. The Dlib library was utilized to extract the 
facial regions from the images, similar to the study done by 
Jabbar et al. [14]. A dataset for the model was then generated 
using the extracted eye regions. The trained CNN model 
achieved an accuracy of 92.4%. In addition, this proposed 
model was intended to be implemented on a dashboard video 
camera. Chirra, Uyyala and Kolli [16] proposed a similar 
model for drowsiness detection, as a CNN network was used to 
predict the drowsiness in images. The eye state was the metric 
for prediction, with the Viola-Jones algorithm used to extract 
the facial landmarks from the images, during the 
implementation of this system. An existing dataset of eye 
images was used to train the CNN model. The model produced 
an accuracy of 96.42%. This model was also proposed to be 
implemented on a video camera for drowsiness detection, like 
the study conducted by Seetharman, Sridhar and Mootha [22]. 

A model using the VGG 19 model to detect driver 
drowsiness, based on the eye state, was proposed by Hashemi, 
Mirrashid and Shirazi [17]. This study made use of the Viola-
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Jones algorithm to extract the facial landmarks from the 
images. The extracted eye landmarks were then used to create 
the dataset for this model. The Viola-Jones algorithm has been 
utilised in previous work [16]. This model obtained an 
accuracy of 94.96%, with its intended application in driver 
dashboard monitoring. A study by Ahuja, Saurav, Srivastava 
and Shekhar [26], proposed an approach to improved 
drowsiness detection, by using a knowledge distillation 
technique to reduce the size of DL models, whilst maintaining 
high accuracy. A large model will have high memory 
consumption and longer response times. Therefore, there was a 
need to reduce the size of the DL model. The Histogram of 
Gradient algorithm was used to extract the facial regions from 
the images, during system implementation. VGG19 and Visual 
Geometry Group 16 (VGG16) were the algorithms used to 
train their respective models, to classify the drowsiness in 
images. These models were trained on an existing dataset, 
consisting of eye images. The predictions were based on the 
eye state for both models. The VGG19 and VGG16 models, 
obtained the accuracy of 92.5% and 95% respectively. 

Bajaj, Ray, Shedge, Jaikar and More [25] proposed a real-
time drowsiness prediction system that will be implemented on 
an Android application, to monitor the driver‘s face from the 
dashboard. This system can predict the drowsiness using the 
driver‘s eye state. A comparative analysis of three DL 
algorithms, specifically: Inception, ResNet-50 and VGG 16 
were performed. Data augmentation techniques were applied to 
the images, before they were trained on the models. The 
models were trained on an existing dataset, comprising of face 
images. The accuracy achieved by the Inception, ResNet-50 
and VGG 16 models were 89%, 56% and 91%, respectively. 

A study by Jabbar et al. [13] proposed a system for 
drowsiness detection that could be implemented on an android 
application, for dashboard monitoring. The prediction of this 
system was based on the driver‘s eye state. The Dlib C++ 
library was used to extract the person‘s facial landmarks from 
the images. This library has been used for facial feature 
extraction in previous work [14,25]. These facial features were 
used to create the dataset, which was fed into the MLP 
algorithm for training. The model was able to classify a driver 
as either drowsy or non-drowsy. An accuracy rate of 80.92% 
was achieved by this model. A similar study by Ghourabi, 
Ghazouani and Barhoumi [24] made use of the MLP algorithm 
to detect drowsiness in the images. The eye and mouth state 
were used to classify the drowsiness. The Histogram of 
Gradient algorithm was used to extract the facial regions from 
the images. These extracted facial regions were used to create 
the dataset that was fed into the model for training. The model 
is intended to be implemented for dashboard monitoring. This 
study obtained an accuracy rate of 74.9%. 

Ngxande, Tapamo and Burke [27] proposed a framework to 
reduce the biasness of a model during the training process. A 
Generative Adversarial Network (GAN) model was trained on 
an image dataset. This model made predictions using facial 
landmarks and the eye state in particular. The extracted facial 
landmarks were used to create the dataset for model training. 
Data augmentation techniques were applied to the images 
before they were loaded into the GAN model. This helped to 
improve the performance of the binary classification model. An 
accuracy rate of 91.62% was achieved by this model. 

Many of the studies have used facial and eye extraction 
algorithms, to create image datasets from real-time data, to 
train their models on. However, this study aimed to use 
existing datasets that were available online, to train the DL 
models. The reason for this was because, this study aimed on 
improving the performance of trained models, regardless of the 
source of data. Therefore, no facial and eye extraction 
algorithms were used on real-time data, in this study. 

