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 Abstract—Traditional machine learning (ML) techniques 

model knowledge using static datasets. With the increased use of 

the Internet in today's digital world, a massive amount of data is 

generated at an accelerated rate that must be handled. This data 

must be handled as soon as it arrives because it is continuous, 

and cannot be kept for a long period of time. Various methods 

exist for mining data from streams. When developing methods 

like these, the machine learning community put accuracy and 

execution time first. Numerous sorts of studies take energy 

consumption into consideration while evaluating data mining 

methods. However, this work concentrates on Very Fast Decision 

Tree, which is the most often used technique in data 

flow classification, despite the fact that it wastes a huge amount 

of energy on trivial calculations. The research presents a 

proposed mechanism for upgrading the algorithm's energy usage 

and restricts computational resources, without compromising the 

algorithm's efficiency. The mechanism has two stages: the first is 

to eliminate a set of bad features that increase computational 

complexity and waste energy, and the second is to group the good 

features into a candidate group that will be used instead of using 

all of the attributes in the next iteration. Experiments were 

conducted on real-world benchmark and synthetic datasets to 

compare the proposed method to state-of-the-art algorithms in 

previous works. The proposed algorithm works considerably 

better and faster with less energy while maintaining accuracy. 

Keywords—Classification; energy consumption; Hoeffding 

bound; Information gain; massive online analysis;  stream data; 

very fast decision tree 

I. INTRODUCTION 

In recent years, the amount of generated data is growing 
significantly. This data is made up of n (n → ∞) data samples, 
and it is described as a series of ordered data sequences, with 
starting and stopping bytes. Data stream (DS) = {  ,   , ... , 
  , ... ,   }, where   denotes the most recently visible data 
object in a stream of data [1]. Because the samples arrive in 
the form of continuous data flow at a great speed, the 
traditional classifiers cannot access the data instances in real-
time [2]. The instances can only be scanned once or stored for 
a short period of time, so an ideal data stream classifier must 
be well prepared to deal with a large number of instances in 
real-time for better classification performance [1,3]. Data 
stream mining is a subset of machine learning that involves 
examining data flows that are continuously expanding as time 
series and developing a classification algorithm based on 
them. It is highly different from traditional data mining in 

terms of processing the mining operation, but it is similar to it 
in terms of purpose [2].   

Machine Learning (ML) techniques consist of three types: 
unsupervised, semi-supervised, and supervised. Unsupervised 
algorithms can operate with unlabeled data; the data is 
clustered into groups with similar characteristics. Semi-
supervised algorithms partially work with labeled data [4]. 
Supervised algorithms require data to be labeled, which they 
can categorize the data according to a distinct pattern for each 
class based on the label, such as data stream classification 
algorithms [5].  

Very Fast Decision Tree (VFDT) is an effective 
classification technique for DS classification, and it has a high 
level of classification accuracy. It builds the decision tree by 
learning examples in real-time at a reasonable cost, and its 
sequential feature can match the data stream's timeliness 
requirement. To dynamically generate the decision tree, it is 
based on the enhancement of the Hoefdding tree. The 
Hoeffding bound ( ) is used to make sure that the data utilized 
to build each sub tree contains enough information [6,7].  

The algorithm determines the information gain ( ) for all 
noticed attributes after reading the minimum number of 
examples (    ) at that leaf. The two top features 
are received through using the 
function                        . The difference between 
these features is compared with the  , which was calculated 
previously. As a result, if the difference exceeds the   , there 
will be a split on the tree by changing the leaf with a new 
internal node. This function is considered among the functions 
with the highest energy in the algorithm [8,9]. This point is 
considered the main problem that the paper solves. Therefore, 
the proposed mechanism focuses on working to reduce bad 
features that take a lot of energy when calculating their  , 
without impacting on the performance of algorithm. These are 
the motivations and objectives for our mechanism:     

1) Decrease the amount of calculations by reducing 

undesirable features on each leaf. 

