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Abstract—Cloud computing has become a growing technology 

and has received wide acceptance in the scientific community and 

large organizations like government and industry. Due to the 

highly complex nature of VM virtualization, lightweight 

containers have gained wide popularity, and techniques to 

provision the resources to these containers have drawn 

researchers towards themselves. The models or algorithms that 

provide dynamic scalability which meets the demand of high 

performance and QoS utilizing the minimum number of 

resources for the containerized cloud have been lacking in the 

literature. The dynamic scalability facilitates the cloud services in 

offering timely, on-demand, and computing resources having the 

characteristic of dynamic adjustment to the end users. The 

manuscript has presented a technique which has exploited the 

queuing model to perform the dynamic scalability and scale the 

virtual resources of the containers while reducing the finances 

and meeting up the user’s Service Level Agreement (SLA). The 

paper aims in improving the usage of virtual resources and 

satisfy the SLA requirements in terms of response time, drop 

rate, system throughput, and the number of containers. The 

work has been simulated using Cloudsim and has been compared 

with the existing work and the analysis has shown that the 

proposed work has performed better. 
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I. INTRODUCTION 

Cloud computing has evolved into a highly dynamic 
computing model. It has gained attraction from various 
organizations due to its cost, availability, scalability, and 
security. It is an internet-based computing technology that 
provides higher-end computation and a shared pool of 
resources which are accessible on demand [1]. It has 
revolutionized the internet world through its hosting services 
and computational ability. Its unique technology has 
facilitated the user to pay for only those services and resources 
which have been demanded by them and further these 
resources can be increased and decreased depending upon the 
requirement. The potential and high capabilities have led to 
amplified productivity with reduced costs and flexibility as 
against the other IT industries [2]. The prime technology 
working behind the cloud is virtualization which enabled the 
cloud to instantiate various Virtual Machines (VMs) on one 
single physical machine (PM). Virtualization can occur at 
various levels like desktop, network, storage, and application 
[3]. It can affirm high performance, confidentiality, reliability, 
and security among VMs. One VM is isolated from the other 
VM on the same PM making it securely isolated. Despite 
various benefits exhibited through virtualization, applications 
demanding less isolation and maximum flexibility at runtime, 

VM virtualization may not be sufficient enough to satisfy all 
the QoS standards [4].  The container-based virtualization is 
gaining more popularity these days because of the more 
dynamic and flexible nature of the workload which varies 
highly with time. It expedites the seamless movement of 
applications from one architecture to another as against the 
VMs virtualization. Container executes on a kernel with the 
equivalent performance as VMs but with lesser cost than 
expensive VM runtime management overhead [5]. Containers 
provide a good platform to execute microservices on the cloud 
and they provide good support for the technologies such as fog 
computing, and the Internet of Things (IoT) [6].  As container 
technology gained popularity various large-scale IT industries 
providing cloud services have come up with their container-
based cloud services. 

The most renowned service models available in the cloud 
are Infrastructure as a Service (IaaS), Platform as a Service 
(PaaS), and Software as a Service (SaaS) with various energy 
efficient datacenters (DC) which are solely responsible for 
managing the scalability through resource management and 
load optimization [7]. With the PaaS service, the users can 
deploy any applications on the cloud. This model encapsulates 
the underlying infrastructure and facilitates the user to deploy 
the applications anywhere without giving a single thought 
about infrastructure management. One of the components of 
the PaaS service is containers and they are its enablers [8]. So, 
a user application can be deployed on a single cloud 
infrastructure as a unique block or deployed separately in 
different cloud infrastructures. 

