
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

645 | P a g e

www.ijacsa.thesai.org

Upgraded Very Fast Decision Tree: Energy

Conservative Algorithm for Data Stream

Classification

Mai Lefa1, Hatem Abd-Elkader2, Rashed Salem2

Department of Information System, Sadat Academy for Management Science, Cairo, Egypt 1

Department of Information Systems-Faculty of Computers and Information, Minoufia University, Egypt2

 Abstract—Traditional machine learning (ML) techniques

model knowledge using static datasets. With the increased use of

the Internet in today's digital world, a massive amount of data is

generated at an accelerated rate that must be handled. This data

must be handled as soon as it arrives because it is continuous,

and cannot be kept for a long period of time. Various methods

exist for mining data from streams. When developing methods

like these, the machine learning community put accuracy and

execution time first. Numerous sorts of studies take energy

consumption into consideration while evaluating data mining

methods. However, this work concentrates on Very Fast Decision

Tree, which is the most often used technique in data

flow classification, despite the fact that it wastes a huge amount

of energy on trivial calculations. The research presents a

proposed mechanism for upgrading the algorithm's energy usage

and restricts computational resources, without compromising the

algorithm's efficiency. The mechanism has two stages: the first is

to eliminate a set of bad features that increase computational

complexity and waste energy, and the second is to group the good

features into a candidate group that will be used instead of using

all of the attributes in the next iteration. Experiments were

conducted on real-world benchmark and synthetic datasets to

compare the proposed method to state-of-the-art algorithms in

previous works. The proposed algorithm works considerably

better and faster with less energy while maintaining accuracy.

Keywords—Classification; energy consumption; Hoeffding

bound; Information gain; massive online analysis; stream data;

very fast decision tree

I. INTRODUCTION

In recent years, the amount of generated data is growing
significantly. This data is made up of n (n → ∞) data samples,
and it is described as a series of ordered data sequences, with
starting and stopping bytes. Data stream (DS) = { , , ... ,
 , ... , }, where denotes the most recently visible data
object in a stream of data [1]. Because the samples arrive in
the form of continuous data flow at a great speed, the
traditional classifiers cannot access the data instances in real-
time [2]. The instances can only be scanned once or stored for
a short period of time, so an ideal data stream classifier must
be well prepared to deal with a large number of instances in
real-time for better classification performance [1,3]. Data
stream mining is a subset of machine learning that involves
examining data flows that are continuously expanding as time
series and developing a classification algorithm based on
them. It is highly different from traditional data mining in

terms of processing the mining operation, but it is similar to it
in terms of purpose [2].

Machine Learning (ML) techniques consist of three types:
unsupervised, semi-supervised, and supervised. Unsupervised
algorithms can operate with unlabeled data; the data is
clustered into groups with similar characteristics. Semi-
supervised algorithms partially work with labeled data [4].
Supervised algorithms require data to be labeled, which they
can categorize the data according to a distinct pattern for each
class based on the label, such as data stream classification
algorithms [5].

Very Fast Decision Tree (VFDT) is an effective
classification technique for DS classification, and it has a high
level of classification accuracy. It builds the decision tree by
learning examples in real-time at a reasonable cost, and its
sequential feature can match the data stream's timeliness
requirement. To dynamically generate the decision tree, it is
based on the enhancement of the Hoefdding tree. The
Hoeffding bound () is used to make sure that the data utilized
to build each sub tree contains enough information [6,7].

The algorithm determines the information gain () for all
noticed attributes after reading the minimum number of
examples () at that leaf. The two top features
are received through using the
function . The difference between
these features is compared with the , which was calculated
previously. As a result, if the difference exceeds the , there
will be a split on the tree by changing the leaf with a new
internal node. This function is considered among the functions
with the highest energy in the algorithm [8,9]. This point is
considered the main problem that the paper solves. Therefore,
the proposed mechanism focuses on working to reduce bad
features that take a lot of energy when calculating their ,
without impacting on the performance of algorithm. These are
the motivations and objectives for our mechanism:

1) Decrease the amount of calculations by reducing

undesirable features on each leaf.

2) Maintain the same level of accuracy by deleting just

the computations that aren't necessary.
The rest of this paper is structured as follows: Section II

clarifies related work. Section III introduces the background.
Our algorithm and the corresponding theoretical derivation are
explained in Section IV. Experiments and results are covered

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

646 | P a g e

www.ijacsa.thesai.org

in Section V. Finally, the paper is concluded with the
conclusions and the future work in Section VI.