2) Maintain the same level of accuracy by deleting just 

the computations that aren't necessary. 
The rest of this paper is structured as follows: Section II 

clarifies related work. Section III introduces the background. 
Our algorithm and the corresponding theoretical derivation are 
explained in Section IV. Experiments and results are covered 
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in Section V. Finally, the paper is concluded with the 
conclusions and the future work in Section VI.  

II. RELATED WORK 

Many works have gone into improving the VFDT in 
various ways. The Random Forest algorithm was created by 
Dong Zhenjiang and Li Lingjuan [10], it is a combinational 
classifier that performs well in terms of classification. It is 
made up of multiple decision trees, and it can compensate for 
the lack of a single decision tree. This technique upgrades the 
Random Forest algorithm by sliding the time window to 
match the unlimited data streams, and introduces the criterion 
of constructing decision trees in the random forest classifier. 
The limitation of this study is that it improves the accuracy 
levels without trying to improve other evaluation criteria. 

 R. J. Lyon et al. proposed the GH-VFDT, a novel 
classification technique for unbalanced data flows. The 
Hellinger distance was combined with a stream classifier 
depending on the Hoeffding bound in an empirical study. 
They can be combined to create a skew-insensitive decision 
tree split criterion that enhances minority class recall rates 
significantly. On unbalanced data, the algorithm can 
successfully enhance minority class recall rates, with same 
performance levels [11]. 

In the research [12], Ariyam Das et al. presented a 
memory-efficient bootstrap simulation heuristic (Mem-ES) 
that effectively accelerates the learning process. Experiments 
show that performing resampling techniques efficiently speeds 
up node splits for online decision tree learning. 

Victor Guilherme Turrisi da Costa et al.  proposed two 
versions of a novel VFDT-based algorithm, SVFDTs were 
developed to minimize the size of VFDT-induced trees, 
resulting in a memory-conserving decision tree. Both SVFDTs 
produce trees that are substantially smaller than those 
produced by the VFDT, while it doesn't reduce prediction 
performance statistically [13].  

Gayathiri Kathiresan and Krishna Mohanta [14] present 
the compact method that uses the adaptive reservoir sampling 
methodology. It helps to reduce memory usage, and handle 
unbalanced stream data by restricting the information gain 
deviation based on the improved splitting metric in the 
information gain measurement. The limitation of this study is 
that it applied the proposed method to only one dataset, 
neglecting the other types of datasets with different 
characteristics, in order to determine the reliability of the 
findings. 

Liang, Chunquan et al. use the Hoeffeding bound theory 
and the Uncertain Naive Bayes classifier (UNB) to improve 
the speed of construction and classification performance. They 
use gradual pruning and an adaptive tie-breaking criterion 
[15]. In a different study, Eva Garcia et al. proposed the nmin 
adaptation approach to enhance parameter adaptation in 
Hoeffding trees. They dynamically adjust the total amount of 
examples needed to make a split, this approach saves energy. 
The limitation of this study is that the nmin adaption method 
adjusts to the best nmin parameter based on the assumption, 
that newly received data would maintain the same distribution 
as previously seen data [16].  

III. BACKGROUND 

A. Hoeffding Tree 

There are several types of supervised classification 
techniques: k-Nearest Neighbor (kNN), Neural Network, 
Support Vector Machine (SVM), Naïve Bayes (NB) and 
Decision Tree (DT). Hoeffding tree algorithm is an extension 
of the decision tree algorithm for performing DS 
classification. It reads data in a single pass, and builds model 
  =   ( ) that maps test example   to class  . Every node 
represents a class feature, and each leaf represents the 
forecasted class label for that node. Beginning from the root 
node, the DT grows by exchanging leaf nodes with newly 
arrived test attributes. It would be the most efficient way of 
classification [17,18]. VFDT extends the Hoeffding tree 
algorithm by separating the current best features based on a 
user-specified threshold value [5]. 

