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Abstract—Rao-Blackwellized particle filter (RBPF) algorithm 

aims to solve the Simultaneous Localization and Mapping 

(SLAM) problem. The performance of RBPF is based on the 

number of particles. The higher the number of particles, the 

better the performance of RBPF. However, higher number of 

particles required high memory and computational cost. 

Nevertheless, the number of particles can be reduced by using 

high-end sensor. By using high-end sensor, high performance of 

RBPF can be achieved and reduced the number of particles. But 

the development of the robot came at a high cost. A robot can be 

equipped with low-cost sensor in order to reduce the overall cost 

of the robot. However, low-cost sensor presented challenges of 

creating good map accuracy due to the low accuracy of the 

sensor measurement. For that reason, RBPF is integrated with 

artificial neural network (ANN) to interpret noisy sensor 

measurements and achieved better accuracy in SLAM. In this 

paper, RBPF integrated with ANN is experimented by using 

Turtlebot3 in real-world experiment. The experiment is 

evaluated by comparing the resulting maps estimated by RBPF 

with ANN and RBPF without ANN. The results show that RBPF 

with ANN has increased the performance of SLAM by 25.17% 

and achieved 10 out of 10 trials of closed loop map by using only 

30 particles compared to RBPF without ANN that needs 400 

particles to achieve closed loop map. In conclusion, it shows that, 

SLAM performance can be improved by integrating RBPF 

algorithm with ANN and reduces the number of particles. 

Keywords—SLAM; occupancy grid map; Rao-Blackwellized 

particle filter; artificial neural network; laser distance sensor 

I. INTRODUCTION  

Simultaneous localization and mapping (SLAM) plays an 
important role in robotics, and particularly in a mobile robot 
system. SLAM's primary objective is to jointly measure the 
robot 's position as well as map the surrounding of the robot 
[1]–[5]. The essential of the SLAM algorithm is to map the 
unknown environment and at the same time exploring the 
environment. Then, the resulting maps can be used for various 
applications such as autonomous navigation and search and 
rescue. 

SLAM algorithm commonly used the occupancy grid map 
(OGM) as a map representation. The maps generate precise 
metric maps that are close to the detail environmental 
representations [6]–[8]. This maps require an accurate position 
of the robot, which makes it a difficult process because of the 
lack of efficiency of odometric system. The map generated 

using raw odometry data only as the position of the robot 
cannot be sustain and suffers a serious error due to the dead 
reckoning of odometry system [9]. But these problem can be 
improved by using Rao-Blackwellized particle filter (RBPF) 
which can compute more accurate position of the robot. The 
map is more accurate and globally consistent using RBPF 
approach. The accuracy of RBPF algorithm is based on the 
number of particles that required high memory and 
computational cost [10]–[13]. The higher the number of 
particles, the more accurate the robot's position and map 
construction. Therefore it required high memory usage and 
computational cost to solve the SLAM problem with 
occupancy grid. 

In addition, to achieve high accuracy of occupancy grid 
map, many notable research have carried out SLAM using 
high-end sensor to achieve high accuracy map [11], [14]–[18]. 
Nevertheless, the development of the robot came at a high cost. 
Therefore, a low-cost sensor could be incorporated to the robot 
as an alternative to reduce the cost. However, low-cost sensors 
presented challenges of creating good map accuracy. This is 
due to the low measurement accuracy of the sensors, which can 
affect map construction. This problem can be solved by 
integrating the SLAM technique which is RBPF algorithm with 
an artificial neural network (ANN) while using low-cost 
sensors. ANN has been used with occupancy grid maps to 
interpret noisy sensor measurements and achieved better 
accuracy of the map [5], [19], [20]. Furthermore, [19] and [5] 
also shows the number of particles can be reduced with better 
accuracy of the sensor measurement. Therefore, ANN 
integrated with RBPF algorithm can reduce the computational 
cost of the particle filter and achieve better accuracy of OGM. 
Hence, in this paper, ANN integrated with RBPF algorithm is 
introduced to improve the sensor measurement and enhance the 
SLAM technique by using only low-cost sensor. 