II. RELATED WORK

Many works have gone into improving the VFDT in
various ways. The Random Forest algorithm was created by
Dong Zhenjiang and Li Lingjuan [10], it is a combinational
classifier that performs well in terms of classification. It is
made up of multiple decision trees, and it can compensate for
the lack of a single decision tree. This technique upgrades the
Random Forest algorithm by sliding the time window to
match the unlimited data streams, and introduces the criterion
of constructing decision trees in the random forest classifier.
The limitation of this study is that it improves the accuracy
levels without trying to improve other evaluation criteria.

 R. J. Lyon et al. proposed the GH-VFDT, a novel
classification technique for unbalanced data flows. The
Hellinger distance was combined with a stream classifier
depending on the Hoeffding bound in an empirical study.
They can be combined to create a skew-insensitive decision
tree split criterion that enhances minority class recall rates
significantly. On unbalanced data, the algorithm can
successfully enhance minority class recall rates, with same
performance levels [11].

In the research [12], Ariyam Das et al. presented a
memory-efficient bootstrap simulation heuristic (Mem-ES)
that effectively accelerates the learning process. Experiments
show that performing resampling techniques efficiently speeds
up node splits for online decision tree learning.

Victor Guilherme Turrisi da Costa et al. proposed two
versions of a novel VFDT-based algorithm, SVFDTs were
developed to minimize the size of VFDT-induced trees,
resulting in a memory-conserving decision tree. Both SVFDTs
produce trees that are substantially smaller than those
produced by the VFDT, while it doesn't reduce prediction
performance statistically [13].

Gayathiri Kathiresan and Krishna Mohanta [14] present
the compact method that uses the adaptive reservoir sampling
methodology. It helps to reduce memory usage, and handle
unbalanced stream data by restricting the information gain
deviation based on the improved splitting metric in the
information gain measurement. The limitation of this study is
that it applied the proposed method to only one dataset,
neglecting the other types of datasets with different
characteristics, in order to determine the reliability of the
findings.

Liang, Chunquan et al. use the Hoeffeding bound theory
and the Uncertain Naive Bayes classifier (UNB) to improve
the speed of construction and classification performance. They
use gradual pruning and an adaptive tie-breaking criterion
[15]. In a different study, Eva Garcia et al. proposed the nmin
adaptation approach to enhance parameter adaptation in
Hoeffding trees. They dynamically adjust the total amount of
examples needed to make a split, this approach saves energy.
The limitation of this study is that the nmin adaption method
adjusts to the best nmin parameter based on the assumption,
that newly received data would maintain the same distribution
as previously seen data [16].

III. BACKGROUND

A. Hoeffding Tree

There are several types of supervised classification
techniques: k-Nearest Neighbor (kNN), Neural Network,
Support Vector Machine (SVM), Naïve Bayes (NB) and
Decision Tree (DT). Hoeffding tree algorithm is an extension
of the decision tree algorithm for performing DS
classification. It reads data in a single pass, and builds model
 = () that maps test example to class . Every node
represents a class feature, and each leaf represents the
forecasted class label for that node. Beginning from the root
node, the DT grows by exchanging leaf nodes with newly
arrived test attributes. It would be the most efficient way of
classification [17,18]. VFDT extends the Hoeffding tree
algorithm by separating the current best features based on a
user-specified threshold value [5].

B. VFDT

VFDT is a tree-based ML technique for DS based on the
Hoeffding bound () principles. The nodes represent the
features of the dataset. The edges indicate the different
possible outcomes for each attribute, and the leaf nodes
represent the dataset's class labels. Once the model is
complete, test data passes through it, and the decision tree will
determine the class label. Each instance is read one by one, it
is then sorted into the appropriate leaf, and the statistics are
updated [5,19].

At the leaf node, denote () as the heuristic measure of
attribute . The algorithm is used to determine the heuristic
measure (information gain ()) for all observed features after
reading the minimum number of instances () at that leaf.
Assume that and are the attributes with the best and
second-best after seeing pieces of data. The difference in
 between both the best and second best features (), =
 () − (), is compared to the after calculating it
according to Eq. 1. If > ε , then the attribute is the best
attribute of the current leaf node with a probability of 1− δ. A
node will replace that leaf, and there is a split on the best
feature .

