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Abstract––Mobile Edge Computing (MEC) uses to perform 

computation operations at the edge of a network for mobile 

devices. This allows the deployment of more powerful and 

efficient computing resources in a cost-effective, lightweight and 

scalable manner. MEC can optimize mobile device performance, 

enhance security and privacy, improve battery life, provide 

increased bandwidth, and reduce latency across wireless 

networks. Cloudlets are a new concept of computations that can 

perform at the edge of the networks. The service provider can 

deploy cloudlets services in a MEC environment with the ability 

for mobile devices to offload their tasks to cloudlets. In the MEC 

environment, the offloading problem depends on cloudlets' 

availability of computation resources. Also, the deployment 

method of cloudlets in the environment will affect the task 

offloading. This paper investigates the approach to the cloudlet 

deployment and task offloading problem in the MEC 

environment. First demonstrate that the problem has to be 

considered a Multi-objective optimization problem since it needs 

more than one objective to be optimized. Then prove that the 

problem is NP-completeness, give an overview of existing 

solutions using the meta-heuristic algorithms, and suggest future 

solutions for this problem. Finally, explain the advantages of 

using Variable-length of solution space with meta-heuristic 

algorithms for this problem. 

Keywords––Mobile edge computing, cloudlet deployment; task 

offloading; mobile device; multi-objective optimization; meta-
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I. INTRODUCTION 

Mobile Edge Computing (MEC) is a technology that 
enables computation and storage capabilities at the edge of a 
mobile network, closer to the end-users [1]. It extends cloud 
computing to the network's edge, allowing for delivering low-
latency and high-bandwidth services to mobile users [2]. The 
end-users typically execute the applications on their resource-
constrained mobile devices for current internet-enabled 
applications requiring fast processing and less response time 
[3]. MEC is designed to address the challenges of providing 
low-latency and high-bandwidth services to mobile users, such 
as those required for augmented reality, virtual reality, and 
Internet of Things (IoT) applications [4]. Furthermore, the 
mobile devices at the edge of the network offload their 
computation tasks to the ( edge-server, edge-cloud, sometimes 

referred to as Cloudlet) instead of the remote cloud, which 
will decrease the response time for offloaded tasks (low 
latency) and reduce overcrowding in the back-haul networks 
[5].  

Cloudlet is a new computing paradigm introduced to the 
Mobile Edge Computing (MEC) service framework. It allows 
computing resources to be closer to mobile devices. The 
cloudlets location is essential to the delay tolerance of mobile 
devices, primarily in a large-scale Wireless Metropolitan Area 
Network (WMAN) that consists of hundred Base Stations 
(BSs) [6], where mobile devices can access the cloudlets. The 
capacity of cloudlet is much smaller than cloud computing as 
edge computing is supplied with one or a few servers due to 
the limitation of space and cooling requirements [7]. MEC has 
been adopted to allow mobile devices to offload their tasks to 
the cloudlets because of the limited processing, small storage 
and low computational capabilities of mobile devices [8]. The 
high quality of service (QoS) requirements for the highly 
interactive applications, which include low latency and high 
throughput, are computationally demanding [9]. Mobile 
computing has recently experienced a paradigm change from 
mobile central cloud computing to MEC, fueled by hopes for 
5G and 6G IoT connectivity [10]. In order to support latency-
intensive computing applications and critical latency for 
mobile devices with limited resources, MEC's main purpose is 
to push mobile computing, network control and storage to the 
network's edges [11]. In the MEC environment, cloudlets are 
usually deployed collocated with cellular base stations so that 
the mobile devices can offload tasks to the nearby cloudlets. 

Offloading is a technique used in the MEC environment to 
increase the effectiveness of mobile device applications by 
moving resource-intensive activities to nearby cloudlets [12]. 
Offloading in MEC mostly refers to running resource-
intensive applications on behalf of local mobile devices to 
minimize workloads, overhead, and processing costs 
compared to local computing. To perform compute offloading, 
mobile devices and cloudlets must operate offloading 
frameworks [13]. Many technical articles view the topic as 
incredibly important to provide new ways of reaching the 
objectives in the offloading criteria. Most of the strategies 
presented in these technical publications were based on 
mathematics, model-based, machine learning, game theory, 
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heuristic-based, meta-heuristic, or a combination of the 
abovementioned techniques. In the MEC context, computation 
offloading problems are a very difficult challenge [14]. The 
primary drawback of offloading work to a remote cloud is the 
latency, which disrupts user experiences in interactive 
applications like mobile gaming [15]. Cloudlets get around 
this problem by giving users low-latency access to network-
edge computing resources, which significantly boosts the 
efficiency of mobile applications [16]. The primary issue with 
WMAN is the deployment of fewer cloudlets with good 
services to end user. From the perspective of network 
management, it is costly to place a cloudlet at each BS to 
service end users [17]. 

Multi-objective optimization techniques are an excellent 
approach in this situation. In multi-objective optimization, as 
opposed to single-objective optimization, the search is for a 
collection of non-dominated solutions known as the Pareto 
optimal set rather than a single optimal solution, which must 
be optimized [18]. The non-dominated objective solutions are 
the ones that provide the best potential compromises between 
the many objectives of the problem (i.e., these solutions 
cannot enhance one objective without affecting another). The 
decision-makers, in this case, the service providers, are given 
access to such non-dominated solutions so that they may 
choose the one that caters to their specific demands and 
requirements in the most effective manner. The computational 
methods that are currently available to solve multi-objective 
optimization problems include meta-heuristics and high-level 
strategies governing underlying techniques. Additionally, in 
contrast to the conventional mathematical programming 
approaches used to solve multi-objective optimization 
problems, meta-heuristics can create many members of the 
Pareto optimal set in a single iteration [19]. Most researchers 
consider the problem as a Single Objective Optimization in 
the related works, while a few deal with it as a Multi-
Objective Optimization problem. 