The key characteristic of the cloud to scale up has attracted 
a lot of users. The variation and fluctuation in workload have 
compelled the cloud providers to scale up the resources (VMs 
or containers) dynamically as per the requirement. The cloud 
has eased the process of obtaining and releasing resources but 
it can be challenging to decide how many resources are 
needed to handle a fluctuating workload. There is an urgent 
demand for a model which can provision and de-provision the 
resources dynamically at the burst of demands.  Despite the 
development of container technology and harassing its 
potential, there is still room for the improvement in dynamic 
scaling of cloud resources. Insufficient scalability which is not 
competent enough to confront the variation in the workload 
intensity may lead to under-provisioning (UP) or over-
provisioning (OP) of the resources. In the UP scenario, the 
performance of the cloud degrades and SLA is violated. While 
in OP there is low consumption of resources that are allocated 
resulting in a higher cost for the providers. As a result, in 
response to dynamic changes in the global arrival rate during 
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runtime, adaptation mechanisms are coveted for polished 
dynamic scalability. Appropriate dynamic scalability is the 
demand of the time and it affirms the performance of the SLA 
while making the cost low. An efficient technique for dynamic 
scalability is required for fulfilling the requirement of both the 
users and CSP. 

This work has proposed a dynamic scaling approach for 
the containerized cloud. The approach enables us to acquire 
the dynamic and scalable nature of cloud computing and 
analyze its efficaciousness. The model tries to estimate the 
future resource demand and provision the resources in a 
dynamic way for mitigating the SLA violation and reducing 
the cost incurred by the system. The work is simulated in 
Cloudsim and the work is evaluated under the various quantity 
of workload. The main contribution of the paper goes as: 

 A queuing model is proposed to estimate and acquire 
the behavior of containerized DC. 

 The load balancer model and container model are 
discussed. 

 The mathematical formulation has been derived from 
the analytical model for various QoS measures. 

 Simulation of the work is performed on Cloudsim. 

The remaining paper is compiled as follows: the literature 
study associated with the work is done in Section II. The 
proposed work is discussed in Section III. Section IV performs 
the results and discussion and lastly, the work is concluded in 
Section V. 

II. RELATED WORK 

Containerization is not a novice concept of computer 
science. It was existing back in 1972 on Linux or Unix 
systems in different ways [9]. It aided the developer in 
providing an efficacious programming environment which has 
a quite reduced operational cost. Docker has adopted container 
technology and led to the start of open containers in the 
industries like Google, Microsoft, and many more and it is 
getting popularity day by day due to its isolation strategy. 
Fig. 1 describes the container in the cloud system with its 
private OS, interface, and file system. Cloud containers 
provide a thin encapsulation over the application so its 
deployment is relatively easier and faster. Initially, it started 
with the VMs which are light. These technologies possessed 
an isolated OS on which the application can be deployed [10]. 
Containers have several benefits over VMs [11]. Firstly, 
compared to virtual machines, containers use host system 
resources far more efficiently. Second, starting and stopping 
the containers only takes a minute time. Next, the mobility 
container prevents inter-system dependency conflict and 
guarantees its separate functioning from the system on which 
it is hosted. Fourth, unlike VMs, which are frequently not 
distributed production environments, containers possess the 
feature of being exceedingly lightweight, enabling end users 
to operate dozens or more of them simultaneously. Fifth, 
instead of having to go through hours-long installation and 
configuration hassles, end users of apps can instantly 
download and run sophisticated software. Additionally, unlike 
virtual machines (VMs), which strive to virtualize an external 

environment, a container's primary goal is to make an 
application fully portable and independent [12]. 

The containerized cloud is emerging as one of the most 
challenging issues over the past few years and a lot of work 
has been published in this regard. This section studies the 
relevant work associated with the scalability and performance 
of container-based cloud models. Some study is associated 
with scalability to provide better insight into scalability and 
some shows the scalability in container clouds. 

 
Fig. 1. Container structure. 