Literature has shown that many drowsiness detection 
models faced issues with prediction accuracy, due to poor 
lighting and the use of sunglasses [13,14,17,18,24]. The other 
challenge that affected accuracy was the positioning of the 
driver‘s face [13,22]. Another gap identified is the lack of pre-
processing and data augmentation applied on the data before 
training. Data augmentation was used in [14,25,27], to create 
more comprehensive models that exhibits improved 
performance. DA was used to remove biasness from the 
models, thus improving the performance. However, not many 
of the previous studies have comprehensively studied DA to 
model real-world scenarios to improve model performance, on 
a wide range of DL algorithms that detect driver drowsiness, as 
done in this study. 

Therefore, this study aimed to develop an improved 
approach towards drowsiness detection by using data 
augmentation. Data augmentation techniques were used to 
create training data that replicate real-life scenarios that 
correlate with the challenges faced in previous studies. 

III. MATERIALS AND METHODS 

This section first provides an overview of a real-world 
driver drowsiness detection system and isolates the role of the 
DL algorithms that this study focuses on. The data sources and 
DA techniques utilized in this paper are then discussed. 
Thereafter, a technical summary of the DL algorithms 
considered is provided, along with the parameters used in this 
study. Finally, the authors present the different evaluation 
metrics that are used to quantify the performance of the DL 
algorithms. 
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Fig. 1. Overview of a real-world driver drowsiness detection system 

A. An Overview of a Real-World Drowsiness Detection 

System 

Fig. 1 illustrates the process flow for a real-world driver 
drowsiness detection system. The process starts with a camera 
that captures a video of the driver‘s face, which serves as the 
input to the system. The camera can either be mounted to the 
dashboard or steering wheel of the vehicle. The captured video 
is then stored on cloud-hosted infrastructure, typically in some 
form of unstructured blob storage. 

At the start of the processing stage of the system, the video 
file is passed on to an artificial intelligence engine, consisting 
of three sub-units. The first sub-unit extracts individual frames 
from the video file, which will then be treated as a series of 
sequential images. The second sub-unit uses image detection 
techniques to isolate the eye from each image of the driver‘s 
face. This produces a series of sequential images of the driver‘s 
eyes. Finally, the third sub-unit utilizes a pre-trained DL model 
to analyze the images and determine the state of the driver‘s 
eye (open or closed) in each frame. The eye state determined in 
each frame is then logged in a database, which is also typically 
cloud-hosted. 

In the final stage of the system, the eye states stored in the 
database are analyzed and interpreted to detect the drowsiness 
of the driver. Drowsiness detected when the driver‘s eyes are in 
the ‗closed‘ state for extended periods (multiple consecutive 
frames from the video feed). 

B. Design and Configuration of Study 

The research presented in this study focuses on the third 
sub-unit of the artificial intelligence engine, viz. the DL 

algorithm that determines the driver‘s eye state, as described in 
Section III.A. Hence, for the experiments conducted, the inputs 
in this study were images of a driver‘s eye and the outputs 
were a categorical variable indicating the eye state. A binary 
categorical output was used, with the positive class label 
indicating the ―open‖ eye state and the negative class label 
indicating the ―closed‖ eye state. The experimental 
configuration used is depicted in Fig. 2. 

In performing the experiments, appropriate datasets of eye 
images were first sourced. In selecting the datasets, the authors 
ensured that images where the eye was partially obscured by 
eyewear (spectacles or sunglasses) were included. By doing 
this, the DL models would learn to distinguish between eye 
states irrespective of the use of eyewear. 

The datasets were then split into training and testing data 
using an 80:20 ratio. A copy of the training dataset was 
created, and data augmentation techniques were performed to 
model the real-world challenges of eye orientation and lighting 
conditions. Two DL models were trained: one was trained on 
the original (pre-treatment) training dataset, and the other was 
trained on the modified (post-treatment) training dataset. 
Depending on the architecture of the DL algorithm being 
investigated, any necessary data-shaping modifications were 
made to the images from the dataset. 

The pre-treatment and post-treatment DL models were 
applied to the testing dataset to evaluate and compare their 
performance. As was the case with the training datasets, any 
modifications to the testing dataset required by the DL model 
architecture were made. 
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Fig. 2. Configuration of study 

TABLE I.  PROPERTIES OF DATASETS 

Property Dataset 1 Dataset 2 

Total number of 

images 
2 500 1452 

Eye Opened 1 250 726 

Eye Closed 1 250 726 

Image size (pixels) 96 × 96 256 × 256 

Colour/Greyscale Greyscale Colour 

File format 
Portable Network 

Graphics (PNG) 

Joint Photographic 

Experts Group (JPEG) 

File compression Lossless compression Lossy compression 

The experiments were done using pre-built Python libraries 
on the Jupyter Notebooks development environment. A 
personal computer equipped with 8 gigabytes of random-access 
memory, an Intel Core i5-7200U processor and a 64-bit 
Windows 10 operating system. 