A meta-heuristic optimization has shown its effectiveness 
in tackling several NP-hard problems. Computer science, 
networking, communication, robotics, and manufacturing, are 
just a few areas where this mechanism has been used in the 
real world. The literature on meta-heuristic optimization has 
yet to adequately address the multi-objective optimization 
component, despite its prevalence in many problems. The 
meta-heuristic algorithms have a substantial impact on solving 
cloudlet deployment and task offloading optimization issues. 
Consequently, this paper provides a survey of published 
articles about cloudlet deployment and task offloading to 
summarize the problems that need solving for future research. 
First discuss the challenges addressed partially or entirely for 
the problem and suggest several promising directions for 
future research to minimize time, reduce cost, and save 
energy. Second, demonstrate that the problem is multi-
objective optimization since it deals with more than one 
objective to be optimized and proves it is an NP-completeness. 
Third, explain the diverse current, well-known traditional 
heuristic and meta-heuristic algorithms for cloudlet 

deployment and task offloading problems in the MEC 
environment, emphasizing meta-heuristics. Fourth present the 
capabilities of using the variable-length searching approach 
within meta-heuristic optimization algorithms for solving this 
type of problem, especially with the constant change in the 
required number of cloudlets to deploy in MEC based on 
computing requirements. This work can be helpful for 
academia and companies regarding service provisioning in the 
mobile edge computing environment. 

The rest of this paper is organized as follows: Section II 
presents a background and an overview of the relevant 
literature, which helps to understand the rest of the article. 
Sections III introduce the optimization technique. Section IV 
demonstrates the multi-objective optimization and the meta-
heuristics algorithms. Section V Provides the Variable-length 
approach for solution space and its benefits for future 
research, and finally, the conclusion are provided in 
Section VI. 

II. BACKGROUND 

This section presents an overview of the relevant works, 
which assists in understanding the rest of the article. Cloudlet 
deployment and task-offloading (for simple CDTO) have been 
fertile research ground for several years. Thus, many papers 
on solutions related to this area are in the literature. 

A. Mobile Edge Computing 

One of the essential fields on the technology scene today is 
Cloud Computing, which is one of the elements preparing for 
the future. Thanks to advancements in wireless 
communication and mobile computing, in the last decade, new 
smartphone device services have prospered in diverse fields 
such as transportation, mobile payment, and social media [20]. 
The spread of mobile devices and their constant presence in 
daily life has generated massive traffic between end users and 
remote clouds [21]. To plan for the increasing data traffic in 
the following years and the need for low-latency computation 
resources near the users, network service providers are 
gradually turning to "Mobile Edge Computing" to bring cloud 
computing capabilities to the edge of the network [22]. Users 
at the edge of the network offload their computation tasks to 
the ( edge-server, edge-cloud, sometimes referred to as 
Cloudlet) instead of remote clouds, which will decrease the 
response time for offloaded tasks (low latency) and reduce 
overcrowding in the back-haul network [20]. 

Due to the limitations of the cloud environment (i.e., long-
distance from mobile devices and limited geographical 
distribution), mobile devices with hungry applications for 
computation resources need to offload tasks to the nearby 
clouds closer to the end-devices through newer computing 
paradigms, such as cloudlets in Mobile Edge Computing 
environment (MECE) [23]. Cloudlets are a distributed 
decentralized infrastructure with nearby mobile devices that 
can leverage the computing and storage resources of the 
cloudlets. Table I presents the comparative summary of Cloud 
and Cloudlet.  
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TABLE I. COMPARISON BETWEEN CLOUD AND CLOUDLET 

Feature Cloud Cloudlet 

Cost High Low 

End-to-end latency High Low 

Infrastructure Centralized Decentralized 

Deployment Environment Large Data Center Can be deployed anywhere 

Bandwidth for end-user Low High 

Offline Availability Not available Available 

Computing Power High Low 

Resource Elasticity High High 

Availability High High 

Access to resources through core network typically via 1-hop wireless gateway 

Resources at individual locations Many Few 

Geo-distribution of computing resources locally clustered widespread 

Offloading granularity mostly entire applications 
computationally intensive 

and latency-critical parts 

User Experience Satisfactory QoE Excellent QoE 

Network resource sharing at individual locations Large number of users Limited number of users 

B. Wireless Metropolitan Area Networks 

The wireless metropolitan area networks (WMANs) have 
emerged in recent years as a public network that enables 
mobile devices to easily access the abundant computing 
resources in urban cities as the number of mobile devices 
continues to grow [24]. In addition, wireless broadband 
connectivity requirements are growing (i.e., 5G and 6G), and 
the technology continues to evolve to meet these requirements 
[25]. It is currently evolving as a public network to expand 
mobile device performance, covering the metropolis and 
enabling mobile devices to access abundant computing 
resources [26]. Compared to Wireless Local Area Networks 
(WLANs), Wireless Metropolitan Area Networks (WMANs) 
offer wireless communications over significantly broader 
geographic regions. The problem of CDTO gets significantly 
worse when considering the deployment of cloudlets in 
WMANs because of the size of the WMANs [27]. Due to the 
high population density in urban regions, many users will have 
access to cloudlets. As a result, cloudlets will be more cost-
effective since they will be less likely to stay idle. 
Furthermore, due to the population in WMANs, service 
providers can take advantage of economies by deploying a 
small number of cloudlets to provide services through the 
WMANs [20] and making cloudlets accessible to the general 
public. 

