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Abstract—In epidemiological research on spine surgery, 

machine learning represents a promising new area. It is made up 

of several algorithms that work together to identify patterns in 

the data. Machine learning provides many benefits over 

traditional regression techniques, including a lower necessity for 

a priori predictor information and a higher capacity for 

managing huge datasets. Recent research has made significant 

progress toward using machine learning more effectively in 

spinal cord injury (SCI). Machine learning algorithms are 

employed to analyze non-traumatic and traumatic spinal cord 

injuries. Non-traumatic spinal cord injuries often reflect 

degenerative spine conditions that cause spinal cord compression, 

such as degenerative cervical myelopathy. This article proposes a 

novel correlated graph model (CGM) that adopts correlated 

learning to predict various outcomes published in traumatic and 

non-traumatic SCI. In the studies mentioned, machine learning is 

used for several purposes, including imaging analysis and 

epidemiological data set prediction. We discuss how these clinical 

predictive models are based on machine learning compared to 

traditional statistical prediction models. Finally, we outline the 

actions that must be taken in the future for machine learning to 

be a more prevalent statistical analysis method in SCI. 

Keywords—Spinal cord injury; regression; machine learning; 

graph model 

I. INTRODUCTION 

Movement and sensory impulses from the spinal cord, 
peripheral nerve system, and brain (SC) are key conducts. The 
nervous system is made of SC and the brain. It has a tubular 
structure and grey and white matter, including spinal tracks 
(the bodies of neurons) [1]. SCI is due to the damage in the 
spinal tracks while carrying information, and damage in the 
motor and nervous systems results in [2]. Patients may 
experience paralysis or have their organs cease working 
properly due to an SCI. We can evaluate SCI patients more 
precisely because of the motor and sensory ratings provided 
by the International Standards for Neurological Classification 
of Spinal Cord Injury (ISNCSCI). American Spinal Injury 
Association (ASIA) created these scores, which have since 
been modified multiple times [3]. They are crucial for 
determining a patient's SCI sufferer's prognosis in a 
therapeutic rehabilitation program since they are connected 
with functional status [4]. For a reliable diagnosis of SCIs, 
clinical evaluation based on ISNCSCI scores has limitations. 

It relies on the patient's input, which is subjective and 
ambiguous when there is concurrent damage to other organs 
[5]. 

For the diagnosis of SCI, conventional MRI is frequently 
employed. A medical imaging technique called MRI creates 
detailed macroscopic images of organs and tissues. It uses a 
striking image (black & white) to discriminate between hard 
and soft tissues [6]. Modern technology called Diffusion 
Tensor Imaging (DTI) employs echo-planar MRI data. Using 
the tissue's architecture and structure, it monitors the 
movement via the SC and brain tissue, water molecules [7]. 
DTI is used to study pathological conditions and disorders 
such as multiple sclerosis, hypertensive encephalopathy, and 
brain tumours. It gives quantitative data on the size and 
placement of a three-dimensional (3D) space containing each 
tissue. Diffusion anisotropy is the word used for this. 
Numerous floating diffusion ellipsoids make up the diffusion 
tensor [8]. Each diffusion ellipsoid's orientation is specified by 
a group of vectors that indicate orientation, often called 
eigenvectors. A distinct outcome matching an eigenvalue is 
produced when an eigenvector's length or direction is altered. 
DTI allows for the expression of diffusion anisotropy as 
fractional anisotropy (FA) [9]. FA, which has a scale from 0 to 
1, is frequently used to determine the degree of fibre integrity 
since it is sensitive to the number of directionally directed 
fibres per voxel. Water diffusion anisotropy is measured by 
the FA value, with a higher degree indicated by a higher FA 
value [10]. In this research, we provide a brand-new Machine 
learning-based SC analysis technique. One of the main 
professionals in diagnosing SCI is [11]. Currently, choices are 
made using human specialists' analysis of FA values and DTI 
pictures. If we can provide them with more factual data, they 
will be able to diagnose more precisely. Classification systems 
are used in machine learning to make predictions or diagnose 
problems [12] – [13]. However, classification jobs call for 
training data. We create a training dataset for our method 
utilizing four FA values from patient and healthy control slice 
images. The base dataset is then expanded to 15 features 
present in a dataset with more dimensions, and the intended 
dataset is abstracted to increase classification precision [14]. 
Prediction accuracy for the generated dataset is higher than 
90%. Our two contributions are using a classification 
technique to predict SCIs and creating a training set of images 
produced by the DTI. The data connected to a specific person 
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is more than 200 MB [15]. There is a huge challenging factor 
to employ in computer-aided diagnosis; raw data is large. The 
major research challenge is the complexity in accurate 
prediction of spinal cord injury using least sample dataset. 
Some existing machine learning approaches fail to give better 
accuracy due to lesser number of samples. However, this can 
be resolved using the advanced learning approaches. This 
motivates to adopt a novel learning approach for predicting 
accurate spinal cord injury and to enhance the accuracy with 
available samples. In our plan, we take the raw DTI data and 
extract meaningful numerical information that we 
subsequently use for diagnosis. Any field in which DTI is 
used for diagnosis can use our method. This work intends to 
validate the efficiency of the anticipated CGM and explores 
the prediction ability with the construction of SCI-based 
functional connectivity. Here, the behavioural relationship 
between the injury regions is analyzed from the available 
online dataset. The proposed CGM constructs the connectivity 
pattern among the injured region to predict the differences 
from other regions. The experimental outcomes demonstrate 
that the anticipated CGM-based prediction model outperforms 
the overall approach significantly. The model is more reliable 
and stronger in its prediction nature. 