B. VFDT 

VFDT is a tree-based ML technique for DS based on the 
Hoeffding bound ( ) principles. The nodes represent the 
features of the dataset. The edges indicate the different 
possible outcomes for each attribute, and the leaf nodes 
represent the dataset's class labels. Once the model is 
complete, test data passes through it, and the decision tree will 
determine the class label. Each instance is read one by one, it 
is then sorted into the appropriate leaf, and the statistics are 
updated [5,19]. 

At the leaf node, denote  (  ) as the heuristic measure of 
attribute   . The algorithm is used to determine the heuristic 
measure (information gain ( )) for all observed features after 
reading the minimum number of instances (    ) at that leaf. 
Assume that   and    are the attributes with the best and 
second-best   after seeing   pieces of data. The difference in 
  between both the best and second best features (  ),    = 
 (  ) −  (  ), is compared to the   after calculating it 
according to Eq. 1. If    > ε , then the attribute    is the best 
attribute of the current leaf node with a probability of 1− δ. A 
node will replace that leaf, and there is a split on the best 
feature   .    

                               √
    (

 

 
)

  
 (1) 

The feature    is removed from the list of all features   
when calculating the tested attributes in next iterations     as 
shown in Eq. (2), then the information gain for    must be 
calculated [20]. 

                                    =   -   . (2) 

The statistics required for attribute splitting are stored in 
each node. When two discrete attributes have similar split 
gains   or the highest and second-highest   are not 
significantly different, a tiebreak hyper parameter ( ) is 
introduced to enable tree growth. This is done by ignoring the 
Hoeffding bound condition and checking if  (  ) −  (  ) < ε 
<   is true [18]. Because the two top attributes have extremely 
comparable   values, the algorithm can split into either of 
them [21].   
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The algorithm contains a set of fixed parameters that are 
determined before the work of the algorithm begins. The 
     parameter defines the minimum number of samples that 
the algorithm must observe before computing. If there are 
sufficient statistics for a good split; the default value is 200. 
The parameter   is utilized to break a tie in the event of a tie. 
When the difference between the two features is tiny enough, 
it suggests that both are equally as good. Therefore, waiting a 
long time for more instances to make a split is pointless. The 
  parameter denotes one minus the likelihood of selecting the 
correct feature to split on. The researchers' default split 
criterion is information gain or the Gini index [6]. 

C. Energy Consumption for VFDT Functions 

It is necessary to identify the energy consumption at each 

function level of the VFDT. The specific functions of the 

VFDT are four key functions:              ,        , 
        and            . If all of the tree's instances can be 

labeled with a single class, the homogenous() function returns 

true. The leaf node's label is returned by the         function. 

The         function encompasses all of the functions 

involved in splitting an internal node into several children. 

The best attribute to split on is returned by the         

function. This can be accomplished in a variety of ways, 

including by utilizing the information gain function [17].  

IV. THEORETICAL MODEL OF UPGRADED U-VFDT 

In this paper, U-VFDT is proposed to enhance the VFDT 
and improve its overall performance, which VFDT is one of 
the most well-known methods for handling data streams. The 
splitting is performed based on the current best attributes, 
whereas the algorithm determines the   from all noticed 
attributes after reading the      at that leaf. This process is 
considered one of the most energy-consuming processes in the 
algorithm. In this case, the              function performs 
unnecessary operations that increase the wasted energy in the 
algorithm.  

The difference in   between the top and the second-top 
feature (  ) is compared with the Hoeffding Bound (ε). If    
> ε, the leaf is replaced by a node, and there is a split on the 
best feature. That feature is deleted from the list of features 
available to split on that branch. This method requires a 
periodic check because the best attributes are prone to change. 
The proposed method is introduced to limit the number of 
checked attributes which are noticed at the leaf. Because the   
of all features is calculated in each split, and it leads to 
leveling up the algorithm's energy usage. The proposed 
method introduces a dynamic mechanism for appropriate 
features group through two basic steps.   

The first step is adaptive appropriate features. 