Scalability has once been qualified as the key feature 
contributing to the efficient working of cloud-based services. 
A deep scaling methodology has been introduced in [13] 
where three components have been included for effective 
resource utilization. First, it forecasted the workload then it 
mapped the workload intensity to the approximated CPU 
utilization and lastly, an auto scale method is developed for 
maximizing the CPU utilization. A proactive elastic model 
was defined in [14] which resolved the scalability issues in 
cloud-based IoT systems. It utilizes the ant colony 
optimization technique along with the Markov chain for 
scheduling the resources efficiently which enhances the 
performance and maintains the QoS measures. It improved the 
response time and request throughput. A benchmarking 
method is proposed that defined a framework for scalability 
benchmarking tools for quantifying the scalability. It included 
the scalability metrics and measurement methods to specify 
the achievement of the given service level objectives. It also 
provided the facility for configuring the scalability parameters 
for getting an efficient response [15]. The author in [16] 
proposed a container-based autoscaling procedure that used a 
heuristic technique for utilizing the resources efficiently. It 
improved the execution time, throughput, response time, and 
the minimum number of containers. The author in [17] 
addresses the two major scalability metrics volume scalability 
and quality scalability. Volume scalability is highly influenced 
by the scaling of service volume while quality scalability is 
affected by the service quality provisioned. These parameters 
quantify the technical scalability and helped in assessing the 
impact of demand on the service. Besides, they also aided in 
designing and performing scalability testing with the motive 
of the identification of the components that affect the 
scalability performance. 
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Scalability in container clouds has made the processing of 
cloud applications lightweight and efficient. An automatic 
scaling method is discussed in [18] where it reduces the 
response time, energy consumption, and better CPU 
utilization. An analytical model based on the stochastic 
technique for the container-based DC has been discussed in 
[19]. It studied and analyzed the performance of the cloud 
system with respect to mean job delay and job rejection 
probability. It created a framework for container emulation 
and assessed the same against the suggested stochastic 
technique. Through experimental development, the suggested 
model is validated using actual data. Insight into DC planning 
is provided to system designers by numerical verification. 
Another approach is introduced in [20] in which AWS 
autoscaling is implemented which facilitate estimating the 
future workload. It applied a future prediction algorithm using 
Prophet API. It studied the CPU utilization and the creation of 
new EC2 instances when the workload is heavy. An auto-
scaler-based model has been discussed in [21] which provide 
the architecture for the container-based application. It has 
included a monitoring mechanism, prediction model, time 
series model, and decision mechanism. The prediction utilized 
the time series to predict the future workload. It has provided 
better provisioning and speedy elasticity. The author in [22] 
introduced a framework for auto-scaled containerized 
applications which is governed by workload demand. It 
offered both reactive and proactive scaling. Reactive scaling 
was implemented using the threshold rules and proactive 
scaling utilized a neural network. It ensured the requirement of 
QoS. Another container-based module was developed in [23] 
which provided efficient provisioning. It used an adaptive 
function tree for scalable container provisioning. It mitigated 
the provisioning cost further by using a fetching mechanism 
showing the quality of on-demand and I/O efficiency. It turned 
out to be providing better scaling, response time, and 
provisioning. A horizontal scaling technique is discussed in 
[24] which configured the services in a docker container while 
the workload was balanced using the load balancer. It 
calibrated the infrastructures depending on the number of 
predicted users. It expanded the infrastructure and processing 
capability in a short duration and offered a fault-tolerant 
system for medium and small-scale industries. Another 
technique for resource utilization in a cloud-based application 
is discussed in [25] for container clouds leveraging the vertical 
elasticity of Docker. The resource coordinator and monitoring 
policies are implemented during the execution of tasks. 
Scalability parameters are the configurable parameters in the 
procedure. 

To the greatest of our knowledge and as of this time, there 
hasn't been any research available for the effectiveness and 
dynamic scalability of containers published in the literature. 
The existing work does not consider the dynamic scalability in 
the containers which has provided a cost-effective solution to 
the virtualization. It is of utmost importance to identify the 
number of containers required to cope with the highly 
dynamic workload to satisfy the SLA and QoS requirements. 
Dynamic scalability is attained only when there is neither 
overprovisioning nor under-provisioning. Overprovisioning 
may result in higher costs as more containers will be 

engrossed while under-provisioning leads to SLA violation. 
Therefore, the main distinction between our study and the 
studies listed above is that in addition to forecasting workload, 
we also forecast the future need for computing resources. 
Furthermore, in contrast to most techniques that focus on only 
one factor (CPU utilization), our model provides cloud 
providers with more information about the timely scaling and 
descaling of containers’ and VMs’ volume. This not only 
decreases the cost incurred by the users but also improves the 
user’s experience and also mitigates the financial burden of 
service provider and infrastructure cost due to the efficient and 
wise usage of the resources. 