C. Cloudlet-deployment and Task-offloading (CDTO) 

Cloudlets deployment is the first step in implementing 
mobile edge computing. Service providers always hope to 
provide services to as many users as possible under limited 
funds. The idea of treating cloudlets as a separate “data center 
in a box” must be scrapped. There are obvious benefits of 
connecting several cloudlets to form a network of cloudlets 
that can be distributed in the wireless metropolitan area 
networks, collocated with the base stations [20]. Cloudlet can 
be a single server or a cluster of servers, collocated with base 
stations, and mobile devices can access cloudlets close to the 

range [28]. Cloudlets can also be considered as offloading 
mobile device destinations, aiming to save energy [29] and 
reduce the latency between the remote clouds and mobile 
devices [30]. The close physical proximity between cloudlets 
and mobile devices is a significant benefit of cloudlets over 
the remote cloud. So that allows for low latency in 
communication, thus improving the QoS and the user 
experience of interactive applications [31]. To overcome the 
restrictions of mobile devices in the offloading process 
technique, mobile devices offload their tasks to the MECE 
[32]. Task-offloading improves the computing efficiency of 
mobile devices while reducing latency and overall spent 
energy if adequately designed and planned [5]. There are four 
types of delays in task-offloading from mobile devices to 
cloudlets: uploading, queuing, execution, and downloading the 
result. A typical process flow of task-offloading in WMAN is 
illustrated in Fig. 1. 

 
Fig. 1. Process flow of the task-offloading in WMAN. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 1, 2023 

523 | P a g e  

www.ijacsa.thesai.org 

In related works, there are mainly three metrics expressing 
system requirements that can be optimized, the task response 
time [33], the cost of service for service provider and user side 
[34], and the energy consumption (the energy consumed by 
the device while task-offloading and the power needed by 
cloudlet to process tasks) [35]. In addition, some issues have 
been partially addressed in previous works, which are 
reliability, load balancing, cache content, task migration, user 
mobility, and cloudlet mobility. The exciting issues for related 
works that dealt with the problem as a single objective 
optimization are shown in Table II. 

1) Response Time 
The QoS metric in the design of offloading methods is the 

response time, which is the time between offloading the task 
from a mobile device to a cloudlet, processing it, and 
receiving the result back[36]. Furthermore, the response time 
is also defined as the delay [37], or latency [38] in some 
related works. Many aspects influence the response time of a 
task as followings: 

 The communication delay between the mobile device 
and the base station while offloading the task to the 
cloudlet. 

 The communication delay between the base station and 
the attached cloudlet, which is always minimal while 
using fiber optics cables. 

 The communication delay while routing the offloaded 
task from overloaded to under-loaded cloudlet. 

 The queuing time before processing in the cloudlet. 

 The processing time on the cloudlet. 

 The communication delay between the base station and 
mobile device while receiving the result. 

Fig. 2 shows the task lifetime, from the mobile device to 
cloudlet, which is an uplink delay, queuing and execution at 
cloudlet, which is a processing delay, and from cloudlet to 
mobile device, which is a downlink delay. 

 
Fig. 2. Task service delay. 

2) Cost 
The cost can be categorized into two sides: service 

providers and users. For the service provider, the cost of 
deploying cloudlets is related to two factors [21], which are 
site rentals and computations needs. The former means that 
the more locations are selected to deploy cloudlets, the higher 
the cost. The latter aspect tells us that the greater the 
computation needs, the greater the number of cloudlets, 
resulting in higher costs. On the other hand, users look for the 
best service at a reasonable price. The service price (the 

amount user have to pay) mainly specifies the willingness of 
users to pay for services [39]. 

3) Energy 
Most existing works on MECE mainly focus on saving 

energy for mobile devices by offloading tasks to the cloudlets. 
Due to the battery life limitation for various mobile devices, 
the energy consumed by the mobile device processing the 
tasks is one of the most significant issues [40]. The energy is 
mainly consumed by mobile device data processing and 
transmission. Due to the limitation of processing in a mobile 
device [39], it is better to offload tasks from mobile devices to 
nearby cloudlets for energy-saving. The offloading of a task 
can decrease the processing energy by reducing the processed 
data size but increases the transmission energy by increasing 
the size of transmitted data [35]. On the other hand, service 
providers are looking for energy savings for cloudlets, 
reducing power costs. 

4) Reliability 
Reliability is a significant component that influences user 

QoS and service provider profit [41]. The significant causes of 
reliability decreases are failures or errors in the mobile edge 
computing environments. Failures and errors in the system can 
occur during task-offloading, processing, routing tasks from 
one cloudlet to the other, and receiving the result back [42]. 
Improving the reliability of task-offloading under the resource 
capabilities of the cloudlets and the dynamic network is an 
important challenge in the MECE. 