This paper aims to reduce the number of particles 
consumption by improving the measurement accuracy of a 
low-cost laser distance sensor (LDS) and subsequently improve 
the performance of the SLAM algorithm by incorporating 
ANN technique with RBPF algorithm. The organization of this 
paper is as follows: Section 2 reviews the past studies related to 
the RBPF, sensor measurements accuracy and ANN. Section 3 
describes the methodology of the ANN model training and 
RBPF algorithm framework intgerated with ANN. Section 4 
analyzes the performance of ANN model after the training and 
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reports the results of the RBPF algorithm after integrating with 
ANN. Lastly, section 5 concludes the finding of this paper. 

II. RELATED WORK 

The Rao-Blackwellized Particle Filter, also referred to 
RBPF is employed in the grid-based SLAM algorithm. RBPF 
is a version of particle filter-based SLAM which is an effective 
implementation of particle filter-based SLAM. By using 
Gaussian substructures in the model, RBPF improves the 
efficiency of the particle filter algorithm [21]. In this approach, 
RBPF approximates the belief distribution of the robot's pose, 
while each particle keeps an individual map of the 
environment. as dipicted in Fig. 1. The main contribution of 
this method is reducing the number of particles used [21]–[24]. 
This method uses only the most recent observation as well as 
the most accurate proposal distribution. This can greatly reduce 
the robot pose uncertainty during filter‟s prediction step. In 
addition, the resampling operation is performed selectively in 
order to address the particle depletion problem. For example in 
[25], to achieve high accuracy of grid-based SLAM, the 
classical particle filter required 10000 particles while in [9], 
RBPF only need 100 particles to achieve high accuracy of 
SLAM. One of the ROS package implement RBPF algorithm 
is Gmapping package [26]–[32]. However, since RBPF is 
based on particle filter-based SLAM, the performance of the 
algorithm relies on the number of particles. The higher the 
number of particles, the better is the SLAM performance. This 
is due to the computation of RBPF itself is based on probability 
distribution. The higher the number of particles, the higher is 
the probability to estimate the correct poses and map. As a 
result, better accuracy of SLAM can be achieved. As in [10], 
the author shows that with higher number of particles, the map 
constructed is more accurate than the lower number of 
particles. 

 
Fig. 1. Each particles contains a hypothesis of robot pose and maintain its 

own map [10] 

A consistent grid-based SLAM algorithm capable to 
perform loop closure in an unstructured environment. But it 
requires high precision of the laser scanner to obtain the best 
hypothesis to build the grid map of the environment. The high 
precision sensor measurement also can reduce the number of 
particle usage. For example in [30] and [32], both paper used 
gmapping package and used the default number of particles 
which is 30. In [30] the authors successfully achieve high 
accuracy SLAM by using Hokuyo urg-04lx-ug01 2D lidar 
which is in high-cost sensor category. While in [32], the map 
produced is not very accurate since the author only used RGB-
D sensor Kinect of Xbox 360 which is low-cost sensor to 

perform the SLAM task. But as mention before, low-accuracy 
SLAM can be mitigated by increasing number of particles. In 
[10], the author increased the number of particles to 500 to 
achieve better accuracy SLAM since they used low-cost 
sensor. However, higher number of particles might suffer from 
forbidding memory burden and higher computational cost. This 
problem can be overcome by integrating the SLAM technique 
with an artificial neural network (ANN) while using low-cost 
sensors [5], [19], [20], [33]. The noisy dataset from the sensor 
of the mobile robot are used to train the ANN learner. 
Afterwards, the ANN model is then applied in the RBPF 
SLAM algorithm to execute the SLAM task. 

In this paper, there are two strategies of dataset that have 
been reviewed to train the ANN network. Firstly, the training 
network using the position of each of the grid cells of OGM 
[5], [19], [33]. Secondly, by using the distance from sensor to 
obstacles [20]. Firstly, in [19], the author collect the dataset 
from the front six infrared sensor of E-puck mobile robot as 
depicted in Fig. 2. Then, the dataset is used as the input layer of 
the ANN training as shown in ANN configuration in Fig. 3. 
This ANN is trained to estimate the occupancy probability 
value x, y position of the cell. The same architecture of ANN is 
used in [5], [33]. The authors used the front four sensors‟ 
measurements of Khepera III robot that are closest to the cell 
position as the input of ANN. The same target output of the 
ANN model which is x and y position of the OGM„s cell (   ) 

are used to train the input as shown in Fig. 3. 