The work is organized as follows: Section II offers a 
comprehensive analysis of prevailing approaches; Section III 
gives a detailed analysis of the proposed graph-based model 
and correlation analysis. In Section IV, the numerical analysis 
of the anticipated model is provided, and the results are 
discussed. The summary is provided in Section V. 

II. RELATED WORKS 

Machine learning is a broad field that primarily applies 
computing models to many real-world situations. The primary 
objective of machine learning relies on the development of 
algorithms using information from a database. Recognition, 
diagnostics, planning, robot control, and prediction are tasks 
that can be accomplished when it is employed. Additionally, it 
can use machine learning to analyze neuroimaging data and 
predict tissue toxicity [16]. Both tasks use pattern recognition 
which requires the identification of numerous important 
variables. Nowadays, enormous data is employed by the 
researchers that must be managed, analyzed and used. Large 
amounts of data may conceal significant linkages and 
correlations that are uncovered via machine learning. It 
enhances the effectiveness of systems and machine design. 
Medical image analysis, lesion segmentation, and computer-
aided diagnosis have turned as key application areas for 
machine learning. 

In biological studies, classification is a major task where 
machine learning is crucial to the classification process. With 
well-known dataset, unknown sample data can be predicted 
using machine learning. It can distinguish two or more 
disparate items, combine related objects, or divide different 
objects. During the classification process, objects are 
categorized based on their unique characteristics and each 
item is given a class name to indicate the specific category to 
which it belongs ("patient," "normal‖) [17]. Predictions are 
made using training and testing of unlabelled data. Test 
dataset contains unidentified sample that are required to 

establish the class label and the performance of the training 
dataset is evaluated. Two popular categorization methods are 
k-NN and SVM). K-NN is based on instances of feature-space 
classifiers that select the most nearby data points for 
classification choices. 