5) Load Balancing 
The cloudlets contain single or multiple servers to process 

the offloaded tasks. The load inequality in these cloudlets 
leads to different response times for offloaded tasks. 
Therefore, the load balancing between cloudlets for task-
offloading becomes essential [22]. Increasing the number of 
servers in the cloudlet makes balancing user workload less 
critical as the cloudlets can handle higher loads [43].  On the 
other hand, increasing the number of users will increase the 
task waiting time. Once the cloudlet reaches its maximum 
workload, it must route its overflow users' requests to the 
other cloudlets for better performance [44]. This means that a 
better strategy is to assign user tasks to under-loaded cloudlets 
rather than keeping them in an overloaded cloudlet [22]. 
Hence, it is clear that balancing the workload between 
cloudlets is necessary by mapping the tasks of users to 
different cloudlets. 

6) Cache Content 
When a task is offloaded to a cloudlet, the critical impact 

on task execution performance is data transmission delay. One 
of the most successful solutions is to cache data for the 
offloaded task in advance. Furthermore, because user data 
access patterns in WMANs are challenging to forecast [45], 
creating an adequate data caching technique with high access 
hit ratio is challenging. The number of content cached at 
cloudlet increases with the number of offloaded tasks 
increasing [46]. Content cache performance significantly 
impacts delay and bandwidth [47]. For example, the popular 
cached content in cloudlet can reduce the delay and the 
bandwidth usage of subsequent access to the same content. 
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7) Task Migration 
In the MECE, the inter-flow between cloudlets is essential 

to make a load-balancing and support user mobility. In the 
network of cloudlets, to make load-balancing, tasks have to be 
forwarded from the overloaded cloudlet to the under-loaded 
cloudlet, so there will be no idle cloudlet in the system [48]. 
Hence, as shown in Fig. 3, to support user mobility in the 
system, tasks must route from one cloudlet to another cloudlet 
so that the task will be close to the mobile user for result 
download [49].  

8) User Mobility 
To support user mobility, edge computing requires the 

flexible and scalable deployment of cloudlets for the inherent 
dynamism of the operating environment and various 
applications, some of which require real-time response [50]. In 
related works, WMAN's user mobility pattern has attracted 
very little attention. A mobile user may move around the area 
covered by WMAN with specific transmission patterns, but 
different movement patterns may change the traffic size of the 
network. The cloudlet placement and task offloading strategy 
should reflect the mobility pattern better to meet the 
requirements of mobile devices to access network resources 
[51]. The mobility pattern is reflected by the connection 
possibilities between mobile devices and BS. Furthermore, the 
mobility pattern of mobile devices is highly correlated with 
service access delay. Connection failures may happen during 
user mobility with the poor quality of the wireless connection 
between mobile devices and BSs [52]. However, the next 
generation of cellular communication has overcome this issue. 
The excellent service would necessitate frequent wireless 
handover between multiple BSs to guarantee user QoS during 

movement. For constant QoS, mobile devices may be serviced 
by many cloudlets. Because of user mobility, wireless 
handover and service migration may be performed frequently, 
putting a heavy load on the other network entities [53]. 

To support user mobility, task migrations have to perform 
when a mobile user moves from the service region of one 
cloudlet to another. As mentioned four types of task service 
delay; there will also be a delay in task migration during user 
movement. Fig. 3 illustrates the task migration during user 
movement. To provide QoS for users, mobility management 
should make a wireless handover decision to select optimum 
BSs and cloudlets [54]. The primary goal of mobility 
management is to provide mobile computing services to 
continuous and uninterrupted customers during user 
movements. 

 

Fig. 3. Task migration while user movement. 

TABLE II. RELATED WORKS CONSIDERING A SINGLE OBJECTIVE OPTIMIZATION 

Authors 
Cloudlet 

Deployment 

Task 

offloading 
Time Cost Energy Reliability 

Load 

balancing 

Cache 

content 

Task 

Migration 

User 

Mobility 

Cloudlet 

Mobility 

[20]                       

[55]                       

[37]                       

[56]                       

[31]                       

[49]                       

[7]                       

[57]                       

[58]                       

[59]                       

[60]                       

[41]                       

[22]                       

[61]                       

[62]                       

[63]                       

[42]                       

[44]                       

[64]                       

[19]                       

[65]                       

[66]                       
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9) Cloudlet Mobility 
The cloudlet in the MECE can be static or mobile [12]. In 

mobile cloudlet networks, it is crucial to figure out how to 
make load-balancing between all mobile cloudlets so that all 
resources are utilized and tasks can be processed concurrently 
and sustainably by different cloudlets, therefore, reducing the 
average task response time and energy [61]. Cloudlet mobility 
is essential in MECE to provide good services for users, 
especially when the population moves (e.g. festivals, sporting 
events, etc.).  

In Table II, all researchers consider the problem as a 
single-objective optimization. Most of them take the problem 
on one side (cloudlet-deployment or task-offloading), while 
very few consider both themes. Furthermore, most existing 
works mainly focus on minimizing time, reducing cost, saving 
energy, and load balancing, while the others take little 
attention. In Table II, various algorithms and methods were 
employed to address the issues, including greedy algorithms, 
clustering algorithms, heuristics, meta-heuristics, 
reinforcement learning, and mathematical programming. 
Comparisons were made between meta-heuristic and heuristic 
algorithms, meta-heuristic and greedy algorithms, 
reinforcement learning and mathematical programming. In 
addition, research studies such as [44] have compared meta-
heuristic and unsupervised learning algorithms, while [65] has 
compared meta-heuristic and mathematical programming, 
with results consistently demonstrating the superiority of 
meta-heuristic algorithms. 