 √
 (

)

 (1)

The feature is removed from the list of all features
when calculating the tested attributes in next iterations as
shown in Eq. (2), then the information gain for must be
calculated [20].

 = - . (2)

The statistics required for attribute splitting are stored in
each node. When two discrete attributes have similar split
gains or the highest and second-highest are not
significantly different, a tiebreak hyper parameter () is
introduced to enable tree growth. This is done by ignoring the
Hoeffding bound condition and checking if () − () < ε
< is true [18]. Because the two top attributes have extremely
comparable values, the algorithm can split into either of
them [21].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

647 | P a g e

www.ijacsa.thesai.org

The algorithm contains a set of fixed parameters that are
determined before the work of the algorithm begins. The
 parameter defines the minimum number of samples that
the algorithm must observe before computing. If there are
sufficient statistics for a good split; the default value is 200.
The parameter is utilized to break a tie in the event of a tie.
When the difference between the two features is tiny enough,
it suggests that both are equally as good. Therefore, waiting a
long time for more instances to make a split is pointless. The
 parameter denotes one minus the likelihood of selecting the
correct feature to split on. The researchers' default split
criterion is information gain or the Gini index [6].

C. Energy Consumption for VFDT Functions

It is necessary to identify the energy consumption at each

function level of the VFDT. The specific functions of the

VFDT are four key functions: , ,
 and . If all of the tree's instances can be

labeled with a single class, the homogenous() function returns

true. The leaf node's label is returned by the function.

The function encompasses all of the functions

involved in splitting an internal node into several children.

The best attribute to split on is returned by the

function. This can be accomplished in a variety of ways,

including by utilizing the information gain function [17].

IV. THEORETICAL MODEL OF UPGRADED U-VFDT

In this paper, U-VFDT is proposed to enhance the VFDT
and improve its overall performance, which VFDT is one of
the most well-known methods for handling data streams. The
splitting is performed based on the current best attributes,
whereas the algorithm determines the from all noticed
attributes after reading the at that leaf. This process is
considered one of the most energy-consuming processes in the
algorithm. In this case, the function performs
unnecessary operations that increase the wasted energy in the
algorithm.

The difference in between the top and the second-top
feature () is compared with the Hoeffding Bound (ε). If
> ε, the leaf is replaced by a node, and there is a split on the
best feature. That feature is deleted from the list of features
available to split on that branch. This method requires a
periodic check because the best attributes are prone to change.
The proposed method is introduced to limit the number of
checked attributes which are noticed at the leaf. Because the
of all features is calculated in each split, and it leads to
leveling up the algorithm's energy usage. The proposed
method introduces a dynamic mechanism for appropriate
features group through two basic steps.

The first step is adaptive appropriate features.

 At this step, the performance of all attributes is analyzed
to exclude the attributes with small , through calculating the
 for all attributes . If the for a specific attribute is less
than the of the best attribute by more than a difference of
ε ()- () , this attribute is ignored for that leaf. If
()- () ≤ ε , then the attribute is regarded as top feature.

The second step is appropriate features group.

At this step, the appropriate features group (is used in
each leaf node, which stores the top features selected at the
previous step, and excludes the bad ones. Therefore, the
surely has captured the true split attribute [19]. This method
leads to a reduction of the energy usage, because only
appropriate features information gain will be evaluated in each
split.

To implement this method, we assumed is the attribute
with highest , for any other attribute . is said to be
appropriate if () − () ≤ ε and is shown in the
appropriate group () , other features are removed.
After making a split on the best attribute , the algorithm
removes from the list of features in available to split on
that branch. In the next iteration, when algorithm calculates
for all tested attributes in next iterations , only the list of
attributes in the appropriate group will be recalculated, with
the deletion of as shown in Eq. 3.

 = - . (3)

In theory, this approach should improve accuracy, reduce
the number of calculations, and decrease the energy usage. It
will be shown during the practical application. In Algorithm 1,
a pseudo code displays the implementation of the U-VFDT
with appropriate features group.