The numbers of characteristics are redundant and 
irrelevant while classification accuracy is preserved by feature 
selection. Statistical ML is widely utilized before 
classification and creates a powerful and stable predictor. In 
addition to noisy data, feature selection manages exceedingly 
big datasets. Feature selection makes classification faster and 
efficient by reducing the dimensions of the data. Feature 
selection methods like Clearness-Based Feature Selection 
(CBFS), Features selection based on a distance discriminant 
(FSDD), R-value-based Feature Selection (RFS), ReliefF, and 
CBFS are some examples of feature selection. R-value [18], is 
a statistic for measuring the region of overlap between classes 
in a feature. Identifying traits that promote effective class 
separability across classes and maximizing the proximity of 
samples within the same classes form the basis of the FSDD 
method. ReliefF is one of the most effective feature selection 
methods. The concept is to estimate feature weights iteratively 
based on how well they can distinguish between nearby 
examples. Based on "CScore" metrics, CBFS is an excellent 
feature selection technique. Many samples were located in the 
right class region was determined by the score presents an 
alternative feature selection approach based on the Lasso. This 
method establishes a scoring system to determine the "quality" 
of each distinct feature. Several samples are created using 
training data and then high-relevance feature orderings are 
chosen for each sample. Finally, highly relevant properties are 
integrated. This study use selection of features to assess each 
feature's discriminative power and identify the most distinct 
feature subset [19] – [20]. 

Sagittal and axial panels have undergone T1- and T2-
weighted imaging to assess SCI separately. Clinical evaluation 
is performed to gauge neurological damage and its seriousness 
was measured using MRI technology. The signal change level 
and clinical outcomes were linked [21]. We automatically 
applied classification technique to distinguish patient image 
slices. The system quickly and accurately produces outcomes 
and integrates algorithms easily. A key indicator of a 
prediction quality is classification accuracy. Many academics 
have tried to increase classification accuracy through 
algorithm or dataset improvements. Obtaining FA values from 
DTI is to help people find the impacted area. Human experts 
heavily rely on the personal knowledge they have gained from 
earlier assessments of T1- or T2-weighted pictures, even 
though FA value validates SCI. An automated system can 
identify SCI to diagnose the condition of the affected area and 
offer pertinent data would be beneficial [22]. 

Since there is currently no cure for SCI, individuals with 
motor-related injuries have little chance of sustaining 
voluntary movement recovery over the long term (more than a 
year after the injury) [23]. There is growing evidence that 
neuro-modulation may be viable for chronic and persistent 
SCI based on recent reports of effective partial functional 
recovery. [24]. Even with these positive case studies and 
series, there are still a lot of problems to be fixed before a 
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conclusive clinical trial. The ability to customize each patient's 
spatial and temporal neuro-modulation has increased with the 
technological advancements in implantable neuro-modulation 
platforms. However, large, high dimensional flexibility 
necessitates effective algorithmic optimization customized to 
each patient's unique pathologies and underlying physiologic 
system. 

Based on simulation conditions, research using animal 
models has shown huge responses in voluntary movement. 
Further evidence of this variance was found in human models, 
necessitating the spatiotemporal adjustment of eSCS-
customized patient-specific characteristics [25]. It is crucial to 
find the optimal parameters because the heterogeneity of SCIs 
may cause the observed variation in response to the 
stimulation parameters. A reliable system for choosing the 
best settings must be created for electrical stimulation therapy 
because there are trillions of potential configurations for 16-
lead paddle. Some studies are currently available on eSCS 
optimization techniques for causing volitional movement after 
cSCI. The majority of research uses animal models, and 
various teams make use of various optimization strategies. To 
identify the spinal circuits and fibres drawn by eSCS, the 
author developed computer model that merged 3D finite 
element approach with rat spinal cord model. The ideal 
parameters for standing and walking rats are predicted using 
different electrode configurations. Specific muscle responses 
to be evaluated by electromyography (EMG) in spinally trans-
insected rats were chosen by bipolar stimuli based on 
Bayesian optimization [26]. Another animal experiment 
focused on enhancing stepping by adjusting stimulus intensity, 
the time between pulses and strength. Some staff members 
determined the ideal frequency and intensity subjectively. 
Then, kinematic data, EMG, and various stimulation pulse 
intervals were used to re-evaluate these parameters. To find 
the best parameter combinations, one study used 3D kinematic 
data recorders and quantitative gait characteristics [27] – [28]. 