D. Related Survey Works 

CDTO has been a fertile study area in recent years. As a 
result, many surveys and studies in the literature on solutions 
related to this area. In the work of [67], the problems of 
mobile cloud computing are presented and provide the most 
recent mobile cloudlet architecture. Furthermore, propose a 
hierarchical taxonomy to classify the most recent cloudlet 
solutions and discover the cloudlet application areas. In 
addition, it presents the aspects of cloudlet management, like 
cloudlet discovery, resource management, data security, 
mobility, and application offloading. The work of [68], 
studied the fundamental concepts of cloud and edge 
computing. Presented the application domain classified the 
state-of-the-art edge computing (Mobile Edge Computing, 
Cloudlet, and Fog) and the application domain area services 
such as real-time applications, resource management, data 
analytics, and security. Furthermore, state the essential 
requirements that must be achieved for edge computing to be 
enabled. The work of [69] proposes a taxonomy of task-
offloading in edge-cloud environments to examine and 
categorize related research papers and outline the challenges 
that still need to be studied before using edge-cloud 
computing to improve services. To identify the modern 
processes, the work of [70] provides a review of the machine 
learning-based computation offloading strategies in the MECE 
in classical taxonomy. Furthermore, it investigated various 
strategies and novel approaches related to machine learning-
based offloading mechanisms in the MECE ecosystem. Also, 
taxonomy for classifying various principles of machine 
learning-based offloading mechanisms was proposed. 

Finally, there are many other surveys, each considering a 
particular aspect of Mobile Edge Computing, which also lacks 
considering the Multi-objective optimization approach for the 
problem of CDTO. 

III. OPTIMIZATION 

Optimization is a method of finding and comparing 
appropriate solutions until cannot find any better solutions. 
Optimization often involves minimizing or maximizing the 
objective functions. Optimization, in other terms, refers to a 
collection of methods that may be applied to a mathematical 
model of the problem. The optimization algorithm provides 
systematic and efficient methods for producing and comparing 
new solutions to achieve the optimal solution [71]. 
Optimization is experimenting with various input-output 
combinations to find the resulting outputs. Its methods are far 
more advanced than those used in the computation. 
Optimization theory has custom-made algorithms to identify 
the best solution with little processing by utilizing model 
information. Optimum selection evaluations, suitable trade-
offs, and non-intuitive analysis of optimization techniques are 
utilized to develop a better and faster optimal design [72]. The 
role of modeling in optimization involves testing out many 
different combinations of inputs to determine what the output 
(i.e., the number you are trying to minimize or maximize) will 
be under each of those circumstances, with many inputs, it is 
usually not practical to guess and check on an existing system 
[73], optimization requires a mathematical model of the 
system, which is just the math that relates the inputs to the 
outputs. By using a system model to iterate, there is no limit to 
the number of combinations you can try (maybe just 
computational limitations). Optimization algorithms are much 
more sophisticated than guessing and checking a range of 
varieties (a process known as enumeration) [74]. Fig. 4 
outlines the steps usually involved in an optimal design 
formulation. 

 

Fig. 4. Steps of problem optimization. 
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In the Mobile Edge Computing environment, users and the 
service provider have various requirements. The deployment 
of a small number of cloudlets in the WMANs to serve many 
users is significant for service providers. In addition, user 
satisfaction is one of the most important quality-of-experience 
(QoE) evaluation measures, especially affecting the service 
provider's profit due to the penalty when there is any 
infringement of the Service Level Agreement (SLA), which 
establishes an agreement between service providers and their 
users [75]. It significantly influences users' willingness to pay 
for services in the future. Thus, when offering services, user 
requirements must be considered and satisfied [40]. 
Furthermore, in the problem of CDTO, most existing works 
consider single-objective optimization, while very few 
consider it a Multi-objective optimization. The relationship 
"better than" between two solutions is insignificant when 
dealing with single-objective optimization problems. Whether 
a function has to be maximized or minimized, the one with the 
lower or higher fitness value is preferred. The relationship 
"better than" has to be redefined while dealing with the Multi-
objective optimizations. Furthermore, when two non-
dominated solutions are compared, there is only one way to 
rate the best if enforcing specific user preferences. As a result, 
a new kind of fitness measurement is required [74]. 

IV. MULTI-OBJECTIVE OPTIMIZATION 

Problems involve more than one objective in the real 
world, and conflict naturally leads to trade-off solutions. It is 
hard for the mobile edge computing service provider to 
determine the constraints. A feasible solution cannot be found 
if the constraints are not appropriate. Only one objective is 
confirmed, and only one solution may be generated if a 
constrained single-objective optimization problem is 
considered rather than a multi-objective optimization problem 
which may not result in a satisfactory trade-off between all 
objectives [76]. Most researchers in related works dealt with 
the problem as a single-objective optimization. In contrast, 
few researchers are dealt with the problem as multi-objective 
optimization, as shown in Table III. 