 
Fig. 2. E-puck mobile robot is equipped with eight infrared sensors [19] 

 
Fig. 3. A nine-input ANN consisting of infrared sensors, cell position and 

heading of the robot [19] 
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While in [20], the dataset is collected based on the reading 
of the sensor values that contain the estimated distance to 
obstacle. Then this dataset is trained using ANN to correct the 
distance measurement to the obstacles by using the real 
distance as the target output of the ANN. The grid map for the 
observed region is then built using this corrected measurement. 
To compute the grid map estimation in this region, only two 
values are taken into account: 0 for open space and 1 for 
occupied space (i.e., objects in the space). In the context of 
computation time, estimation of ANN by using distance to the 
obstacles is considered faster [20] than estimation by using 
each of the grid cells [5], [19], [33]. This is due to the 
estimation by distance does not evaluate cell by cell and only 
taking value 0 and 1 as mention above. While in the latter 
approach, the estimation of the map computes each cell of the 
region by calculating x and y cell‟s occupancy value of the 
OGM. Cell by cell evaluation can cause slow computation time 
especially in large environment that required many cells to 
build the OGM. Hence, real time implementation is not 
feasible. Therefore, ANN based on the distance is implemented 
in this paper since it is faster and more suitable for real-time 
implementation due to the computation does not require for 
each grid cell but for the entire detected region. The presented 
methods of ANN training are summarized in Table I. 

TABLE I.  COMPARISON OF ANN TRAINING METHOD 

ANN training 

method 
Input/Output Pros/Cons 

Based on cell-by-

cell OGM 

Input: Multiple sensor 

measurement value, cell 

position (x, y) and robot 

heading,   

Target output: Occupancy 

probability value 

Pros: Exploit adjacent 

sensor measurements and 

less depending on 

accuracy of the sensor 

Cons: slow computation 

Based on distance 

Input: Sensor 

measurement value 

Target output: Actual 

distance 

Pros: Fast computation 

Cons: more depending on 

accuracy of the sensor 

III. METHODOLOGY 

For the methodology phase, the operation is divided into 
four phases which is sensor data collection, ANN training, 
ANN model integrated with RBPF algorithm and lastly, 
evaluation of the resulting map. Firstly, the LDS data points 
from the laser distance sensor LDS-01 are collected. The data 
points are collected from the real-world sensor. These data are 
collected between the range measurement of 0.12 to 3.5m as 
shown in Fig. 4(a). At each interval of 0.1m, 2000 
measurements were collected. Since LDS-01 sensor is capable 
to sense 360 degree of the surrounding, the data are taken only 
at 0 degree. This is because only the measurement at 0 degrees 
is perpendicular to the wall as shown in Fig. 4(b). The 
measurements at other degrees facing the wall would not be 
precisely equal to the ground truth but at longer range as they 
are slightly slanted towards the wall. Then, these data were 
used as the input of the ANN training. The actual distance 
between the mobile robot and the wall was used as the 
reference or target output. 

After the data collection, these data are trained to build 
ANN model in the second phase. This ANN training employs a 
multilayer feed-forward network. The architecture of the 

network is made up of an input layer, a hidden layer and a 
single neuron for outputclayer as depicted in Fig. 5. In this 
paper, a tangent sigmoidal activation function and a linear 
transfer function were used for the hidden and output layers, 
respectively. 

 
(a) Turtlebot3 position ranging from 0.05m to 3.5m 

 
(b) Turtlebot3 position at 0° 

Fig. 4. Position of the turtlebot3 to the wall in real-world experiment 

 
Fig. 5. Architecture of ANN model training 

After the ANN structure is established, the next step is 
training the model. A set of input and reference data pairs as 
well as a training rule are presented during the training 
procedure. As mention in the first phase, the input is the LDS 
data point that have been collected and the reference data is the 
actual distance of the sensor to the wall. The ANN generates its 
own output from the input and compares it to the reference 
data. To ensure the difference of the output is small as possible 
to the reference value, the interconnection weights, W between 
the nodes are determined by using training rule. The challenge 
with learning is finding the optimal weights W combination 
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and attempts to minimize the mean-square-error (MSE) 
between the reference value and the predicted output. The use 
of a backpropagation algorithm is the most widely used 
training rule for error minimization. An improved 
backpropagation algorithm, the Levenberg Marquardt (LM) 
algorithm, come out to be a faster and more efficient approach 
for training medium-sized feedforward neural networks [34]–
[37]. Therefore, in this paper, the LM algorithm is employed. 
The output of the network is also computed based on the 
number of neurons in the hidden layer. The number of neurons 
in the hidden layer is determined by the response of the output 
that resulted in the smallest MSE error. At the end of the 
training phase, 50 number of neurons is selected as the number 
of neurons which has managed to achieve MSE value of 
         . 