Even less research has been done on enhancing stimulation 
in human model systems than in animal models. Various 
optimization goals and techniques have been tested in various 
investigations. A map of each participant's motor neuron 
activation was produced to identify where the spinal cord was 
engaged during particular muscle movements. Using 
computerized model, the best electrode combinations were 
identified through simulations [29]. EMG mapping data has 
also chosen [30]. The limitations of current optimization 
approaches make it evident that all-encompassing strategy for 
choosing the best model for SCI prediction. The major 
research gap is a lack of proper methodology for feature 
selection and classification even with small datasets. This may 
leads to poor prediction outcomes. Therefore, this research 
concentrates on modelling an efficient approach for 
prediction. 

III. METHODOLOGY 

This section gives a detailed explanation of the proposed 
model for soft tissue prediction using learning concepts. We 
initially provide a brief overview of a few terminologies, and 
there are some definitions of graphs and graph signals. Using 
SVR, it is then determined how the FC patterns relate to the 

appropriate behavioural measure; refer to the framework in 
Fig. 1. Next, we build FC patterns using the spinal image and 
our correlated graph model (CGM). Finally, we use simulated 
data to validate the proposed CGM. 

 

Fig. 1. Framework on a predictive model. 

A. Graph model 

Consider the FCN to be an undirected, linked, weighted 
graph. Let's build a graph with          where    

            is a collection of   nodes (ROIs) and   

[   ]     
 

       is a weighted adjacency matrix that is 

symmetric (and frequently sparse), with        representing 

the degree of similarity between the nodes. The degree matrix 
generated by the diagonal matrix with its diagonal       , 

       member      ∑    
 
    is referred to as the 

"Laplacian matrix." 

        (1) 

 As a result, we use either the Laplacian matrix,   or the 
weighted adjacency matrix of graph    which may uniquely 
describe the underlying graph, to define the    pattern 
quantitatively. With   [             ]

     ,   be a 
signal on the graph   that links value-based feature selection 
and features selected using a distance discriminant, overall 
variability about the Laplacian matrix L as depicted in Eq. (2): 

      
 

 
 ∑    (     )

 
    (2) 

The smoothness of the graph-wide variation of a graph 
signal measures the size of the change. Given that nodes with 
high edge weights are densely coupled, it makes sense that 
when     is sizable, the gap between    and    will also be 

narrow. As a result, many machine learning methods like 
graph regularization and transductive learning have 
successfully used this graph smoothness notation. According 
to the perspective of graph signal processing, by utilizing the 
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graph frequencies provided by the eigenvalues to define 
different degrees of graph signal smoothness, the eigenvectors 
of   offer Fourier transform for graph signals. The    pattern 
in this work was different from the    pattern predicted by 
our CGM due to the magnitude of squared spectral coherences 
among the time courses of paired ROIs and the examination of 
brain signals related to diverse graph frequencies. 

B. Correlation Analysis 

Consider that   training subjects are present. In the image 

courses, let      [  
      

        
   ]

 
       Assume there 

are   training participants with     subject       where 

  
   
     specifies the ROI in         subject and   

represents the number of ROI. Let            specify the 

subjects' measure. Consider      is normalized to pose zero 
mean and unit normalization. The Pearson’s correlation 

matrices                 for all individuals,     
   

 

specifies correlation coefficient among     and     ROI in the 

    individual, i.e. 

   
   
         

      
      (3) 

The behavioural measure is then coupled with Pearson 
correlation matrices; correlation matrices        and 

        correspond to each between-ROI correlation 
coefficient. 

                 (4) 

Where   refers correlation coefficient across all people, 

     [   
       

         
   ]

 
    is the         among ROI 

correlation coefficient and   [          ]
     is the 

behavioural measure. Then, we choose the significant 
correlation coefficients in   from the   value matrix   that 
are associated with the behavioural measure using a certain 
threshold. Thus, the matrix        is expressed as: 

     {
          

     
  (5) 

With the label information of the subjects, we can 
drastically reduce the amount of redundant or irrelevant    
characteristics by employing matrix   as a guide for learning 
the    pattern. To estimate the    pattern, the CGM 
technique, in addition to the conventional following, is the 
graph learning technique: 

    ̃       (( 
   )

 
 ( ̃      )    )    || ̃       ||

 

 

  (6) 

  ( ̃      )     (7) 

( ̃      )
  
  (( ̃      )

  
)        (8) 

(( ̃      ))          (9) 

Here,         ̃       and   refer graph's Laplacian 
matrix (FC pattern), where   is computed with Eq. (5),      
refers to the positive regularization parameter and       and 
  specifies matrix norm and element-wise product 
respectively. The CGM transforms into the conventional graph 

learning methodology when the threshold is   or there is no 
correlation guidance, as in Eq. (6), where the matrix    
     . 