1) Selection of datasets: There were two datasets utilised 

in this study, which were obtained from online repositories 

[30, 31]. Both datasets contained images of human eyes with 

and without eyewear, and images labelled according to the eye 

state. The properties of the datasets are presented in Table I. 
The balanced distribution of eye states was preserved when 

splitting each of the datasets into respective training and testing 

datasets, using an 80:20 ratio. The Scikit-learn Python library 
was used to implement the data splitting. 

When exploring the datasets, it was also noted that both 
sets of data contained images from a diverse range of 
ethnicities. Different skin tones and complexions were noted, 
as well as different eye shapes. The authors further observed 
that among female eyes, the extent to which make-up such as 
eyeliner and false eyelashes were used differed. 

2) Data augmentation and pre-processing: Data 

augmentation improves model performance by generating 

variations of training data [14]. This reduces overfitting and 

improves the model‘s ability to make generalizations [14, 32]. 

The specific augmentations performed in this study were 

designed to simulate real-world scenarios and overcome some 

of the challenges indicated in literature. 
The ImageDataGenerator class within the Keras library for 

Python [33] was used to implement pre-processing and DA in 
this study. The ImageDataGenerator class supports DA in real-
time and makes sure that the model is trained with different 
variations of images during each training iteration (epoch) [34, 
35]. 

The following pre-processing and data augmentation 
techniques were applied: 
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a) Brightness adjustment: Multiple studies in literature 

have shown that poor lighting conditions had a negative 

impact on the accuracy of DL models for driver drowsiness 

detection [13, 14, 17, 19]. While driving, ambient lighting 

conditions can change due to environmental conditions such 

as the time of day and the weather. For example, driving at 

night results in a very low brightness conditions and driving in 

bright sunshine results in very high brightness conditions. 

While driving, it is also possible for lighting conditions to 

change rapidly, such a when driving under a bridge/overpass 

on a sunny day or through the shadow cast by a building or 

other large structure. 

To model scenarios with different lighting environments, 
this study applied a randomized change to image brightness 
when augmenting images. This is implemented through adding 
a constant,  , to all pixels in the image. The brightness 
adjustment function is mathematically described as: 

  ( )     (     (       )) (1) 

In (1),   is the value of the pixel and falls in the range 
       . Positive values of   increase the brightness of 
the image while negative values of δ decrease the brightness of 
the image. The    ( )  and    ( )  functions ensure that the 
brightness-adjusted pixel value remains in a valid range. 

b) Horizontal flips: The shape of a human eye may 

differ slightly between the left eye and the right eye. Creating 

artificial data by flipping the horizontal orientation allows the 

DL model to be trained to analyze either eye of the driver. 

c) Rotation, translation and zoom: Literature showed 

that changes to the driver‘s face orientation was a real-world 

scenario that adversely affected the performance of DL 

models [13, 21]. Therefore, in this study, rotation, translation 

shifts and zoom transformations were used to model changes 

to the driver‘s face orientation. Rotation and translational 

shifts are useful to simulate movement of a driver‘s head 

while travelling. Zoom transformations model a change in 

depth between the camera and the driver‘s face, which may 

result from the driver changing their seat position or posture. 

d) Normalization, centering and standardization: 

Normalization and standardization improve the learning rate 

and reduces the number of epochs required to train a DL 

model [36, 37]. These processes ensure that no individual 

input pixel dominates performance [38]. This is done by 

mathematically adjusting data such that it follows a Gaussian 

distribution with zero mean and unit variance [39]. 

Normalization involves rescaling the value of pixels to 
have a unit maximum, which reduces the computational power 
required to train the DL model. As all pixels have the same 
maximum value (      ), the normalization function is 
described by [36]: 

  ( )  
 

   
 (2) 

Centering ensures that the data has a mean of zero, while 
standardization ensures that the data has a unit variance [36]. 
Setting these statistical properties of the data improves the rate 
at which a DL algorithm converges when training, as well as 
increasing model accuracy by eliminating statistical bias. 

Centering and standardization can be applied to data in with 
respect to individual images (sample-wise) or with respect to 
the entire set of images (feature-wise). The functions for 
sample-wise centering (sc), feature-wise centering (fc), sample-
wise standardization (ss) and feature-wise standardization (fs) 
are [39]: 

   ( )     ̅  (3) 

   ( )     ̅  (4) 

   ( )  
 

  
 (5) 

   ( )  
 

  
 (6) 

In (2) – (6),  ̅  represents the mean pixel value and   
represents the standard deviation of pixel values. The 
subscripts ‗I‘ and ‗D‘ respectively denote statistics calculated 
over pixels from a single image (I) and statistics calculated 
over the entire dataset (D). 

In this study, each of the above pre-processing operations is 
performed on input data. 