 At this step, the performance of all attributes is analyzed 
to exclude the attributes with small  ,  through calculating the 
  for all attributes . If the   for a specific attribute    is less 
than the   of the best attribute    by more than a difference of 
ε   (  )- (  )   , this attribute is ignored for that leaf. If   
(  )-  (  ) ≤  ε , then the attribute is regarded as top feature.   

The second step is appropriate features group. 

At this step, the appropriate features group (   is used in 
each leaf node, which stores the top   features selected at the 
previous step, and excludes the bad ones. Therefore, the   
surely has captured the true split attribute [19]. This method 
leads to a reduction of the energy usage, because only 
appropriate features information gain will be evaluated in each 
split. 

To implement this method, we assumed    is the attribute 
with highest  , for any other attribute   .     is said to be 
appropriate if  (  ) −  (  ) ≤ ε and    is  shown in the 
appropriate group   (       ) , other features are removed. 
After making a split on the best attribute   , the algorithm 
removes    from the list of features in   available to split on 
that branch. In the next iteration, when algorithm calculates    
for all tested attributes in next iterations    , only the list of 
attributes in the appropriate group will be recalculated, with 
the deletion of    as shown in Eq. 3. 

                                       =  -  . (3) 

In theory, this approach should improve accuracy, reduce 
the number of calculations, and decrease the energy usage. It 
will be shown during the practical application. In Algorithm 1, 
a pseudo code displays the implementation of the U-VFDT 
with appropriate features group. 

Algorithm 1: The U-VFDT with appropriate features group 
mechanism 

Require: 
         S : the stream of instances 

         ε : Hoeffding bound       

          : the error probability  

        HT: Tree with a single leaf (the root) 

         : set of attributes 

         (·): split evaluation function 

           :  Appropriate features group 

          : the tiebreak parameter set by the user 

Ensure: 
         Enhanced Very Fast Decision Tree 

1.  While stream is not empty do 

2.      Read instance    from S 

3.      Sort    to corresponding leaf l using ε 

4.      Update statistics at leaf l 

5.      Increment  : instances seen at leaf l 

6.      If         ≥       then   

7.  Compute      

8.   Compute   (  ) for each attribute     

9.           If  (  )- (  ) ≤  ε then 

10.                      

11.              Calculate    (.) ←   (  ) –   (  ) 

12.              If    (.) > ε 

13.                Split on best attribute    and Replace l with a 

node. 

14.                      For each branch of the split do 

15.      Update new leaves,  

16.      Add New Leaf     with empty    

17.      Let   ← p-   

18.                End for 

19.              End if  

20.   End if 

21.     Else  
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22.   Do not split  

23.   Do not update HT          

24.     End if  
25.  End while 

V. EXPERIMENTS AND RESULTS 

In this section, the mechanism is analyzed using reliable 
datasets that have been utilized in previous researches, with 
the goal of determining how big of an influence of our 
algorithm; using the results of its prior efforts as a benchmark, 
and comparing it with the results of proposed mechanism. 

A. Datasets 

The experiment was conducted on several different types 
of datasets to see the impact of the proposed mechanism on 
each of those data. There are real-world dataset, synthetic 
dataset and real-world benchmarks datasets. These datasets 
were chosen as a baseline for the standard behavior of the 
algorithm. We obtained the real-world datasets from 
https://archive.ics.uci.edu/theml/datasets.php.   

 The airlines dataset is the real-world dataset. This 
classification dataset divides flights into two categories: 
delayed and not delayed, based on the flight's path and 
departure and arrival airports. It has eight attributes. The 
random tree dataset is a synthetic dataset that was created 
using MOA (Massive Online Analysis).  

The synthetic generator generated one million cases. The 
last two datasets consist of real-world benchmarks, the first 
one is abalone dataset and this study includes predicting the 
age of abalone from physical measurements. The second one 
is adult dataset, which predicts whether income exceeds fifty 
thousand dollars per year based on census data. Their main 
characteristics can be seen in Table I. 