III. PROPOSED WORK 

A. Problem Formulation 

A model consisting of DC consists of PMs which has the 
capability of holding various VMs which are further profound 
enough to hold various containers representing the real 
practical scenario of current existing cloud services. A 
hypervisor is held responsible for allocating various VMs to a 
PM while multiple containers can be allocated to a VM. The 
task execution request raised from the different users is being 
sent to the load balancer (LB). This LB routes the traffic to the 
PMs for execution. These requests are sent to a buffer system 
which is linked to the LB queue from where it is sent to the 
containers for the allocation of the resources and their 
execution. The tasks from the queue are allocated to the 
containers as per the availability of the resources. Whenever 
the user demands a new container with a particular 
requirement of the resources, the establishment of SLA 
between the final users and the CSP is agreed upon by the 
delivery of the requested QoS. If the breach in the agreed SLA 
happens the CSP is supposed to pay the penalty to consumers. 
The flow of the tasks happens as end users put in the request 
and it is sent to the LB. This LB receives the requests and 
distributes the tasks to the PMs as per the allocation policy 
utilized. Each task is allocated a unique container. As the task 
request increases the VM scales up the through the addition of 
the container for the execution of the request. Mostly the 
companies utilizing the features of the famous company 
Docker [26], use at least 18 containers simultaneously. Let us 
consider the m PMs which are represented as   *       
       +  which can hold a maximum of up to n VMs 
represented as   *             + . A VM can contain 
maximum l containers represented as   *             +. 
So, a PM can be scaled maximum to   VMs which can 
accommodate a maximum of     containers. 

B. Queuing Model 

The PMs undertaken in the DC have a similar 
configuration. The requests generated by the end users are sent 
to the queue and are served at each node in the DC based on a 
first come first serve basis. When the requests are executed 
and served well then they exit from the system. This paper has 
assumed that each request is served in only one container and 
one container will serve only one request. The DC is modeled 
using the open Jackson queuing model represented in Fig. 2. 
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Fig. 2. Queuing model. 

C. Load Balancer Model 

The LB is held responsible for managing the huge load 
which comes with cloud computing in the form of an ample 
number of requests from the end users. To serve the requests 
well the LB is modeled as an M/M/1 queuing model having 
the provision of the infinite capacity task requests buffer and 
the arrival of requests is supposed to be one by one [27]. The 
Markov chain with the continuous time of the LB model, and 
state   depicts the task number which means     tasks are 
waiting to get allocated in the queue. The arrival of the tasks 
happens at the   rate similar to that of the Poisson procedure 
in which the arrival duration of two immediate tasks is 
independent and the distribution is exponential according to 
the rate     . The serving time to the task at the PM in the LB 
is exponentially distributed over the   rate and     is the 
mean serving time. If     the M/M/1 is assumed to be 

stationary, where   
 

 
  . Let the probability be    be for the 

    state. The following equations can be summated utilizing 
the balanced equation [28]: 

                                (1) 

(   )                          (2) 

From equation 1 and 2, it can be written  
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According to the normalized equation, 
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One can deduce that, 

                                    (5) 

And then the steady-state probability of t tasks in the 
queue can be given as: 
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                   (6) 

The number of tasks on an average queued in LB can be 
deduced as: 

    ∑       (   )∑       
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The average response time that the tasks in the queue 
obtained can be evaluated through Little’s law [29] given as: 

     
 

 
  

 

   
                                    (8) 

D. Container Model 

The paper has considered a DC containing various PMs 
having various VMs designated to hold one or more container 
instances executing on it. The local Scheduler (LS) and the 
runtime component (VMs) are the two major holdings of a 
PM. Fig. 3 demonstrate the placement of VMs and containers 
and LS in a PM. The container is executed on these VMs as an 
isolated thread in a similar namespace with a guest OS shared 
among other containers in the same VM. The hypervisor 
performs the operations that include resource management for 
placing the containers in the pool of VMs in accordance with 
the workload being requested from the users. 