3) Deep learning algorithms: As discussed in Section I, 

DL is a subset of machine learning and involves mimicking 

the human brain. DL algorithms follow a common structure, 

to the extent that they adopt a layered architecture with 

multiple nodes at each layer. The DL algorithms for this study 

are designed to perform a binary classification in determining 

whether the eye state is ‗opened‘ or ‗closed‘. A brief overview 

of the different DL algorithms implemented in this study for 

image classification is provided below. 

a) Convolutional neural network (CNN): The CNN is 

the most popular artificial neural network (at the time of 

writing). There are typically three classes of layers in a CNN: 

convolution layers, pooling layers and fully-connected layers 

[16, 40]. Fig. 3, re-produced from [41], illustrates the layout of 

these layers. 

Convolution and pooling layers work together to perform 
feature extraction from the input image [16, 40]. First, input 
data representing pixels of an image is multiplying the kernel 
filters of a convolution layer to generate feature maps. 
Thereafter, a pooling layer is used to group features together 
and reduce the size of the feature maps. Pooling features 
together improves the computation time of the DL algorithm 
[16]. 

 

Fig. 3. Basic CNN architecture [41] 
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TABLE II.  ARCHITECTURAL LAYERS OF CNN-C1 

Layer Number Properties 

1 
Convolutional Layer. 32 nodes, same padding, 3×3 

kernel 

2 Max pooling layer 

3 
Convolutional Layer. 32 nodes, same padding, 3×3 

kernel 

4 Max pooling layer 

5 
Convolutional Layer. 64 nodes, same padding, 3×3 

kernel 

6 Max pooling layer 

7 Flatten layer 

8 Dense layer with 128 units 

9 Dense Softmax output layer with two units 

TABLE III.  ARCHITECTURAL LAYERS OF CNN-C2 

Layer Number Properties 

1 Convolutional Layer. 8 nodes, same padding, 3×3 kernel 

2 Average pooling layer 

3 
Convolutional Layer. 16 nodes, same padding, 3×3 

kernel 

4 Average pooling layer 

5 Flatten layer 

6 Dense layer with 120 units 

7 Dense layer with 84 units 

8 Dense Softmax output layer with two units 

The processed feature maps are then fed into one or more 
fully-connected layers. The final layer is referred to as the 
output layer, and any fully-connected layers between the 
pooling layer and the output layer are referred to as hidden 
layers. Each node in a fully-connected layer performs a 
mathematical operation on its input data using an activation 
function. These activation functions are selected to map inputs 
to suitable outputs and perform classification [42]. 

Two different CNN model configurations were investigated 
in this study. For brevity, they are referred to as CNN-C1 and 
CNN-C2. Their respective architectures are shown in Table II 
and Table III. 

Table II describes the first CNN architecture used in this 
study. These layers are arranged sequentially in a linear stack 
[43]. The first two convolution layers in this model have 32 
nodes each, which are responsible for learning multiple spatial 
patterns and features from the input image [44]. The last 
convolution layer 64 nodes. A 3×3 kernel filter is used in each 
convolution layer, to generate the feature maps. Each 
convolution layer applied same padding to the input image, 
which enabled the image to get completely covered by the 
kernel filter, to generate a feature map [45]. Furthermore, each 
convolution layer was followed by a pooling layer that applies 
a maximum filter (max pooling). Once the convolution was 
completed, the data was then passed to the flatten layer to 
flatten the multi-dimensional feature map into one dimension 

[46]. This single dimensional array was then forwarded into the 
dense layer of the network. A dense layer of 128 units is then 
used to perform the image classification, using the output from 
the convolution layers [47]. The last layer of this network was 
a two-unit output layer which made use of a softmax activation 
function that calculated the probabilities of each class [48]. 
There are only two units used in the output layer, because these 
models are binary classifiers, with predictions made for only 
two class labels. The output produced by the softmax layer, is 
represented in the form of a vector, which contains the 
probabilities of each class, for every sample data 

In addition, a Rectified Linear Unit (ReLU) activation 
function was added to each convolution layer and dense layer, 
to ensure no negative values were passed to the subsequent 
layers [16]. The ReLU activation function is given by: 

     ( )     (   ) (7) 

In (7),   refers to the input data to the activation function. 

Table III describes the second CNN configuration used in 
this study, which also consists of sequential layers. This 
configuration uses fewer convolution layers than CNN-C1, but 
more fully-connected layers when performing classification. 
CNN-C2 also applies an averaging filter in the pooling layers 
(average pooling). A with CNN-C1, a ReLU activation 
function was added to each convolutional layer and dense 
layer, to ensure no negative values propagated through the 
network. 

b) Visual geometry group (VGG) networks 16 and 19: 

The VGG have conducted extensive research into DL 

algorithms for image classifications that improve upon the 

traditional CNN [49]. The two VGG algorithms chosen were 

VGG16 [50] and VGG19 [51]. The VGG16 model consists of 

13 convolution layers, five max pooling layers, two fully-

connected layers and one softmax activation layer at the 

output [50]. The VGG19 model comprises of 16 convolution 

layers, five max pooling layers, three fully-connected layers 

and one softmax activation layer at the output [51]. 