It is important to note that by minimizing their fluctuations 
on the learnt graph, the first component of the goal of Eq. () is 
to match the observed spinal cord injury image with the 
learned graph. The second term helps to further eliminate 

duplicate    characteristics by regulating the sparsity of      
as denser as is greater and vice versa. Additionally, the second 
and third conditions are included to guarantee that the first 

restriction is imposed as normalization and learned      refers 
to a legitimate positive semidefinite Laplacian matrix. There is 
a safeguard against trivial solutions. Cross-validation will be 
utilized to identify the hyper-parameter     . 

To create subject-specific    patterns that reflect a 
common template matrix  , the CGM was constructed in Eq. 
() for both the link between      and the graph organization 
between ROIs. Specifically, by obtaining the        
    learned Laplacian      matrices, we use graph-weighted 
matrices      for            to reflect    patterns of   
individuals by applying the convex optimization. The vector 
length          represents the FC features of          
individual produced by triangle     symmetric section. 

From these results, the     successfully recovers     
patterns that have more power to discriminate between people, 
as they are intrinsically relevant to the targeted behavioural 
measure suggesting the superior performance of behavioural 
prediction. Therefore, we do a regression analysis to 
determine how the generated    patterns relate to each other 
using linear     with default settings and the behavioural 
measure in this work to verify the efficacy of the suggested 
CGM. Fig. 1 is used to train a prediction model. To further 
clarify how subjects are split into training and test sets, see 1 
for more information. After the test subjects' generated FC 
patterns are created, the training set's framework is fed into the 
trained predictive model to provide projected behavioural 
measures. Although there are many other regression models, 
the higher effectiveness of the recommended     for the 
optimal    pattern prediction is the focus of this study rather 
than the best regression model schemes. 

Concerning the simulated data           on        
node random weighted network, we verified the CGM made 
two processes to create the random graph. First, the graph's 
structure was created          probability connections 
between each pair of nodes, giving the linked edge between 
the two nodes a uniformly distributed random weight between 
         Then, a random multiplication of       matrix of the 
    zero-one template. With edge weights, the graph-
weighted matrix   was produced by linearly coupling the 
first four eigenvectors of Laplacian matrix    Here,         
graph signals are then produced as linear combinations of the 
eigenvectors (first four) of the graph Laplacian matrix  . 

   ∑     
 
      (10) 

Where    refers to an     eigenvector of   and    refers 
uniform random variable with [   ] range. We inferred the 
graph structure from these graph signals regarding the 
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different values of  , specifically the values of    
                      . We discovered that        
produced the highest level of performance as determined by 
the graph Laplacian matrix and Normalized Mutual 
Information (NMI) discovered during signal processing and 
the ground truth. The learned graph Laplacian matrices are 
shown in Fig. 2 for               , respectively. We used 
a separate zero-one template matrix   , which had 40 
randomly generated   elements to emphasize the significance 
of ensuring a CGM-acceptable zero-one template matrix. 

Comparing the NMI performance of the     with   and  ̂, 
we varied, as shown in Table I. 

TABLE I. TEMPLATE MATRIX 

                              

  0.50 0.37 0.61 0.71 0.51 0.48 

 ̂ 0.23 0.23 0.23 0.15 0.048 0.03 

 

Fig. 2. Matrix evaluation. 