After the desired ANN model is obtained, the next phase is 
to integrate the model with Rao-Blackwellized particle filter 
(RBPF) algorithm as shown in Fig. 6. The RBPF algorithm 
implemented in Gmapping package of Robot Operating 
System (ROS) is used in this paper. RBPF requires odometry 
data as well as sensor observations to solve grid-based SLAM 
problem. The new sensor observation that has been improved 
using ANN is integrated in this phase. The main idea of RBPF 
is to use odometry data,        and observations,      to 
estimate the trajectories of robot,      and map, m. This joint 
posterior, which is written as  (      |           )  can be 
factored as follows: 

 (      |           )   ( |         )   (    |           )
 (1) 

The computations are made simpler by factorization, which 
enables the process to be executed in two steps. First, odometry 
and observation data can be used to estimate the robot's 
trajectory,  (    |           ) . Once the      and      are 
known, the map  ( |         ) can be computed. 

 
Fig. 6. RBPF algorithm integrated with ANN flow chart 

The estimation is more complex with respect to 
 (    |           ). A particle filter is used for this purpose 
where any particle reflects the robot's potential trajectory. 
Based on the potential trajectory, an individual map for each 
particles can be computed. Then, the full map is built by the 
corresponding particles. The sampling importance filter (SIR) 
is commonly used in this algorithm. The SIR function is used 
to select the particles with the highest probability and the 
output of the algorithm is the the associated map. In order to 
improve the algorithm, the Rao-Blackwellized SIR filter uses 
the most recent sensor observations and odometry readings 
where available. Specifically, in RBPF, the approximation of 
the trajectory  (    |           )  was remodeled to 

 (    |    
      

             ) [31]. Scan matching is used to 

match the observations to the map that has been created so far, 
optimize observation probabilities, and provide information 
about the most likely poses of the robot. In this step, accuracy 
of the sensor measurement is important to get better 
observation for scan matching step and obtain better pose 
estimation. 

After that, particles are resampled according to their 
weight. Particles with higher weight will be most likely to be 
resampled for the next generation. All particles have the same 
weight after resampling. To avoid the resampling from 
removing good particles, a careful resampling step is taken. 
Hence, a selective resampling technique which is effective 
samples size,       is proposed which is to decide when to 

perform a resampling step and is described as: 

     
 

∑ (  )
  

   

 (2) 

where    represents the normalized weight of i-th particle. 
The weights of the samples are approximately equal if they are 
close to the target distribution. As the samples deviate from the 
target distribution, their weights variance increases and      

decreases. Every time      falls below N/2, the resampling 

procedure is initiated (where N is the number of particles used 
in the filter). This greatly reduces the risk of replacing useful 
particles, as resampling is performed only when necessary and 
the cumulative number of such operations is reduced. 

Last phase is to evaluate the performance of RBPF 
integrated with ANN in real-world experiment. The RBPF with 
ANN will be compared to RBPF without ANN. The maps that 
have been obtained from both algorithms respectively will be 
evaluated with ground truth map using number of inliers 
evaluation. To evaluate the resulting maps quantitatively, 
similarities between both maps are measured using number of 
inliers that are obtained from RANSAC algorithm. RANSAC 
algorithm can calculate the similarity point (inliers) between 
resulting maps and ground truth map. The higher the number of 
inliers, the better the similarity of the resulting map and ground 
truth map and the better the performance of the map 
constructed.  Ground truth map is obtained by using RBPF 
algorithm with high number of particles. This is due to the high 
number of particles can obtained high accuracy of map. In this 
paper, 1000 particles is used to obtain the ground truth map. 
Additionally, the robot explored the environment in smaller 
loops. This process is repeated untill a satisfactory ground truth 
map is obtained. By exploring in smaller loops, the 
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accumulated error of robot‟s state estimate is kept to the 
minimum and robot‟s trajectory maintain on the correct path 
and did not diverged. Turtlebot3 robot platform is used in this 
paper to navigate the environment as shown in Fig. 7. The 
experiment was conducted at Faculty of Electronics and 
Computer Engineering Universiti Teknikal Malaysia Melaka. 
The robot was set to explore wing A of the faculty within the 
red rectangle by following the path marked using red arrow. 
The size of this real-world environment is approximately 43 x 
16 meters. The Turtlebot3 explored the environment using the 
teleop operation. The average speed of the robot was about 
0.12 m/s and simultaneously recorded by the Rosbag tool. 
Rosbag tool allows recording and playing back the data of the 
robot that have been recorded. Hence, the recorded data which 
is the same data can be applied to other algorithms. This way, 
RBPF algorithm integrated with ANN and without ANN can 
be evaluated in equal condition. After that, the RBPF with 
ANN algorithm was observed if there is any improvement after 
the ANN integration. 