 
Fig. 3. PM structure. 

Let’s consider CDC contains   PMs with LS modeled as 
M/M/1/C model [30] with   VMs and   containers      
  and thus making the queue full. This implies that PM is 
exhausted with the resources and is not in a condition to 
accept any new task until it gets finished up with the tasks 
previously allotted to it. So, it will reject the incoming new 
tasks. According to Burke [31], the departure procedure in the 
queue M/M/1 follows the Poisson process with the same rate 
 . Thus, the tasks arriving at each PM follow the Poisson rate 

with     
 
 ⁄   and each task is served with a service time 

exponentially distributed with an average    
⁄ . As the queue 

is finite in size so, for all the values of    and   the system is 

stable. The     PM with t tasks in the queue has an equilibrium 
probability that can be defined as: 
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(       )
     

 

    
                 

                          (9) 

The rate at which tasks are lost at the     PM at the LS 
queue can be obtained as: 

       
  
    

(   )   

(       )
          (10) 

The LS queue has     PM whose throughput is given as:  

     (    )    
     

       
           (11) 

Similarly, the volume of tasks available in     PM at the 
queue is: 

          ∑    
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The number of tasks undergoing the service is: 

     
   

       
                  (13) 

So, the tasks waiting in the queue can be given as: 

                                       (14) 

The CPU utilization can be given as: 

  
  

  
                           (15) 

The waiting time for the tasks at     PM is: 

     
  

  
             (16) 

Thus, the response time at     PM is evaluated as: 

   
  

  
 

 

    
 

    
  

  
    

   
              (17) 

For the later part of PM, each VM is modeled as the 
servers with   servers and the queue is not available with these 
servers i.e., M/M/l/l [32] where   depicts the volume of 
containers available with each VM. As stated in [31], each 
virtual machine's incoming tasks follow a Poisson process 
with a rate of   , indicating that each container receives an 
equal amount of requests. Since there are   VMs so each will 

get the tasks with an arrival rate    
  
 ⁄ . This will provide 

a balance system as each VM has a similar configuration. The 
service rate of each container can be taken as   . The task 
incoming at the VM can be visualized as a birth and death 
process. In a state    , the rate of the incoming task is 
       where     . While in the state           , the 
death rate       . Let    be the stationary probability with 

  tasks in the     VM. It is observed:             , 
(     ) , from the local balance equation. With   
    ⁄ , it can be written as: 

       
 

 
   

  

  
              (18) 

After the application of standardization condition [33],    
can be generalized as: 

    
 

∑
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It can be further deduced: 

   
  

  

∑
  

  
 
   

                 (20) 

The loss probability    for the tasks lost at     VM, as the 
VM was full, is recognized as: 

   
  

  

∑
  

  
 
   

          (21) 

As there is no queue for the VM, so the tasks’ volume in 
the VM 

                (    
    )          (22) 

As earlier, the response time is evaluated as: 

   
 

  
               (23) 

As it is already known, when the LB sends the request, a 
job can only be carried out by one PM and in one VM by a 
container. Thus, the response time of the tasks before they 
went for execution can be summed as: 

                            (24) 

With a similar analysis, the task being rejected in DC is: 

                  (25) 

IV. RESULTS AND DISCUSSION 

The model proposed above is simulated through a series of 
experiments to analyze its effectiveness. The simulation has 
been performed on a personal computer with a 2.30 GHz Intel 
Core i3 processor and 4GB of RAM. The simulation tool used 
is Cloudsim. Initially, the DC is configured with 5 PMs and 
each PM is capable of supporting 10 VMs which varies to 50 
VMs while each VM can accommodate a maximum of up to 
18 containers. The arrival rate of the task varies from 1000 to 
10,000 tasks per second. The task in the queue requests for 
execution which is serviced in 0.0001 seconds. The maximum 
capacity of the queue is 300. The LS service the request on an 
average of 0.001 seconds. The experiment is performed with 
100 repetitions for efficient analysis. 