IV. EXPERIMENTAL SETTINGS 

In our trials, we used state SCI data to predict various 
measures. Using a 5-fold CV, five times using SVR was used 
to predict individuals' behaviour using FC patterns derived 
from the CGM (with LIBSVM). The entire group of patients 
was divided into five roughly equal-sized disjoint subsets by 
chance; chose one subset at random as the test set, and the 
training set was used with the other four. 20 rounds of this 
process were performed to reduce how sample bias affects 
cross-validation (CV). The prediction performance (average) 
over all 20 iterations was reported using     fold CV. The 
hyper-parameter   was found by employing the grid search 
ranges from [        ] and the inner CV of the training set. 
The correlation between the anticipated and observed 
behavioural variables among people in the test set and Root 
Mean Square Error        were used to evaluate the 
prediction performance. The template matrix   was generated 
at a random significance level. To find the optimal threshold, 
with values of                            , we repeatedly 
examined five distinct   value criteria. 

A. Dataset 

The significance of MRI is to provide superior 
discriminate soft tissues, along with its capability to acquire 
heterogeneity and tumour changes. The available online 
dataset known as Cancer Imaging Archive is used in this 
research. The dataset comprises CT/PET/MRI scans of 51 
patients. Another dataset with 21 patients is also considered. 
Here, 11 pathologically verified Liposarcomas arise with the 
soft tissue, and 10 Leiomyosarcomas influence muscle cells. 
The cohort is composed of 9 females and 12 males with a 
duration of 31 months. Ground truth discriminating 
histopathological subtypes is definite. Tumours are localized 
in the pelvis, biceps, and thigh. Here, three different types of 
MRI are utilized for training T1-, T2-weighted fat-saturated, 
and short tau inversion recovery (STIR). With the T1 
sequences, the data acquisition is made of the axial plane, 
while STIR and T2FS are acquired in diverse orientations 
(coronal, sagittal, and axial). MRI scan with slice thickness is 
5.5 mm for T1 and 5 mm for T2-weighted fat saturated. The 
plane resolution is                 , and          for 
T2FS, T1, and STIR scans. 

B. Result Analysis 

It's important to remember that in the proposed CGM, the 
graph model is used to evaluate and identify functional 
linkages that we need to assess. A significance test is then 
performed on the degree to which these chosen linkages are 
connected and the between     correlation coefficients with 
the participant-wide behavioural measure of interest as in 
Fig. 3. Each behavioural measure shows the mean SCI 
functional network patterns among patients employing the 
related techniques separately. The    based    patterns are 
clear to see based on graph learning and are significantly 
denser than the FC patterns based on the graph model. The 
proposed model generates    patterns that are substantially 
less dense than those generated by the correlated graph model. 
The     based    patterns show greater variability in 
multiple functional connections, further reinforcing 
connectivity with high functionality strength and vice versa. It 
highlights    's usefulness and combines pair-wise 
correlation and graph learning. It assesses the prediction 
performance of the suggested model for each behavioural 
indicator in Table II and Table III. The recommended CGM 
had the best    and      based prediction performance. By 
contrasting these outcomes, we may demonstrate the 
suggested CGM's efficacy and efficiency based on its superior 
performance. To extract more discriminative    patterns for 
building    -behavior linkages, it may be advantageous to 
merge temporal correlation among ROIs with the graph 
structure across ROIs (GL) of CGM. 

We also looked into how the parameters in the suggested 
CGM affected the accuracy of behavioural prediction. First, 
the   value threshold used in the overall results of the CGM 
for each behavioural measure is impacted by the method used 
to construct the template matrix. The   value threshold 
determines how many functional connections in the CGM 
must be learned. With a lower   value threshold, The CGM's 
graph learning stage will accept fewer connections, indicating 
a more rigorous connection selection process. Except for 
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WRAT prediction, the   value threshold selection affects 
how well other predictions. Second, we directly computed the 
prediction results using a fixed and carefully chosen   value 
cutoff for creating the template matrix and 20 iterations of the 
5-fold cross-validation with various hyper-parameter values. It 
was done to investigate the CGM's sensitivity to the relevant 
regularization parameter    Fig. 4 presents the    results. We 
discovered that the results varied depending on the 
regularization parameter's value and obtained the best 
performance in each case. 

 

Fig. 3. ROI of SCI. 