TABLE I. DATASETS SUMMARY 

Datasets Name Type Instances 
Numeric 

features 

Binary 

features 

1 airlines Real-world 539,383 3 5 

2 
random 

tree 
Artificial 1,000,000 5 5 

3 abalone 
Real-world 

benchmark 
4177 2 6 

4 adult 
Real-world 

benchmark 
48842 6 8 

B. Tools 

Massive Online Analysis (MOA) is a well-known 
framework for developing algorithms and conducting 
experiments. It has a number of ML methods, such as 
classification, regression, clustering, concept drift detection, 
and a recommender system. It also includes a number of 
evaluation tools. 

MOA can be employed with WEKA's many classification 
and clustering approaches. It is used for online real-time 
stream data, while WEKA is used for offline data [6,22]. The 

MOA framework is running in parallel with IPPET (Intel(R) 
Platform Power Estimation Tool) which can measure how 
much power different processes are consuming. 

A set of specifications for the device utilized in this 
experiment is also included in the environment for practical 
application, which impacts energy-related calculations such as 
the operating system: Windows 7 professional 64-bit (6.1, 
Build 7601), the processor: Intel(R) core(TM) i3-2350M CPU 
@ 2.30GHz (4 CPUs),    2.3GHz, and memory: 4096MB 
RAM. 

C. Experimental Design 

The primary goal of the model is to increase the efficiency 
of VFDT. It focuses on understanding and developing the 
functions of the algorithm that consume the most energy. An 
efficient method has been proposed for selecting best 
attributes which are used to perform splitting. It avoids the 
calculation of the heuristic measure for unnecessary attributes 
that consumes high energy.  

To the best of our knowledge, there are no previous works 
that have limited the energy   consumption of the VFDT 
except the reference [16]. It has set   =    in the ε equation as 
shown in Eq. (4) to ensure that    ≥   is satisfied during the 
next iterations, resulting in a split. 

                               =   ⌈
       (

 

 
)

      
⌉ (4) 

The following is a comparative study of the practical 
experiment between the performance of our method U-VFDT, 
the standard algorithm VFDT, and this previous modification 
on algorithm P-FVDT. Run-time, power, memory usage, 
accuracy and energy are measured using four different 
datasets. 

1) Run-time of VFDT algorithms: There is a convergence 

of execution time in our algorithm and other two algorithms as 

shown in Fig. 1. The increase of examples in random tree 

dataset leads to an increase in times of the heuristic measure 

for all attributes; thus, increases the running time. The U-

VFDT achieves less time to reach the highest efficiency in 

random tree dataset. The reason of this result is that U-VFDT 

works on reducing those attributes that waste time. Also, adult 

dataset contains a large number of features, so the proposed 

method is effective in working to reduce these features. 
U-VFDT does not achieve effective results in the other 

two datasets due to two reasons. The first reason is the small 
airlines dataset features, and the other reason is the few 
examples of abalone dataset. Thus, our method is not efficient, 
because it depends on reducing the number of features, where 
time is wasted. Unlike the VFDT, the time increases 
dramatically as soon as it receives new examples, whereas 
heuristic measure is counted for each attribute of a new 
example when it is received.  

https://archive.ics.uci.edu/theml/datasets.php
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 (a) 

 
(b) 

 
 (c) 

 
 (d) 

Fig. 1. Run time of VFDT algorithms for all datasets. 

2) Power consumption of VFDT algorithms: As shown in 

Fig. 2, lower power values of U-VFDT in some datasets, and 

other higher values in other datasets. The power levels differ 

in each algorithm, due to the difference in the nature of the 

dataset in terms of its examples and features.  
U-VFDT does not achieve an effective result in the 

abalone dataset, because this dataset contains a small number 

of examples. U-VFDT proves more efficiency than other two 
algorithms for other datasets due to two reasons. The first 
reason is the large number of examples for airlines and 
random tree datasets, and the other reason is the large number 
of features for adult dataset. Thus, our method is efficient, 
because it depends on reducing the number of features. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Power consumption of VFDT algorithms for all datasets. 
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3) Energy consumption of VFDT algorithms for all 

datasets: U-VFDT succeeded in saving the extra time wasted, 

which helped in saving energy significantly, based on the Eq. 