A. Response Time 

The response time of the system is very much affected by 
the volume of VMs which is analyzed with the varied task 
arrival rate. Fig. 4 illustrates the same. Here, the capacity of 
each VM to hold containers is 20. From the figure, it can be 
observed that the increment in response time to the task arrival 
is quite proportional. It is analyzed, for all the given scales of 
VMs, there are no substantial change in the response time 
when the arrival rate of the task varies from 5500 tasks per 
second to 9500 tasks per second. As the tasks arrival rate 
increases from 9500 tasks/second the response time increase 
exponentially for all the scales of containers. The response 
time 0.41second is observed in the 20 VMs scenario when the 
arrival rate is 10,000. The proper configuration of the VM can 
be chosen if the minimum response time is one of the QoS 
targets to be achieved for SLA. 

 
Fig. 4. Response time. 
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B. Drop Rate 

The drop rate of the system is defined as the rate at which 
the tasks are dropped or rejected because of either lack of 
space in the LS queue or a lack of capacity in DC. Fig. 5 
depicts the drop rate against the task arrival rate with the 
varied number of containers. Each VM has 18 containers. It 
can be observed from the figure that initially there is not much 
drop in the tasks but as the task rate increases the drop rate 
increases. This increase varies differently with a different 
configuration. In the case of 20 VMs, the loss starts after the 
2000 task arrival rate is reached while in the 50 VMs case this 
loss starts after 5000 tasks/sec. Until the rate reaches 5000 the 
50VMs configuration doesn’t show any loss while the 3015 
tasks/s are lost in the same task arrival rate as the 20VMs 
configuration. It can be deduced with the increased number of 
containers there is less loss of tasks. 

 
Fig. 5. Drop rate. 

C. Throughput 

The system throughput is being analyzed against the task 
arrival rate with all four configurations of the containers. 
Fig. 6 shows the variation of the system throughput measured 
in tasks per second. As it can be observed that in all four cases 
the system throughput is similar till 2000 tasks/sec. The 
impact of the different configurations of containers can be 

seen beyond 2000 tasks/sec. The system performs better with 
a large number of containers. There is not much variation that 
can be seen when the rate of the task reaches 2000 tasks/sec in 
the first case, 3000 tasks/sec in the second case, 4000 tasks/sec 
in the third case, and 5000 tasks/sec in the last case. After a 
certain threshold, the throughput has become quite fixed. The 
requirement of predefined system throughput in SLA can be 
resolved using the selection of the best configuration of 
containers by the service providers. 

D. Number of Containers 

To study the effects of the number of containers on 
response time and drop rate the tasks arrival rate has been 
fixed at 9000 tasks/sec. The number of containers has been 
increased from 8 to 18 containers. Table I represents the 
response time. It is observed from the table as the number of 
containers increases the response time decreases. A dramatic 
decrease can be seen after the 16th container. The response 
time of the system is highly dependent on the volume of 
containers. The system drop rate is also getting highly 
influenced by the number of containers. It can be analyzed 
that as the containers increase the drop rate decreases. It 
shows that to keep the drop rate below 3010 tasks/sec the 
minimum number of VMs and containers is 50 and 8 
respectively. 

 
Fig. 6. System throughput. 