 
Fig. 7. Layout of wing A of faculty of electronics and computer engineering 

IV. RESULT 

The result is divided into two sections. In the first section, 
ANN model that have been trained is analyzed by comparing 
the sensor measurement with ANN and without ANN. 
Afterwards, in the second section, the RBPF algorithm after 
integrating with ANN is analyzed by comparing the resulting 
maps with the ground truth map. 

A. Performance of ANN 

The training of the ANN model has managed to achieve 
MSE value of          . 50 number of neurons are selected 
as it has achieved the lowest MSE value. The synaptic weights 
in each layer are computed and adjusted according to the 
lowest mean-squared error (MSE). The training automatically 
stops when generalization stops improving, as indicated by the 
lowest MSE of the training samples. Finally, weight and bias 
vectors for this ANN training were determined after several 
attempts and ANN model is established. 

Afterwards, the ANN model that have been established is 
analyzed. The performance of the model is analyzed based on 
the comparison of the sensor measurement before (without 
ANN) and after the ANN model (with ANN) is used. The data 
of both sensor measurement for every interval of 0.1m were 
averaged and plotted in the graph respectively as shown in 
Fig. 8. The graph shows that the sensor reading without ANN 

(green line) is slightly different from the actual distance (red 
line). The difference of the sensor measurement without ANN 
and actual distance can be observed in more detail in Fig. 9. 
The graph shows that the error of sensor measurement without 
ANN to the actual distance is consistently higher. It is also 
observed that when the range of the distance increases, the 
distribution of sensors measurements is wider. Fig. 10 shows 
the histogram of the LDS sensor measurement at 3 meter 
distance is wider than the histogram of sensor measurement at 
1 meter distance as depicted in Fig. 11. Therefore, the standard 
deviation of the sensor measurements also increases as the 
distance increase as shown in Fig. 13.  

 
Fig. 8. Graph illustration for the data of ANN model testing using real-world 

LDS-01 sensor measurements data 

 
Fig. 9. Comparison of error of sensor measurement without ANN (green) and 

with ANN (blue) 

 
Fig. 10. Histogram of LDS sensor measurement at 3 meter distance 

After the LDS sensor data has been applied to the ANN 
model that have been trained, the value of the data with ANN 
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(blue line) and the actual distance value (red line) has minimal 
difference such that the blue and red line are in the same axis 
as shown in Fig. 8. The error of the sensor measurement also 
decreased remarkably as shown in Fig. 9. It shows that the non-
linearity and the error of the sensor readings are significantly 
reduced by using ANN. In addition, the histogram of sensor 
measurement at 3 meter distance using ANN is narrower than 
the histogram without ANN as shown in Fig. 12. The standard 
deviation of the sensor measurement with ANN (blue line) is 
also consistently lower than the standard deviation of the 
sensor measurement without ANN (green line) as shown in 
Fig. 13. From these results, it shows that there is a significant 
improvement of the accuracy of the LDS sensor measurements. 

 
Fig. 11. Histogram of LDS sensor measurement at 1 meter distance (without 

ANN) 

 
Fig. 12. Histogram of LDS sensor measurement at 3 meter distance (with 

ANN) 

 
Fig. 13. Standard deviation of LDS-01 sensor data using ANN model before 

and after testing 

B. Performance of RBPF Algorithm 

In this experiment, the number of particles of Gmapping 
package which is 30 to 400 particles is used. The maps are 
obtained in the Occupancy Grid map (OGM) representation 
and saved in pgm format using map saver from map server 
package. The size of each grid cells of the map is set to 5 cm2. 
In OGM, the black cells are considered occupied, white cells 
are considered free cells and grey cells are the unknown region 
that has not been explored yet as shown in Fig. 14. The data 
that have been recorded is tested 10 times resulting 10 grid 
maps. Then, the maps that have been obtained using ANN and 
without ANN are evaluated using number of inliers evaluation 
to ensure for a consistent result. The dimension of the map is 
1056 x 608 cells. Since, the size of the grid cell is 5cm2, this 
make the size of the real environment in Fig. 14 is 
approximately 52.8 m x 30.4 m. Within this map, the explored 
area travelled by Turtlebot3 mobile robot is approximately 
43m x 16m as stated in Section III.  