TABLE II. CC AND RMSE COMPARISON 

Methods Behaviour             
RMSE 

(       ) 

CGM 

Injured 

                     

Type II Fuzzy 

with 

CNN+VGG-16 
                    

DRNN                     

NB                     

k-NN                      

PCA+NB                      

PCA + k-NN                      

PCA + SVM                      

TABLE III. ACCURACY DETECTION 

Methods 
Without 

Inclusion  
With Inclusion Average 

CGM 99% 100% 99.5% 

Type II Fuzzy 

with CNN+VGG-

16 

96.8% 100% 99% 

DRNN 96% 99% 98% 

NB 93% 100% 98% 

k-NN 93% 100% 98% 

PCA+NB 86% 78% 80% 

PCA + k-NN 90% 93% 92% 

PCA + SVM 86% 100% 96.5% 

 

Fig. 4. CC and RMSE comparison. 

 

Fig. 5. Validation of non-traumatic SCI. 

Finally, we evaluated the most distinctive biologically 
significant functional relationships that may be linked to these 
three behavioural characteristics using the FC patterns 
produced by the proposed CGM. As imaging biomarkers 
affect a person's variance in the mentioned behavioural 
assessments, the identified connections may be a supervised 
learning technique called the SVR assigns distinct attributes 
distinct weights to most closely mimic the response values in 
the training set. In this investigation, we emphasized the 
linkages to which the trained SVR gave more weight. Finally, 
using the    patterns produced by the proposed CGM, we 
independently explored the most discriminative functional 
links with hypothesized biological values associated with 
these three behavioural traits. Imaging biomarkers, which 
influence the individual variation, the relationships found may 
be employed in the aforementioned behavioural tests. Fig. 5 
and Fig. 6 depict the performance comparison of the proposed 
model. 

C. Discussion and Analysis 

In this study, we presented the CGM, which builds by 
considering the graph structure between ROIs, the relationship 
between ROIs at different times, more discriminating FC 
patterns, and constructing brain-behaviour correlations that 
have been discovered. The CGGL was then used to 
individually predict three behavioural measures of SCI data 
from the resting state using the publically available PNC 
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datasets. In prediction performance, this method outperformed 
competing    pattern estimating techniques. The CGM offers 
a potentially reliable and efficient solution for examining the 
connections between the brain and behaviour to estimate FC 
patterns. 

 

Fig. 6. Accuracy comparison. 

The    pattern generation methods based on deep learning 
have drawn more attention recently, largely because of the 
incredibly high prediction performance. Fundamentally, layer-
by-layer learning from SCI courses is the basis for deep 
learning-based    patterns, which typically have more 
complicated hidden information. On the other hand, deep 
learning techniques inevitably entail several variables. 
Substantial training datasets are frequently required to account 
for the weights and biases of the various layers and expensive 
computing power to optimize these parameters. However, 
with fewer parameters, our suggested technique can produce 
discriminative    patterns. In the case of small samples, this 
reduces the over-fitting issue and increases generalization 
capacity and effectiveness. Gaining an anatomical 
understanding of which functional relationships result in 
individual variation in the relevant behavioural measure was 
another goal of this investigation. 

V. CONCLUSION 

In this study, we introduced the CGM, a novel technique 
for creating spinal cord injury FC pattern patterns. The 
recommended CGM combines two widely utilized FC pattern 
analyses with graph learning and Pearson's correlation. Both 
the graph structure across ROIs and the relationship between 
ROI points and time were considered. As a result, the 
suggested CGM has a lot of promise for improving the 
generated FC patterns' prediction ability for establishing SC 
injury correlations and collecting insightful knowledge about 
the biological processes involved in the behavioural measures 
of interest. By independently predicting three behavioural 
variables, we assessed the effectiveness and efficiency of our 

suggested CGM using available data from the available 
sources. The experiment's findings supported the proposed 
CGM's superiority over other FC pattern estimating 
techniques which have broad implications in brain network 
analysis. In future, this study can be further extended with 
adoption of a novel optimization approach for attaining the 
global outcomes in terms of accuracy and prediction. Also, 
with the adoption of pre-trained model, the time complexity 
can be reduced effectually. 
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