For the Multi-objective optimization problem arising from 
Cloudlet-deployment and Task-offloading (for simple MO-
CDTO) in MECE, not only the minimization of task 
completion time and the energy consumption is required, but 
also the minimization of cloudlet-deployment cost is 
demanded [60]. In Table III, researchers consider the problem 

as multi-objective optimization. Most of them take the 
problem on one side, which is task offloading. Furthermore, 
time, cost, energy, and task migration have more extensive 
attention than others. The algorithms and methods were 
employed to address the multi-objective optimization 
problems, including meta-heuristic algorithms, a hybrid of 
meta-heuristic algorithms, machine learning and 
reinforcement learning. The results consistently demonstrate 
the superiority of the hybrid of meta-heuristic algorithms to 
address the multi-objective optimization problems. 

A. The NP-Completeness of MO-CDTO Problem 

The NP-complete problem is the hardest to solve. It is a 
problem that if there is an algorithm that can solve any of 
these problems, then it can solve all of them. Nobody has been 
able to prove that NP-complete problems are intractable. To 
prove that the MO-CDTO is an NP-completeness, first must 
explain that the problem belongs to the NP class and then 
show it is NP-hardness. When presenting a solution for the 
problem of MO-CDTO, the problem takes O (ML) time to 
evaluate if the total task-offloading probability for each user is 
no more than one and the maximum workload restriction for 
each cloudlet. Furthermore, O (L) time is required to verify 
that the number of deployed cloudlets at each base station is 
not greater than one. As a result, verifying a solution for MO-
CDTO takes polynomial time. Therefore, MO-CDTO is under 
the class of NP problems. Based on the explanation of the p-
median problem in [81]. When ∀1 ≤ ί ≤ the number of users, 
the computing capacity of user ί is zero, the computing 
capacity of each cloudlet is infinity, the cost of each cloudlet 
is equal to zero, the energy consumption of users is constant, 
the cloudlet deployment cost can be neglected, and the 
maximum number of cloudlets that may be deployed must be 
deployed to reduce user task response time. Therefore, the 
problem of MO-CDTO becomes selecting BSs to deploy the 
number of cloudlets and assigning each user to a cloudlet so 
that the sum of the connection delay is minimized from all 
users to the cloudlets they are assigned. To that end, each user 
must be assigned to a cloudlet with the smallest 
communication delay so that the MO-CDTO problem is NP-
hard. Furthermore, based on the definition of NP-complete in 
[82] and [83] “If the problem       class and   is NP-hard 
so   is NP-complete”, while the problem of MO-CDTO 
belongs to the NP class and it is NP-hard, so it is NP-
complete. 

TABLE III. RELATED WORKS CONSIDERING A MULTI-OBJECTIVE OPTIMIZATION 

Authors 
Cloudlet 

Deployment 

Task 

offloading 
Time Cost Energy Reliability 

Load 

balancing 

Cache 

content 

Task 

Migration 

User 

Mobility 

Cloudlet 

Mobility 

[39]                       

[29]                       

[26]                       

[77]                       

[78]                       

[79]                       

[5]                       

[76]                       

[80]                       
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B. Meta-heuristic Algorithms 

The meta-heuristic algorithms are a class of local search 
algorithms used to solve multi-objective optimization 
problems. The main objective of these algorithms is to find the 
optimal solution for the given set of problems based on a 
given set of constraints. The main idea behind this method is 
that it considers all the constraints and variables that affect the 
solution. Users can specify these constraints or automatically 
generate them by the algorithm. In mathematical 
programming, heuristic algorithms are used to design 
solutions to problems as quickly as possible. It may not 
produce the best solution, but it will give a near-optimal 
solution in a short time [71]. Some trade-off conditions give 
an initial idea of whether a heuristic algorithm is a good fit or 
not for a given problem. One of these conditions is the 

completeness of the problem. If several solutions exist for a 
given problem, it is better to use a meta-heuristic algorithm 
[74]. A heuristic algorithm generally provides one solution 
that may not be the best among all the available solutions. 
Furthermore, meta-heuristic-based optimization has proved 
effective in solving many NP-hard problems. This method has 
been used in various real-world applications, including 
computer science, networking, communication, robotics, and 
manufacturing [84]. The main difference is that heuristic is the 
problem-specific method, while meta-heuristic is the problem-
independent method that can be applied to many problems.  
Table IV classifies the heuristic and meta-heuristic algorithms. 
Meta-heuristic algorithms are divided into nature-inspired and 
non-nature-inspired. 

TABLE IV. CLASSIFICATION OF HEURISTICS AND META-HEURISTICS ALGORITHMS 

Heuristics 
Meta-heuristics 

Nature-inspired Non-nature-inspired 

 Greedy Algorithms 

 Best-First Search 

 Brute-force Search 

 A* Search 

 Hill Climbing 

 Bidirectional Search 

 Beam Search 

 

 Swarm Intelligence 

 Whale Optimization (WO) 

 Cuckoo search algorithm (CSA) 

 Particle Swarm Optimization (PSO) 

 Ant Colony Optimization (ACO) 

 Estimation of Distribution Algorithm (EDA) 

 Simulated annealing (SA) 

 Evolutionary Computation (EC) 

 Differential Evolution (DE) 

 Evolution Strategy (ES) 

 Genetic Algorithm (GA) 

 Genetic Programming (GP) 

 Guided Local Search (GLS) 

 Greedy Randomized Adaptive Search Procedure (GRASP) 

 Iterated Local Search (ILS) 

 Path Relinking (PR) 

 Scatter Search (SS) 

 Tabu Search (TS) 

 Variable Neighborhood Search (VNS) 

 