Algorithm 1: The U-VFDT with appropriate features group
mechanism

Require:
 S : the stream of instances

 ε : Hoeffding bound

 : the error probability

 HT: Tree with a single leaf (the root)

 : set of attributes

 (·): split evaluation function

 : Appropriate features group

 : the tiebreak parameter set by the user

Ensure:
 Enhanced Very Fast Decision Tree

1. While stream is not empty do

2. Read instance from S

3. Sort to corresponding leaf l using ε

4. Update statistics at leaf l

5. Increment : instances seen at leaf l

6. If ≥ then

7. Compute

8. Compute () for each attribute

9. If ()- () ≤ ε then

10.

11. Calculate (.) ← () – ()

12. If (.) > ε

13. Split on best attribute and Replace l with a

node.

14. For each branch of the split do

15. Update new leaves,

16. Add New Leaf with empty

17. Let ← p-

18. End for

19. End if

20. End if

21. Else

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

648 | P a g e

www.ijacsa.thesai.org

22. Do not split

23. Do not update HT

24. End if
25. End while

V. EXPERIMENTS AND RESULTS

In this section, the mechanism is analyzed using reliable
datasets that have been utilized in previous researches, with
the goal of determining how big of an influence of our
algorithm; using the results of its prior efforts as a benchmark,
and comparing it with the results of proposed mechanism.

A. Datasets

The experiment was conducted on several different types
of datasets to see the impact of the proposed mechanism on
each of those data. There are real-world dataset, synthetic
dataset and real-world benchmarks datasets. These datasets
were chosen as a baseline for the standard behavior of the
algorithm. We obtained the real-world datasets from
https://archive.ics.uci.edu/theml/datasets.php.

 The airlines dataset is the real-world dataset. This
classification dataset divides flights into two categories:
delayed and not delayed, based on the flight's path and
departure and arrival airports. It has eight attributes. The
random tree dataset is a synthetic dataset that was created
using MOA (Massive Online Analysis).

The synthetic generator generated one million cases. The
last two datasets consist of real-world benchmarks, the first
one is abalone dataset and this study includes predicting the
age of abalone from physical measurements. The second one
is adult dataset, which predicts whether income exceeds fifty
thousand dollars per year based on census data. Their main
characteristics can be seen in Table I.

TABLE I. DATASETS SUMMARY

Datasets Name Type Instances
Numeric

features

Binary

features

1 airlines Real-world 539,383 3 5

2
random

tree
Artificial 1,000,000 5 5

3 abalone
Real-world

benchmark
4177 2 6

4 adult
Real-world

benchmark
48842 6 8

B. Tools

Massive Online Analysis (MOA) is a well-known
framework for developing algorithms and conducting
experiments. It has a number of ML methods, such as
classification, regression, clustering, concept drift detection,
and a recommender system. It also includes a number of
evaluation tools.

MOA can be employed with WEKA's many classification
and clustering approaches. It is used for online real-time
stream data, while WEKA is used for offline data [6,22]. The

MOA framework is running in parallel with IPPET (Intel(R)
Platform Power Estimation Tool) which can measure how
much power different processes are consuming.

A set of specifications for the device utilized in this
experiment is also included in the environment for practical
application, which impacts energy-related calculations such as
the operating system: Windows 7 professional 64-bit (6.1,
Build 7601), the processor: Intel(R) core(TM) i3-2350M CPU
@ 2.30GHz (4 CPUs), 2.3GHz, and memory: 4096MB
RAM.

C. Experimental Design

The primary goal of the model is to increase the efficiency
of VFDT. It focuses on understanding and developing the
functions of the algorithm that consume the most energy. An
efficient method has been proposed for selecting best
attributes which are used to perform splitting. It avoids the
calculation of the heuristic measure for unnecessary attributes
that consumes high energy.

To the best of our knowledge, there are no previous works
that have limited the energy consumption of the VFDT
except the reference [16]. It has set = in the ε equation as
shown in Eq. (4) to ensure that ≥ is satisfied during the
next iterations, resulting in a split.

 = ⌈
 (

)

⌉ (4)

The following is a comparative study of the practical
experiment between the performance of our method U-VFDT,
the standard algorithm VFDT, and this previous modification
on algorithm P-FVDT. Run-time, power, memory usage,
accuracy and energy are measured using four different
datasets.