The VGG19 and VGG16 models used in this study were 
built using the Keras pre-trained VGG library. As with CNN-
C1 and CNN-C2, the output layer was configured to have two 
units with a softmax output representing the probability on an 
image falling into either classification. 

c) Generative adversarial network (GAN): GANs are a 

class of DL algorithms that has been applied to image 

classification problems [52]. The structure of a GAN, shown 

in Fig. 4 [53], comprises of two sub-neural networks: a 

generator network and a discriminator network. 

During training, both the generator and the discriminator 
learn concurrently. The function of a generator network is to 
produce new, artificial instances of data/images from the input 
features [52]. This is a form of data augmentation that occurs 
within the network architecture. The artificial images output 
from the generator network are evaluated by the discriminator 
to determine whether they adequately resemble images from 
the true training dataset. Back-propagation is then used to 
iteratively train the generator. Generator networks are typically 
seeded with randomized noise data. 
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Fig. 4. Structure of a GAN [53] 

TABLE IV.  ARCHITECTURAL LAYERS OF GAN (DISCRIMINATOR) 

Layer Number Properties 

1 
Convolutional Layer. 128 nodes, same padding, 3×3 

kernel. 

2 Max pooling layer 

3 
Convolutional Layer. 128 nodes, same padding, 3×3 

kernel. 

4 Max pooling layer 

5 
Convolutional Layer. 128 nodes, same padding, 3×3 

kernel. 

6 Max pooling layer 

7 Flatten layer 

8 Dense Softmax output layer with two units 

The discriminator network is trained with images from both 
the actual dataset and the artificial images produced by the 
generator. When using a GAN, the discriminator is the final 
trained model that is tested and deployed in a system. 

In the design of a GAN, the discriminator is often a CNN 
model, and the generator is often a de-convolutional neural 
network. 

The GAN models in this study were built with the 
architectural layers described in Table IV. There were three 
convolutional layers used in this network with each layer 
having 128 nodes. Each convolutional layer was followed by a 
pooling layer to perform down-sampling. The data was then 
flattened and passed to a two-unit softmax output layer, where 
the output prediction was produced. The GAN models 
deployed a Leaky ReLU activation function, as described by 
(8), which was added to each down-sampling layer and dense 
layer. The Leaky ReLU activation function dampens the effect 
of negative values [54], but does not force them to zero like the 
standard ReLU function in (7). 

           ( )  {
            
                  

 (8) 

TABLE V.  ARCHITECTURAL LAYERS OF MLP 

Layer Number Properties 

1 Flatten Layer 

2 Dense layer with 128 nodes. 

3 Dense Softmax output layer with two nodes. 

 
Fig. 5. Definitions matrix of model output classifications 

d) Multi-layer perceptron (MLP): The MLP is a more 

basic DL architecture than those derived from the CNN, as it 

only consists of fully-connected layers [55, 56]. The typical 

structure of an MLP consists of an input layer, an output later 

and at least one hidden layer between the input and output 

layers. As such, the operation of the MLP is the same as 

classification stage of a CNN. As a result, MLPs require data 

to be flattened at the input layer. 

The MLP models in this study were built according to the 
architectural layers described in Table V. The ReLU activation 
function was implemented in the hidden layer. 

4) Model evaluation: When analysing model 

performance, this study considers a range of metrics 

collectively to provide a holistic evaluation of performance. 

The following performance metrics were used to evaluate the 

DL models: accuracy score, precision, negative class 

precision, recall, specificity and F1-score. These metrics are 

defined in (9) – (14), in terms of the number of true positive 

classifications (   ), the number of true negative 

classifications (   ), the number of false positive 

classifications (   ) and the number of false negative 

classifications (  ). These output classifications relate true 

eye state (based on the known label associated with an image) 

to the detected eye state (based on the output of the model). 

The definitions of the different output classifications are 

visually represented in Fig. 5. 

a) Accuracy score: The accuracy score is a measure of 

how many correct predictions were made by the classifier, out 

of all the predictions made [57, 58]. This is hence the 

percentage of true output classifications with respect to all 

output classifications, and is mathematically described as: 
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 (9) 

b) Recall and specificity: Recall defines how well the 

model can correctly classify positive outcomes [58, 59]. In the 

context of this study, recall indicates how many images of 

open eyes were correctly classified by the model. In addition, 

for a balanced evaluation of the predictions made for both 

class labels, the specificity metric was also used. Specificity 

indicates how well the model can correctly classify negative 

outcomes [58]. In the context of this study, it indicates how 

many images of closed eyes were correctly classified by the 

model. For the problem of driver drowsiness detection, being 

able to correctly identify when the driver‘s eyes are closed is 

of equal importance than identifying when the eye state is 

open. The mathematical definitions of recall and specificity 

are given in (10) and (11), respectively. 