Primarily, the particles used for the first experiment is 30. 
From the resulting maps, it is observed that, RBPF algorithm 
that is not integrated with ANN cannot achieved closed loop 
condition out of 10 trials as shown in Fig. 15. Most of the 
resulting maps of RBPF algorithm without ANN show that the 
algorithm cannot recognize the revisited environment at the 
loop closure point (green circle) as shown in Fig. 15. This is 
due to the low accuracy of the LDS sensor measurement 
reading and consequently effects the RBPF algorithm. To 
achieve all closed loop condition without using ANN, further 
experiment is carried out by increasing number of particles. 
After several trials with increasing number of particles (100, 
200 and 400), 400 particles used in the RBPF algorithm 
without ANN managed to attain loop condition for all trials 
which is 10 out of 10 as shown in figure 16. The detail results 
of RBPF with number of particles used are included in 
Table II. As shown in the table, for 100 and 200 particles, the 
resulting maps have achieved 4 and 6 closed loop condition out 
of 10 trials, respectively. 

TABLE II.  RESULTING MAP CONDITION ACCORDING TO NUMBER OF 

PARTICLES 

SLAM 

Algorithm 

Number of 

particles 

Closed loop map 

out of 10 trials 

Average number 

of inliers 

RBPF without 

ANN 

30 0/10 53 

100 4/10 47.9 

200 6/10 48.5 

400 10/10 46.9 

RBPF with 

ANN 

30 10/10 58 

100 10/10 58.3 

200 10/10 61.6 

400 10/10 67.8 

It shows that by increasing the number of particles, the 
accuracy of the grid map can be improved. However, higher 
number of particles may suffer from limitation of memory 
capacity and higher computational cost.  
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Fig. 17 and 18 represent the computational consumption 
diagrams obtained by the system monitor of Ubuntu for 30 and 
400 particles of RBPF algorithm, respectively. The 
specifications of the computer used are AMD Ryzen 5 3600 
GPU 6-core processor with 16GB of RAM. The data is taken 
after one minute of the execution of one of the tests. It can be 
observed that RBPF with 400 particles consumed up to 100% 
of the most cores available during the lapse while 30 particles 
only consume around 30 to 40% of the cores available. This 
shows that, higher computational cost is needed to execute 
higher number of particles. 

However, ANN can overcome this problem as mention 
before by improving the LDS sensor measurement. The ANN 
model integrated with RBPF algorithm (using 30 particles) is 
tested 10 times. From the results, it is observed that, RBPF 
algorithm integrated with ANN have achieved all closed loop 
map condition which is 10 times out of 10 trials by using only 
30 particles. Sensor reading by using ANN has increased the 
measurement likelihood hence resulting a more accurate 
estimate in robot localization in the RBPF algorithm. As the 
localization error has decreased, the robot is able to recognize 
the revisited area. RBPF with ANN also has proven to achieve 
this condition with less number of particles more consistently. 
As a result, we can conclude that the particle consumption can 
be reduced by integrating ANN with the RBPF algorithm and 
overcome the computational cost suffers from the high number 
of particles remarkably. Further experiment by increasing 
number of particles (100, 200 and 400) is also tested by using 
ANN. The performance of resulting maps is increased and all 
resulting maps achieved closed loop condition. As mention in 
section III, the performance of the resulting maps is compared 
with the ground truth map (Fig. 14) by using number of inliers. 
The number of inliers is stated in Table I along with the 
number of particles.  