1) Run-time of VFDT algorithms: There is a convergence

of execution time in our algorithm and other two algorithms as

shown in Fig. 1. The increase of examples in random tree

dataset leads to an increase in times of the heuristic measure

for all attributes; thus, increases the running time. The U-

VFDT achieves less time to reach the highest efficiency in

random tree dataset. The reason of this result is that U-VFDT

works on reducing those attributes that waste time. Also, adult

dataset contains a large number of features, so the proposed

method is effective in working to reduce these features.
U-VFDT does not achieve effective results in the other

two datasets due to two reasons. The first reason is the small
airlines dataset features, and the other reason is the few
examples of abalone dataset. Thus, our method is not efficient,
because it depends on reducing the number of features, where
time is wasted. Unlike the VFDT, the time increases
dramatically as soon as it receives new examples, whereas
heuristic measure is counted for each attribute of a new
example when it is received.

https://archive.ics.uci.edu/theml/datasets.php

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

649 | P a g e

www.ijacsa.thesai.org

 (a)

(b)

 (c)

 (d)

Fig. 1. Run time of VFDT algorithms for all datasets.

2) Power consumption of VFDT algorithms: As shown in

Fig. 2, lower power values of U-VFDT in some datasets, and

other higher values in other datasets. The power levels differ

in each algorithm, due to the difference in the nature of the

dataset in terms of its examples and features.
U-VFDT does not achieve an effective result in the

abalone dataset, because this dataset contains a small number

of examples. U-VFDT proves more efficiency than other two
algorithms for other datasets due to two reasons. The first
reason is the large number of examples for airlines and
random tree datasets, and the other reason is the large number
of features for adult dataset. Thus, our method is efficient,
because it depends on reducing the number of features.

(a)

(b)

(c)

(d)

Fig. 2. Power consumption of VFDT algorithms for all datasets.

6

6.5

7

U-VFDT P-VFDT VFDT

R
u

n
 t

im
e

(S
ec

)

VFDT Algorithms

Airlines Dataset

950
1000
1050
1100
1150

U-VFDT P-VFDT VFDT

R
u

n
 t

im
e

(S
ec

)

VFDT Algorithms

Random tree Dataset

0

0.05

0.1

U-VFDT P-VFDT VFDT

R
u

n
 t

im
e

(S
ec

)

VFDT Algorithms

Abalone Dataset

0

0.2

0.4

0.6

U-VFDT P-VFDT VFDT

R
u

n
 t

im
e

(S
ec

)

VFDT Algorithms

Adult Dataset

0.18

0.19

0.2

0.21

U-VFDT P-VFDT VFDT

p
o

w
er

 (
w

)

VFDT Algorithms

Airlines Dataset

2.2

2.4

2.6

2.8

U-VFDT P-VFDT VFDT
p

o
w

er
 (

w
)

VFDT Algorithms

Random tree Dataset

0

0.0002

0.0004

U-VFDT P-VFDT VFDT

p
o

w
er

 (
w

)

VFDT Algorithms

Abalone Dataset

0

0.2

0.4

U-VFDT P-VFDT VFDT

p
o

w
er

 (
w

)

VFDT Algorithms

Adult Dataset

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

650 | P a g e

www.ijacsa.thesai.org

3) Energy consumption of VFDT algorithms for all

datasets: U-VFDT succeeded in saving the extra time wasted,

which helped in saving energy significantly, based on the Eq.

(5). It saves energy only in datasets that contains many

examples and attributes, by ignoring the bad features that have

no chance of splitting.

 Energy = Power × Time (5)

VFDT makes high computations because of the heuristic
measure calculations for unnecessary attributes that is required
to make a split as shown in Fig. 3.

(a)

 (b)

(c)

 (d)

Fig. 3. Energy consumption of VFDT algorithms for all datasets.

4) Accuracy of VFDT algorithms: As shown in Fig. 4, U-

VFDT is maintaining the performance of the algorithm with

light impact on accuracy; this is for data with few features and

examples such as airlines and abalone datasets. On the

contrary, U-VFDT significantly affects the accuracy of the

algorithm, but in a greater proportion in the case of data

containing a large number of examples and features, such as

random tree and adult datasets, which is considered a

drawback in our method.