       
  

     
 (10) 

            
  

     
 (11) 

c) Precision: Precision defines how well a model can 

make classify positive outputs [60]. In the context of this 

study, this indicates the percentage of correct open eye state 

classifications from all open eye state classifications, as shown 

by (12). Similarly, the negative class precision represents the 

percentage of correct closed eye state classifications from all 

closed eye state classifications. The formula for negative class 

precisions is presented in (13). 

          
  

     
 (12) 

                    
  

     
 (13) 

d) F1-Score: The F1-Score represents a weighted 

average between precision and recall and is hence considered 

the most appropriate measure of model performance in some 

literature [57, 61]. Equation (14) presents the mathematical 

formula to calculate F1-Score [61, 62]. 

            
                

                
 (14) 

IV. RESULTS AND DISCUSSION 

This section presents and analyses the effects of data 
augmentation on model performance. Pre-treatment and post-
treatment results are presented in Table VI and Table VII, and 
their descriptive statistics are presented in Table VIII. The 

change in performance metrics due to treatment is presented in 
Table IX. While results for all performance metrics are 
presented, the main analysis focuses mostly on accuracy and 
F1-score, as the latter provides insight into the underlying 
precision and recall. 

In the analysis carried out, the authors first confirmed that 
the DA techniques adopted in this study have improved the 
performance of the DL models that were investigated. Fig. 6 
presents a box-and-whisker diagram of the statistical 
distribution of all evaluation metrics considered; and compares 
pre-treatment results with post-treatment results. From the 
results in Fig. 6, Table VII, Table VIII and Table IX, the 
following observations and interpretations were made: 

1) The post-treatment mean and median values of all 

evaluation metrics are higher than the pre-treatment values 

(Table VIII and Table IX). This indicates that the average 

performance of all DL models studied improved due to the 

DA techniques applied. The average improvement of the most 

conclusive metrics, accuracy and F1-score, were +6.1% and 

+6.8% respectively. 

2) The interquartile ranges (IQRs) and standard deviations 

of post-treatment results were less than for pre-treatment 

results. In terms of the most conclusive metrics, accuracy and 

F1-Score, the IQR of both metrics decreased from 13% to 3%. 

The standard deviation of accuracy scores decreased from 

0.17 to 0.12. Similarly, the standard deviation of F1-Scores 

decreased from 0.20 to 0.14. This indicates that there is less 

variability in the expected post-treatment performance of all 

DL algorithms. 

3) Outliers were noted in the results, which are clearly 

illustrated in Fig. 6. These arose from the VGG16 and VGG19 

models which were trained on Dataset 1 and displayed inferior 

performance to the other models studied. Upon investigation, 

this has been attributed to the dimensionality mismatch 

between Dataset 1 images (96×96 pixels) and the input 

dimensions defined by the VGG16 and VGG19 architectures 

(224×224). While the application of DA techniques has shown 

the greatest improvement to these models, the post-treatment 

performance is still low compared to the other models studied. 

It is thus concluded that the VGG models are not suitable for 

Dataset 1, and in practice, should not be used with low-

resolution cameras that produce smaller video frames/images. 
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TABLE VI.  PRE-TREATMENT AND POST-TREATMENT EVALUATION METRICS (ACCURACY, RECALL AND SPECIFICITY) 

Algorithm Dataset 
Accuracy Score Recall Specificity 

Pre-treatment Post-treatment Pre-treatment Post-treatment Pre-treatment Post-treatment 

CNN-C1 
1 93.8% 97.6% 100% 100% 88% 96% 

2 96.5% 97.9% 94% 99% 99% 97% 

VGG19 
1 47.6% 60.8% 24% 28% 71% 93% 

2 82.4% 95.8% 65% 94% 100% 98% 

VGG16 
1 50.4% 67.8% 10% 44% 91% 91% 

2 93.1% 95.2% 88% 92% 98% 99% 

CNN-C2 
1 91.4% 96.2% 100% 97% 83% 97% 

2 95.9% 96.9% 93% 94% 99% 100% 

GAN 
1 95.4% 97.0% 100% 100% 91% 94% 

2 96.2% 97.2% 97% 97% 95% 98% 

MLP 
1 91.8% 93.8% 100% 93% 84% 94% 

2 82.1% 93.4% 97% 90% 67% 97% 

TABLE VII.  PRE-TREATMENT AND POST-TREATMENT EVALUATION METRICS (PRECISION, NEGATIVE CLASS PRECISION AND F1-SCORE)

Algorithm Dataset 
Precision Neg. Class Precision F1-Score 

Pre-treatment Post-treatment Pre-treatment Post-treatment Pre-treatment Post-treatment 