Then, Fig. 19 plots the performance of the resulting maps 
by using the number of inliers (y-axis) vs the number of 
particles (x-axis). As shown in the graph, by using ANN 
integrated with RBPF, the performance of the resulting maps 
(red) is consistently higher than the resulting maps without 
ANN (blue). The performance using ANN is increasing with 
the number of particles while for RBPF without ANN, the 
performance is decreasing. We believe that the performance 
without ANN is decreasing because of the dimension of the 
resulting maps (without ANN) is less similar to the ground 
truth map. By using 400 particles (without ANN) better pose 
estimation is achieved compared to lesser particles. Due to that, 
closed-loop map condition is achieved when the robot explored 
the environment and encountered the initial position. Although 
closed loop map condition is achieved, the dimension of the 
resulting map is not consistent due to the nonlinearity error of 
the LDS sensor measurement. As shown in the graph, 30 and 
200 particles have achieved higher number of inliers, while 
100 and 400 particles achieved lower number of inliers. Due to 
that, the performance of the resulting maps is not consistent 

along the number of particles. Fig. 20 shows one of the 
examples of the number of inliers point between resulting map 
(without ANN) and ground truth map by using 400 particles. 
The dimension of the resulting map (without ANN) is 15.7 m x 
42.6 m while ground truth map is 15.9 m x 43 m. Since the 
dimension of the map is slightly smaller to the ground truth 
map, hence, only 42 number of inliers point is obtained. 

C. Discussion 

It is observed that when using ANN, the quality of the 
resulting maps is increasing with the number of particles as 
expected. This is due to the more accurate sensor 
measurements. Better sensor measurement improved the 
observation of the robot for scan matching step and obtained 
better pose estimation as mentioned in Section III. Due to that 
lower number particles can be used to achieve higher 
performance of the map building and closed loop condition. 
For this experiment, only 30 particles are used to accomplished 
the closed loop condition. Besides, better resulting map is 
achieved and more similar to the ground truth map by 
increasing the number of particles using ANN compared to 
without ANN. As shown in Fig. 21, the number of inliers point 
between the resulting maps (with ANN) and ground truth map 
is higher which is 77 inliers compared to without ANN which 
is 42 as shown in Fig. 20. This is due to the dimension of the 
map (with ANN) which is 15.95 m x 43.10 m is more similar 
to the ground truth map (15.9 m x 43 m) compared to without 
ANN (15.7 m x 42.6 m). Based on the average number of 
inliers, the overall performance of the resulting maps by using 
RBPF with ANN has increased by 25.17%. In conclusion, with 
better accuracy of the sensor measurement integrated with 
ANN reduces the number of particles consumption. Therefore, 
ANN can reduce the computational cost of the RBPF algorithm 
and achieve better accuracy of OGM by using only low-cost 
sensor. 

 

Fig. 14. Ground truth map of the real-world environment 
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Fig. 15. Non-closed loop map without ANN 

 

Fig. 16. Closed loop map with ANN 

 
Fig. 17. CPU consumption in one minute of the RBPF using 30 particles. 

 
Fig. 18. CPU consumption in one minute of the RBPF using 800 particles 

 
Fig. 19. Map performance by using number of inliers between resulting map 

and ground truth map 

 

Fig. 20. 42 number of inliers points between resulting map (without ANN) and 

ground truth map 

 

Fig. 21. 77 number of inliers points between resulting map (with ANN) and 

ground truth map 
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V. CONCLUSION 

This paper presented the effects of the ANN towards the 
number of particles of RBPF algorithm using laser distance 
sensor LDS-01. An investigation has been made to observe the 
performance of the RBPF algorithm by using ANN and 
without ANN. The performance of the algorithm is calculated 
based on the accuracy of the map constructed by both 
algorithms. Based on the results, RBPF with ANN has 
achieved all closed loop condition of the resulting maps which 
is 10 times out of 10 trials by using only 30 particles compared 
to RBPF without ANN that needs 400 particles to achieved all 
closed loop condition. Furthermore, the number of inliers of 
the resulting maps by using RBPF with ANN is higher than 
RBPF without ANN consistently for the number of particles 
ranging from 30 to 400 particles and increase the performance 
by 25.17%. From the results, it can be concluded that using 
ANN improves the performance of the RBPF algorithm and 
reduces the number of particles consumption for mobile robot 
platform with low-cost sensors. For the future works is to test 
the SLAM algorithm integrated with ANN on cooperative 
robot. Cooperative robot SLAM has many advantages, 
including the ability to complete missions quicker and being 
resilient to the malfunction of any one of the robots. To obtain 
high accuracy of the cooperative SLAM, many researchers 
chose to adopt high-end sensor such as 2D SICK and Hokuyo 
Lidar as robot‟s perception. But this will cause staggering cost 
for cooperative robot system. Thus, the alternative is to 
implement low-cost sensors with limited sensing to perform 
cooperative SLAM. 
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