Meta-heuristic algorithms are generated based on the 
mathematical models of different biological processes [3] and 
activities [85] that appear in nature, modified and applied 
according to a specific problem so that the result statistical 
data can be analyzed. Meta-heuristic algorithms can be used 
for CDTO performance metrics, such as cost, time and energy 
consumption, to reach the optimal solutions for the problem of 
MO-CDTO. The frameworks and procedures for the different 
evolutionary, swarm and hybrid algorithms are comparable 
[86]. However, the methods for population initiating, 
evaluating the initial fitness (the quality of the solution), the 
strategies for coming up with new solutions, and the iterative 
procedures are often different [3]. Because of their success in 
solving complex and important computing problems, meta-
heuristic algorithms have achieved widespread during the last 
two decades [87]. Due to their applicable independence in 
problem-solving, meta-heuristic algorithms are useful and 
well respected for solving problems in different fields with 
highly acceptable performance. Meta-heuristic algorithms are 
frequently exploited as an efficient way to address NP-hard 
optimization problems [88]. The most well-known and 
extensively used under meta-heuristics are evolutionary 
algorithms (EAs). Individuals, or potential solutions in EAs, 
are made up of a chromosome (a representation of the 
problem's variables) and fitness (the quality of solutions) [89]. 
Individuals are grouped to form populations. Every time a new 
solution is developed, it is examined to determine its fitness 
value. A generation occurs when a new one replaces the 

present population [90]. Evolution is iterating through 
consecutive generations that end when a termination condition 
is met. The most meta-heuristic algorithms used in the related 
works are the following: 

1) Genetic Algorithm (GA) 
Genetic Algorithms are natural search algorithms inspired 

by Darwin's theory of evolution. JH Holland first introduced it 
in 1973. Genetic algorithms can create high-quality solutions 
for various problems, including search and optimization, by 
imitating the processes of natural selection, reproduction, and 
mutation [91]. The population is updated using the traditional 
GA update approach, which includes binary tournament 
selection, a two-point crossover operator, and a mutation 
operator. Furthermore, the elite individuals (those with the 
highest fitness values in the population) are entirely replicated 
in the next generation using the elitist preservation mechanism 
of this algorithm [8]. 

2) Simulated Annealing (SA) 
Simulated annealing is a technique for addressing 

unconstrained and bound-constrained optimization problems. 
It was first introduced by [92] in 1983. Simulated annealing 
investigates alternative configurations to produce better 
solutions to the massive combinatorial problem. The 
configurations are updated and compared at each iteration, 
allowing the best configuration to be chosen [93]. 
Furthermore, a simulated annealing algorithm initially allows 
other random movements in the neighboring search space, but 
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the activities are reduced over time. The algorithm chooses 
neighboring states with a cost lower than the current state or 
the exact cost [94]. 

3) Whale Optimization (WO) 
Whale Optimization is a new nature-inspired meta-

heuristic optimization algorithm that simulates humpback 
whale social behavior. The bubble-net hunting approach 
inspired the algorithm. Mirjalili and Lewis, two Australian 
researchers, introduced the Whale Optimization Algorithm in 
2016 [95]. The WOA offers a lot of potential benefits. It is 
unaffected by early solutions, which can considerably impact 
some traditional algorithms. It also contains adaptive 
mechanisms to balance explorative and exploitative behaviors 
appropriately. It is widely used in various domains, including 
engineering optimization, feature selection, and parameter 
extraction [96]. 

4) Particle Swarm Optimization (PSO) 
The particle swarm optimization algorithm is based on the 

study of bird predation behavior. Its straightforward premise is 
to discover the best solution through collaboration and sharing 
information between individuals in the swarm. The PSO is one 
of the meta-heuristic algorithms proposed by [97] in 1995 
based on the social swarm evolving notion. According to 
experimental studies and applications, the PSO is highly 
competitive in optimization. The essential idea of particle 
swarms is the social interaction that results in collective 
intelligent behavior. Both the set of entities and the swarm of 
birds move with two velocity components. The first one 
attracts them to the best global entity, and the second attracts 
them to the best local entity [84].  

5) Ant Colony Optimization (ACO) 
In the ACO technique, natural ant behavior is crucial in 

determining the optimum route between colonies and food 
sources. This concept was first presented as the "ant system" 
[98] in 1992. As they go forward, the ants expel the 
pheromones. Pheromones form the shortest paths over time, 
and the intensity of the pheromone helps to identify the 
quickest route to the food source. Indeed, the ACO was 
inspired by the ant behavior to determine the shortest path 
between anthill and the location of the food supply [99].  

6) Cuckoo Search Algorithm (CSA) 
Cuckoo Search is a meta-heuristic optimization algorithm 

used to solve optimization problems. Yang and Deb invented 
it in 2009 [100]. The CSA is a nature-inspired meta-heuristic 
algorithm based on cuckoo brood parasitism, and Levy flights 
random walks. The CSA is based on the parasitism of the 
offspring of a bird species known as the cuckoo. The CSA 
algorithm implements the Lévy flights [100]. Usually, the 
parameters of the cuckoo search are kept constant for a 
particular duration; this results in a decrease in the algorithm's 
efficiency. 

7) Differential Evolution (DE) 
Differential evolution (DE) is one of the most well-known 

generation EAs, developed by Storn and Price [101] in 1997 
and effective for constrained optimization problems in 
nonlinear and multimodal environments. Differential 
Evolution is a generic Nature-inspired population-based 

global-search meta-heuristic optimization algorithm. 
Therefore, it is largely suited for numerical optimization 
problems based on vector differences. 