 (a)

 (b)

1.24

1.26

1.28

1.3

U-VFDT P-VFDT VFDT

En
er

gy
 (

J
)

VFDT Algorithms

Airlines Dataset

2400

2600

2800

3000

U-VFDT P-VFDT VFDT

En
er

gy
 (

J
)

VFDT Algorithms

Random tree Dataset

0

0.00001

0.00002

0.00003

U-VFDT P-VFDT VFDT

En
er

gy
 (

J
)

VFDT Algorithms

Abalone Dataset

0

0.1

0.2

U-VFDT P-VFDT VFDT

En
er

gy
 (

J
)

VFDT Algorithms

Adult Dataset

66

66.1

66.2

66.3

U-VFDT P-VFDT VFDT

A
cc

u
ra

cy
 (

%
)

VFDT Algorithms

Airlines Dataset

96
97
98
99

100

U-VFDT P-VFDT VFDT

A
cc

u
ra

cy
 (

%
)

VFDT Algorithms

Random tree Dataset

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

651 | P a g e

www.ijacsa.thesai.org

 (c)

 (d)

Fig. 4. Accuracy of VFDT algorithms for all datasets Accuracy (%).

5) Memory usage of VFDT algorithms: For memory

usage, an adult dataset contains a large number of attributes.

U-VFDT proves more efficiency than other two algorithms. It

achieves the least required memory for making a split as

shown in Fig. 5, which it excludes bad features, thus does not

perform any unnecessary operations.
In the random tree dataset, despite the large number of its

instances, U-VFDT does not achieve an effective result for it,
because this dataset contains noise and concept drift that
wastes memory. In the other two small datasets, our method
does not achieve an effective result, because it depends on
reducing the features.

 (a)

(b)

(c)

 (d)

Fig. 5. Memory usage of VFDT algorithms for all datasets.

The experiments clarify that U-VFDT has a better
performance than other two algorithms. The proposed
algorithm was limited to the heuristic measure of only the
good attributes, through which the split could take place. It
was excluded of bad attributes that are consuming massive
levels of memory, and energy as well as a large run-time.
Accordingly, the energy is decreased and the processes are
speed up, because of the reduction in both running time and
the memory usage. The limitation of this work is that it
consumes less energy only in the dataset with a large number
of instances and attributes. Also, it does not achieve an
effective result for the datasets with noise and concept drift.

51.2

51.4

51.6

51.8

U-VFDT P-VFDT VFDT

A
cc

u
ra

cy
 (

%
)

VFDT Algorithms

Abalone Dataset

78
80
82
84
86

U-VFDT P-VFDT VFDT

A
cc

u
ra

cy
 (

%
)

VFDT Algorithms

Adult Dataset

12

12.5

13

U-VFDT P-VFDT VFDTM
em

o
ry

 u
sa

ge
 (

M
B

)

VFDT Algorithms

Airlines Dataset

27

28

29

U-VFDT P-VFDT VFDT

M
em

o
ry

 u
sa

ge
 (

M
B

)

VFDT Algorithms

Random tree Dataset

0.8

1

1.2

1.4

U-VFDT P-VFDT VFDT

M
em

o
ry

 u
sa

ge
 (

M
B

)

VFDT Algorithms

Abalone Dataset

3.5
4

4.5
5

5.5

U-VFDT P-VFDT VFDT

M
em

o
ry

 u
sa

ge
 (

M
B

)

VFDT Algorithms

Adult Dataset

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 14, No. 1, 2023

652 | P a g e

www.ijacsa.thesai.org

The total computational complexity of the VFDT is
The computational complexity of the U-VFDT does not
exceed its value in the original algorithm, and still retains the
same value after modification, since it was .

VI. CONCLUSIONS

 This research developed a new technique to improve the
VFDT, which allows for an energy conservative algorithm to
construct Hoeffding trees without affecting their predictive
performance, resulting in lower energy consumption and
minor accuracy loss. In VFDT, after the splitting occurred,
and the leaf turned into a node, all of features are recalculated
to determine which splitting will occur through.

The proposed mechanism recalculates information gain for
only the list of attributes in the appropriate group, with the
deletion of the feature used for the previous split. It leads to
the reduction of unnecessary calculations of bad attributes.
Thus, an evolution occurred in the performance of the
algorithm in terms of saving time and memory and reducing
wasted energy consumption with maintaining the accuracy of
the algorithm.

Finally, the mentioned algorithms are compared in
different datasets with standard algorithm, and the previous
modification work. The U-VFDT used less energy than the
VFDT and the P-VFDT only in the datasets with large number
instances and attributes. It does not achieve effective results in
data that is small in size and has few features. The main work
is based on limiting the useless features, thus reducing the
number of unnecessary operations that increase running time,
energy and memory usage.