CNN-C1 
1 89% 96% 100% 100% 94% 98% 

2 99% 97% 95% 99% 97% 98% 

VGG19 
1 45% 81% 48% 57% 31% 61% 

2 100% 98% 74% 94% 82% 96% 

VGG16 
1 52% 83% 50% 62% 50% 58% 

2 98% 99% 89% 92% 93% 95% 

CNN-C2 
1 85% 96% 100% 97% 91% 96% 

2 99% 100% 93% 94% 96% 97% 

GAN 
1 92% 94% 100% 100% 95% 97% 

2 95% 98% 97% 97% 96% 97% 

MLP 
1 86% 94% 100% 93% 92% 94% 

2 75% 96% 96% 91% 82% 93% 
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TABLE VIII.  DESCRIPTIVE STATISTICS OF EVALUATION METRICS 

`   Accuracy Score Recall Specificity Precision 
Neg. Class 

Precision 
F1-Score 

Mean 
Pre-Treatment 85% 81% 89% 85% 87% 83% 

Post-Treatment 91% 86% 96% 94% 90% 90% 

First Quartile 
Pre-Treatment 82% 82% 84% 83% 85% 82% 

Post-Treatment 94% 92% 94% 94% 92% 94% 

Median 
Pre-Treatment 92% 96% 91% 91% 96% 93% 

Post-Treatment 96% 94% 97% 96% 94% 96% 

Third Quartile 
Pre-Treatment 96% 100% 98% 98% 100% 95% 

Post-Treatment 97% 98% 98% 98% 98% 97% 

IQR 
Pre-Treatment 13% 18% 15% 16% 15% 13% 

Post-Treatment 3% 6% 4% 4% 6% 3% 

Standard 

Deviation 

Pre-Treatment 0.17 0.30 0.10 0.18 0.18 0.20 

Post-Treatment 0.12 0.23 0.03 0.06 0.14 0.14 

TABLE IX.  EFFECT OF TREATMENT ON EVALUATION METRICS 

Algorithm Dataset 
Accuracy 

Change 

Recall 

Change 

Specificity 

Change 

Precision 

Change 

Neg. Class Precision 

Change 

F1-Score 

Change 

CNN-C1 
1 +3.8% 0%  +8% +7% 0% +4% 

2 +1.4% +5% -2% -2% +4% +1% 

VGG19 
1 +13.2% +4% +22% +36% +9% +30% 

2 +13.4% +29% -2% -2% +20% +14% 

VGG16 
1 +17.4% +34% 0% +31% +12% +8% 

2 +2.1% +4% +1% +1% +3% +2% 

CNN-C2 
1 +4.8% -3% +14% +11% -3% +5% 

2 +1.0% +1% +1% +1% +1% +1% 

GAN 
1 +1.6% 0% +3% +2% 0% +2% 

2 +1.0% 0% +3% +3% 0% +1% 

MLP 
1 +2.0% -7% +10% +8% -7% +2% 

2 +11.4% -7% +30% +21% -5% +11% 

Average +6.1% +5.0% +7.3% +9.8% +2.8% +6.8% 
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Fig. 6. Statistical distribution of pre-treatment and post-treatment evaluation metrics 

TABLE X.  EFFECT OF TREATMENT ON EVALUATION METRICS – OUTLIERS REMOVED 

Algorithm Dataset 
Accuracy 

Change 

Recall 

Change 
Specificity Change 

Precision 

Change 

Neg. Class Precision 

Change 

F1 Score 

Change 

CNN-C1 
1 +3.8% 0% +8% +7% 0% +4% 

2 +1.4% +5% -2% -2% +4% +1% 

VGG19 2 +13.4% +29% -2% -2% +20% +14% 

VGG16 2 +2.1% +4% +1% +1% +3% +2% 

CNN-C2 
1 +4.8% -3% +14% +11% -3% +5% 

2 +1.0% +1% +1% +1% +1% +1% 

GAN 
1 +1.6% 0% +3% +2% 0% +2% 

2 +1.0% 0% +3% +3% 0% +1% 

MLP 
1 +2.0% -7% +10% +8% -7% +2% 

2 +11.4% -7% +30% +21% -5% +11% 

Average +4.3% +2.2% +6.6% +5.0% +1.3% +4.3% 

 
Fig. 7. Statistical distribution of change in evaluation metric scores
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Having confirmed the hypothesis that the DA techniques 
that were applied have improved the performance of the DL 
models studied, the next step was to attempt to quantify the 
extent of this improvement. The VGG16 and VGG19 models 
trained on Dataset 1 were excluded from this analysis due to 
their poor performance, as discussed previously. Table X 
presents the change in evaluation metrics due to the application 
of DA with these models removed. The statistical distribution 
of the data presented in Table X is illustrated in Fig. 7. 