(5). It saves energy only in datasets that contains many 

examples and attributes, by ignoring the bad features that have 

no chance of splitting. 

                   Energy = Power × Time (5) 

VFDT makes high computations because of the heuristic 
measure calculations for unnecessary attributes that is required 
to make a split as shown in Fig. 3. 

  
(a) 

 
 (b) 

 
(c) 

 
 (d) 

Fig. 3. Energy consumption of VFDT algorithms for all datasets. 

4) Accuracy of VFDT algorithms: As shown in Fig. 4, U-

VFDT is maintaining the performance of the algorithm with 

light impact on accuracy; this is for data with few features and 

examples such as airlines and abalone datasets. On the 

contrary, U-VFDT significantly affects the accuracy of the 

algorithm, but in a greater proportion in the case of data 

containing a large number of examples and features, such as 

random tree and adult datasets, which is considered a 

drawback in our method. 
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 (c) 

 
 (d) 

Fig. 4. Accuracy of VFDT algorithms for all datasets Accuracy (%). 

5) Memory usage of VFDT algorithms: For memory 

usage, an adult dataset contains a large number of attributes. 

U-VFDT proves more efficiency than other two algorithms. It 

achieves the least required memory for making a split as 

shown in Fig. 5, which it excludes bad features, thus does not 

perform any unnecessary operations. 
In the random tree dataset, despite the large number of its 

instances, U-VFDT does not achieve an effective result for it, 
because this dataset contains noise and concept drift that 
wastes memory. In the other two small datasets, our method 
does not achieve an effective result, because it depends on 
reducing the features. 

 
 (a) 

 
(b) 

 
(c) 

 
 (d) 

Fig. 5. Memory usage of VFDT algorithms for all datasets. 

The experiments clarify that U-VFDT has a better 
performance than other two algorithms. The proposed 
algorithm was limited to the heuristic measure of only the 
good attributes, through which the split could take place. It 
was excluded of bad attributes that are consuming massive 
levels of memory, and energy as well as a large run-time. 
Accordingly, the energy is decreased and the processes are 
speed up, because of the reduction in both running time and 
the memory usage. The limitation of this work is that it 
consumes less energy only in the dataset with a large number 
of instances and attributes. Also, it does not achieve an 
effective result for the datasets with noise and concept drift.   
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The total computational complexity of the VFDT is       
The computational complexity of the U-VFDT does not 
exceed its value in the original algorithm, and still retains the 
same value after modification, since it was      . 

VI. CONCLUSIONS 

 This research developed a new technique to improve the 
VFDT, which allows for an energy conservative algorithm to 
construct Hoeffding trees without affecting their predictive 
performance, resulting in lower energy consumption and 
minor accuracy loss. In VFDT, after the splitting occurred, 
and the leaf turned into a node, all of features are recalculated 
to determine which splitting will occur through.  

The proposed mechanism recalculates information gain for 
only the list of attributes in the appropriate group, with the 
deletion of the feature used for the previous split. It leads to 
the reduction of unnecessary calculations of bad attributes. 
Thus, an evolution occurred in the performance of the 
algorithm in terms of saving time and memory and reducing 
wasted energy consumption with maintaining the accuracy of 
the algorithm.  

Finally, the mentioned algorithms are compared in 
different datasets with standard algorithm, and the previous 
modification work. The U-VFDT used less energy than the 
VFDT and the P-VFDT only in the datasets with large number 
instances and attributes. It does not achieve effective results in 
data that is small in size and has few features. The main work 
is based on limiting the useless features, thus reducing the 
number of unnecessary operations that increase running time, 
energy and memory usage. 

Further methods are offered for future work in order to 
enable an energy-efficient method to build Hoeffding trees for 
datasets with noise and concept drift without compromising 
their predictive effectiveness. 
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