Further methods are offered for future work in order to
enable an energy-efficient method to build Hoeffding trees for
datasets with noise and concept drift without compromising
their predictive effectiveness.

REFERENCES

[1] Zheng, Xiulin, et al. "A survey on multi-label data stream
classification." IEEE Access 8 (2019): 1249-1275.

[2] Li, Xiangjun, et al. "A classification and novel class detection algorithm
for concept drift data stream based on the cohesiveness and separation
index of Mahalanobis distance." Journal of Electrical and Computer
Engineering 2020 (2020).

[3] Rad, Radin Hamidi, and Maryam Amir Haeri. "Hybrid forest: A concept
drift aware data stream mining algorithm." arXiv preprint
arXiv:1902.03609 (2019).

[4] Kok, S., et al. "A comparison of various machine learning algorithms in
a distributed denial of service intrusion." Int. J. Eng. Res. Technol 12.1
(2019): 1-7.

[5] Rutuja Jadhav, Neha Sharma “Classification Methods For Data Stream
Mining” vol.6. 2018.

[6] Ashish P. Joshi, Biraj V. Patel.” Comparative Study of Different
Classification Algorithms for Stream Data Mining Using MOA”
International Journal of Computer Sciences and Engineering.vol.6. 2018.

[7] Jia, Shuangying. "A VFDT algorithm optimization and application
thereof in data stream classification." Journal of Physics: Conference
Series. Vol. 1629. No. 1. IOP Publishing, 2020.

[8] Garcia-Martin, Eva, Niklas Lavesson, and Håkan Grahn. "Identification
of energy hotspots: A case study of the very fast decision
tree." International Conference on Green, Pervasive, and Cloud
Computing. Springer, Cham, 2017.

[9] Garcia-Martin, Eva, Niklas Lavesson, and Håkan Grahn. "Energy
efficiency analysis of the very fast decision tree algorithm." Trends in
Social Network Analysis (2017): 229-252.

[10] Dong, Z. J., et al. "Random forest based very fast decision tree algorithm
for data stream." Res. Paper 12 (2017): 52-57.

[11] Lyon, Robert J., et al. "Hellinger distance trees for imbalanced
streams." 2014 22nd International Conference on Pattern Recognition.
IEEE, 2014.

[12] Das, Ariyam, et al. "Learn Smart with Less: Building Better Online
Decision Trees with Fewer Training Examples." IJCAI. 2019.

[13] da Costa, Victor Guilherme Turrisi, André Carlos Ponce de Leon
Ferreira, and Sylvio Barbon Junior. "Strict very fast decision tree: a
memory conservative algorithm for data stream mining." Pattern
Recognition Letters 116 (2018): 22-28.

[14] Kathiresan, Gayathiri, Krishna Mohanta, and Khanaa VelumailuAsari.
"COMPACT: Classifying Stream Data Optimally Using a Modified
Pruning and Controlled Tie-threshold." vol.8. 2019.

[15] Liang, Chunquan, et al. "Learning accurate very fast decision trees from
uncertain data streams." International Journal of Systems Science 46.16
(2015): 3032-3050.

[16] García-Martín, Eva, et al. "Hoeffding Trees with nmin adaptation." 2018
IEEE 5th International Conference on Data Science and Advanced
Analytics (DSAA). IEEE, 2018.

[17] Krawczyk, Bartosz, et al. "Ensemble learning for data stream analysis: A
survey." Information Fusion 37 (2017): 132-156.

[18] Masrani, Aastha, Madhu Shukla, and Kishan Makadiya. "Empirical
Analysis of Classification Algorithms in Data Stream
Mining." International Conference on Innovative Computing and
Communications. Springer, Singapore, 2021.

[19] Desai, Sharmishta, et al. "Very fast decision tree (VFDT) algorithm on
Hadoop." 2016 International Conference on Computing Communication
Control and automation (ICCUBEA). IEEE, 2016.

[20] Sun, Jiang, et al. "Speeding up very fast decision tree with low
computational cost." Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence.
2021.

[21] Bifet, Albert, et al. "Extremely fast decision tree mining for evolving
data streams." Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2017.

[22] Srimani, P. K., and Malini M. Patil. "Performance analysis of Hoeffding
trees in data streams by using massive online analysis
framework." International Journal of Data Mining, Modelling and
Management 7.4 (2015): 293-313.