TABLE I. SYSTEM RESPONSE TIME AND DROP RATE WITH RESPECT TO THE NUMBER OF CONTAINERS 

No. of System Response Time System Drop Rate 

Containers 20 30 40 50 20 30 40 50 

8 0.317 0.311 0.293 0.284 6135 5147 4087 3010 

9 0.316 0.308 0.289 0.282 5948 5084 3942 2985 

10 0.3149 0.304 0.286 0.2815 5827 4972 3875 2875 

11 0.315 0.3037 0.288 0.281 5773 4864 3751 2870 

12 0.3157 0.3021 0.287 0.2807 5648 4784 3617 2861 

13 0.3154 0.2998 0.285 0.2794 5584 4743 3561 2756 

14 0.3148 0.2994 0.283 0.279 5538 4476 3548 2641 

15 0.297 0.287 0.277 0.274 5416 4507 3472 2571 

16 0.283 0.278 0.264 0.258 5386 4459 3378 2468 

17 0.257 0.246 0.238 0.2334 5258 4319 3307 2402 

18 0.226 0.218 0.210 0.204 5156 4238 3193 2354 
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E. Comparison with other Algorithms 

The response time and system drop rate are compared with 
the existing work [11] and [16] for the 50VMs with 18 
containers each.  From Fig. 7, it can be observed that till the 
4000 tasks/sec there is not much variation among the 
algorithms. As the rate increases the proposed shows better 
results. With 10000 tasks/sec, the response rate is 0.3301sec of 
the proposed algorithm while that of [11] is 0.524sec and that 
of [11a] is 0.601 sec. From Fig. 8., it can be deduced that till 
the task rate is 4000 all the algorithms show the same drop 
rate but as the task rate increases there is an exponential 
increment in the drop rate. With 10000 tasks/sec, the drop rate 
of the proposed algorithm is 4859 tasks/sec and while that of 
others is 5338 and 5812 respectively. The suggested method is 
significantly more effective than others. 

The results obtained above have demonstrated that the 
increment in task arrival rate affects the QoS measures 
depending on the containers available in the DC. So, it’s very 
essential to scale up or scale down the container instances 
depending upon the rate of the incoming task. In addition to 
this, the number of containers available has to fulfill the SLA 
requirements. Besides, in the DC the workload is very 
dynamic and to provision, the minimum containers 
dynamically which can fully satisfy the SLA requisite which 
monitors the usage of virtual resources and modify the number 
of resources to be used is of utmost importance. Therefore, the 
main challenge that needs to be worked upon is the 
engagement of the minimal number of containers for fulfilling 
the SLA exigencies. Allocation of a greater number of 
containers than required may lead to the OP which increases 
the cost. Deploying a lesser volume of containers than 
expected may result in UP leading to more SLA violations. 
Therefore, dynamic scalability is the requirement of the time 
to avoid the situation of under and over-provisioning. The 
proposed algorithm facilitates the service provider to identify 
the minimal containers required while the rate of the task 
fluctuates helping in scaling up and down the resources and 
maintaining the SLA. 

   

 
Fig. 7. Comparative analysis of system response rate. 

 
Fig. 8. Comparative analysis of system drop rate. 

Further, the resources are allocated to the tasks in the order 
of their arrival. It may not consider the priority tasks which 
can be handled in further study. Since the arrival rate of the 
tasks is considered fixed which may differ in real life scenario 
as the arrival rate can vary with the state and thus making the 
potential customer to switch other service due to long waiting 
queue and thus it may affect the efficiency of the system. 

V. CONCLUSION 

This paper has proposed a queuing model for dynamic 
scalability in containerized clouds to analyze the workload and 
the effects of scaling on the QoS parameters. It also suggests 
the number of containers is scaled up or down for the 
requirement of a particular given SLA. A mathematical model 
is developed for identifying the key performance metrics. The 
model predicts and approximates the resource request for 
future requirements to mitigate the SLA violations and 
provide cost-effective solutions. The proposed methodology 
can also be used to scale the DC containers to guarantee the 
QoS parameters. The model is proficient enough in deciding 
the number of containers required for the provision or 
deprovisioned as per the given workload situation to meet up 
the SLA demand and QoS metrics. The proposed model is 
tested against some existing work and has turned out to be 
performing better. In future work, the model can be 
implemented in a real working environment and more SLA 
parameters can be included for the analysis. Further, clustering 
technique can be included and the model can have queue 
classified according to the requirements of the tasks like some 
tasks may require more processing units while some require 
more storage unit. 
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