8) Tabu Search (TS) 
Tabu search (TS) is a heuristic method proposed initially 

by Glover in 1986 [102]. Tabu search is a potential tool to 
discover a feasible optimal solution from a limited set of 
solutions. In other words, it is an optimization approach that 
uses a guided local search procedure that avoids local 
optimum and denies moves to points already visited in the 
search space using the so-called tabu list [102].  

The common trend of EAs is hybrids of different 
evolutionary algorithms. These hybrids are relatively easy 
since most EAs can use the same population table and gene 
presentation. Hybrids are mainly accomplished to avoid the 
shortcomings of one algorithm; for example, using a hybrid of 
two algorithms, one for a local search and the other for a 
global search. 

V. VARIABLE-LENGTH 

While there is no proper definition for a vector of a 
variable-length searching of solution space, therefore, most 
optimization theories depend on the fixed-length assumption 
to represent solutions [73]. There are several cases of variable-
length approaches in which the number of variables is not 
fixed. One of these cases is CDTO. Standard optimization 
procedures may be used by considering a fixed number of 
variables. However, a sub-optimal length will result in a sub-
optimal solution [86]. The algorithms can be executed 
iteratively and change the given length until an optimal 
solution is found. However, this is inefficient and impractical 
if there is an extensive range of possible lengths. For other 
fields of study, Table V shows the algorithms developed in 
meta-heuristic optimization with the variable length features.  
Variable-length algorithms are better since their solution 
vectors can vary in length [103]. 

Overall, as shown in Table V of the reviewed algorithms, 
the majority of them were developed to support a single 
objective except for the work of [89], which is based on an 
evolutionary algorithm and was applied only to a Bi-
objectives problem without investigating the proposed 
algorithm and the work of [84], which suffers from weak 
interaction between solutions. 

The traditional meta-heuristic optimization algorithms 
consider a fixed length of solution space, but these solutions 
do not apply to many real-world problems. The specific values 
of some decision variables might generate another or disable 
others, which cause the variable-length nature of solution 
space because of the different lengths of solutions. Multi-
objective nature comes from having more than one objective 
to be optimized, e.g., delay, cost, and energy. Hence, MO-
CDTO is a multi-objective variable-length optimization 
problem; the variable-length nature comes from the different 
number of cloudlets to deploy according to the computing 
requirements. Furthermore, the related works for the problem 
of MO-CDTO lack a single or multi-objective optimization 
algorithm with the variable-length feature. 
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TABLE V. THE PRESENT VARIABLE-LENGTH OPTIMIZATION FOR DIFFERENT FIELDS 

Article Application Decision space Algorithm Limitation 
Number 

Of objectives 

[104] Path planning Path points Genetic algorithm Single objective 1 

[73] 

Laminate stacking 

Wind farm 

Sensor coverage 

Based on 

the problem 
Metameric Genetic Single objective 1 

[105] 

Changing 

the topology 

of Convolutional Neural 

Networks 

Encoding neuron 

in the layer 

Particle swarm 

optimization 
Single objective 1 

[89] 
Laminate stacking problem / 

angle-based transformation 

Vector of angles 

on the plies of a laminate / 

general mathematical form 

Multi-objective 

evolutionary algorithm 

the application of the 

proposed algorithm is not 

investigated 

2 / 3 

[86] 

 

A coverage and 

a wind farm problem 

Based on 

the problem 

Evolutionary algorithm 

 
Single objective 1 

[106] 
Wireless Sensor Network 

deployment 

Sensors location 

and coverage area 

Genetic algorithm 

 
Single objective 1 

[84] 
Wireless Sensor Network 

deployment 

Sensors location 

and coverage area 

Particle swarm 

optimization 

Weakness of Inter-class 

interaction 
2 

[107] 

 

Sensor node 

scheduling 

Deciding the sensor 

that will send data 
Genetic algorithm Single objective 1 

VI. CONCLUSION 

Mobile edge computing has become an important 
technology to overcome some of the inherent constraints of 
mobile devices. Service providers are looking to provide 
excellent and cheap service to the MECE end-users. 
Furthermore, researchers focus on three main things in the 
MECE, which are minimizing time, reducing cost, and saving 
energy while solving different issues. Hence, the issues are 
related to each other. In contrast, the reliability and load-
balancing affect time and energy, the cached content affects 
time, and the task migration and cloudlet mobility support the 
user mobility for good service and reducing time. The problem 
of CDTO has become an exciting research area. It has to be 
considered a multi-objective optimization problem since it 
needs more than one objective to be optimized. The problem 
of MO-CDTO is NP-complete because it belongs to the NP 
class and is NP-hard. The Meta-Heuristic algorithms have to 
be used for this type of problem as it is practical to solve 
MOO problems. For feature works, variable length of solution 
space is an appropriate approach for the problem of MO-
CDTO because of the variation in the number of cloudlets to 
be deployed. A hybrid of two meta-heuristic algorithms with 
the variable-length aspect may generate powerful solutions. 
Many issues still need to address in the MECE, like reliability, 
user mobility, and load-balancing between cloudlets. This 
study is excellent material for future researchers to have an 
overview of the problem and take the research forward to 
resolve the unaddressed issues. 
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