When analyzing the results, the following was observed: 

1) A few instances were observed where applying DA 

treatment caused a reduction in individual evaluation metrics 

(recall, precision, specificity and negative class precision), as 

indicated by shaded backgrounds within Table X. However, 

despite this, the F1-Score increased for all models, indicating 

that these performance reductions were compensated for. The 

average increase in both accuracy and F1-Score was +4.3%, 

and the median increase in each of these metrics were +2.1% 

(accuracy) and +2.0% (F1-Score). 

2) The box-and-whisker diagrams in Fig. 7 indicated that 

there is significantly more variability for recall, specificity, 

precision and negative-class precision than for accuracy and 

F1-Scores. As such, attempts at quantifying the expected 

improvement in DL model performance using the methods in 

this study can only reasonable be performed for accuracy and 

F1-Score. However, these are the most conclusive metrics to 

evaluate the DL models studied. 

3) By analyzing the distribution of the change in accuracy 

and F1-Scores, it was observed that the data for these 

evaluation metrics was positively skewed. This resulted from 

the high pre-treatment accuracy scores and F1-Scores of some 

of the DL models studied, where there was not much room for 

improvement without over-fitting the model to the training 

dataset. 
Prompted by the final observation listed above, the final 

analysis investigated the relationship between the change in 
evaluation metric scores and pre-treatment metric scores. The 
scatterplot presented in Fig. 8 illustrates this relationship, using 
data from Table VI, Table VII and Table X and excluding the 
outlier results resulting from the VGG16 and VGG19 models 
that were trained on Dataset 1. The trend lines show that all 
evaluation metrics exhibited a strong negative correlation, 
indicated by the R2 values of the correlation trend lines (R2 > 
0.7 for all evaluation metrics). From this, it is concluded that 
the DA techniques under study have a marginal improvement 
when applied to DL models that already exhibit strong 
performance, but are much more powerful in enhancing 
weaker-performing DL models. From Fig. 8, an improvement 

of ≥  +5% to an evaluation metric occurs when the pre-

treatment value of the metric is ≤ 90%. This indicates the type 

of DL models for driver drowsiness detection that will benefit 
most from the DA techniques presented in this study, and is 
recommended to developers as a design guideline when 
considering the implementation of the DA techniques 
presented in this paper. 

 

Fig. 8. Relationship between pre-treatment evaluation metric score and change in evaluation metric score 

  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 1, 2023 

246 | P a g e  

www.ijacsa.thesai.org 

The results confirm that by modelling real-world scenarios 
using the data augmentation techniques described in 
Section II.B.2, it is possible to train more robust deep learning 
algorithms that perform driver drowsiness detection. With 
respect to implementation of driver drowsiness detection 
systems, the deep learning model development and training 
would be performed before the model is deployed in the driver 
drowsiness detection system hardware. 

V. CONCLUSION 

Many road accidents are caused by driver drowsiness. 
Previous studies have considered applying deep learning 
techniques to detect driver drowsiness and improve road traffic 
safety. In practically testing their systems, many previous 
studies have indicated that real-world scenarios such as 
unfavourable ambient lighting and movement of the driver 
while driving cause inaccuracies when detecting driver 
drowsiness. 

In this study, the authors focussed on the deep learning 
algorithms that determine driver drowsiness based on the eye 
state of the driver. It was hypothesised that by modelling the 
real-world scenarios and using data augmentation techniques 
on a standardised image dataset, the performance of the DL 
models would improve. This study considered two different 
datasets, six different DL models: two CNN variations (CNN-
C1 and CNN-C2), two architectures designed by the VGG 
(VGG16 and VGG19), a GAN and an MLP. 

The performance of the DL models was evaluated primarily 
using accuracy and F1-Score, although other metrics such as 
precision, recall, specificity and negative class precision were 
also considered. In analyzing the results in aggregation, 
improvements across all metrics were noted. The average 
improvement in accuracy across all DL models was +6.1% and 
the average improvement in F1-Score was 6.8%, and the 
variability in model performance was reduced. However, there 
were some challenges noted when training the VGG models. 
These models trained on low-resolution images, exhibited poor 
performance and distorted these results. A more realistic 
indication of the benefits of DA for the DL models studied was 
obtained by excluding these outliers, yielding an average 
improvement of +4.3% for both accuracy and F1-Score. 

The results further indicated that the extent to which the 
DA techniques studied improve DL model performance is 
strongly correlated with the pre-treatment DL model 
performance. From the analysis conducted, the data 
augmentation techniques presented are best suited for 

improving models with accuracy and F1-Scores ≤  90% - 

although they are applicable to any DL model for driver 
drowsiness detection. 

It was thus concluded that the use of DA techniques 
improves the performance of DL models for driver drowsiness 
detection under the isolated conditions of this study. However, 
since the conditions of this study focussed on testing the DL 
models on images from datasets, rather than testing being done 
on captured data from a real-world driver drowsiness detection 
system, this opens the possibility for future research. Future 
works should look at implementing the trained DL models 

proposed in this study in practical driver drowsiness detection 
systems to validate these results. 
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