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Abstract—Link failure is a common problem that occurs in 

software-defined networks. The most proposed approach for 

failure recovery is to use pre-configured backup paths in the 

switch. However, it may increase the number of traffic packets 

after the traffic is rerouted through the backup path. In this 

research, the proposed method is the implementation of a failure 

recovery mechanism by utilizing the fast failover group feature 

in OpenFlow to store pre-configured backup paths in the switch. 

The disrupted traffic packets will be labeled using the VLAN ID, 

which can be used as a matching field. Due to this capability, 

VLAN ID can aggregate traffic packets into one entry table as a 

match field in the forwarding rules. Through implementation 

and evaluation, it is shown that the system can build a backup 

path in the switch and reroute the disrupted traffic to the backup 

path. Based on the parameters used, the results show that the 

proposed approach achieves a recovery time of around 1.02-

1.26ms. Additionally, it can reduce the number of traffic packets 

and has a low amount of packet loss compared to previous 

methods. 
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I. INTRODUCTION 

Software-defined networking is a new paradigm that 
changes the current network infrastructure. The SDN concept 
is to break down the network infrastructure by combining the 
control logic (control plane) of routers and switches that 
forward traffic (data plane) [1]. Unlike the conventional 
network concept, where the control plane and forwarding are 
tied directly to the same network device. This causes the 
network administrator to have to configure the device 
manually. Another disadvantage of conventional networks is 
that when a device encounters a problem, the network 
administrator must fix the problem directly on the device. 

In SDN, several problems can occur when the routing 
process is executed, one of which is a link failure. Link failure 
is one of the problems on the network that causes delays and 
even packet loss so the throughput value decreases. Link 
failures consist of direct or indirect failures. In the case of 
direct failures, the switches detect the failure immediately and 
recover quickly, whereas, in the case of indirect failures, the 
link failure is not detected by the respective switch despite 
traffic overhead. Unidirectional link failures disrupt traffic and 
create a loop in the switch topology. Multiple link failures 
reduce network reliability performance [2]. 

Based on previous research that used proactive SDN 
methods to solve the link failure problem. When a link fails, a 
predetermined backup path is created and used in this proactive 

method. The switch closest to the link failure point will then 
reroute through the backup path to reach the destination [3]. 
Then in another research, using the rerouting method to 
overcome link failure was examined. When a link fails, high-
priority packets are temporarily diverted to an alternate path, 
and then the packet is sent to the destination using the re-
routing method to find the shortest path to the destination [4]. 

In the several methods previously mentioned, these 
methods can overcome link failures without involving the 
controller, thereby reducing failover time on SDN. However, 
these methods have several downsides, such as the need for a 
large number of flow entries to build backup lines and complex 
processes to maintain the lines alive. The backup path that has 
been created is then difficult to modify or adapt to changing 
network conditions, allowing for the possibility of congestion 
during the rerouting procedure. 

Based on the problems described above and previous 
research, a test simulation will be developed to implement 
failure recovery on SDN by incorporating the fast failover 
group and VLAN ID features. This method works by creating a 
backup path for each link using the SDN architecture's fast 
failover group feature. Next, enable the VLAN ID feature, 
which is used as a match field in forwarding rules, to reduce 
traffic when packets are diverted to the backup path. This 
approach allows the system to recover from failures without 
involving the controller, reducing recovery time and 
minimizing the use of flow table memory on switches during 
link failures. 

The rest of the paper is organized as follows: Section II 
provides a brief review of the literature relevant to our work 
and describes the main concepts around our approach. 
Section III explains the methodology of our approach is 
presented. Section IV explains the results and findings of the 
research. Section V is the discussion that presents the 
comparison result and findings with the previous studies. In 
Section VI, the conclusion of this research. 

II. RELATED WORK 

A. Background 

The Group Table-based Rerouting (GTR) method is one of 
the approaches used to find responses to single link failures 
through the fast failover (FF) group [5]. In general, a backup 
path is created for each link between the source and the 
destination; however, the backup path proposed in this research 
is created by calculating the most efficient path between 
adjacent switches. The controller periodically updates the 
lookup table on the controller and the FF group table on the 
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switch to determine what changes have occurred in the 
topology and network traffic. The research proposed a 
protection scheme for source routing-based backup links [6]. 
The proposed method controls packets going to the backup link 
by updating the source routing header. With SDN source 
routing, it can use VLAN tags to store packet routes in the 
source routing headers instead of being stored in switch flow 
entries. By using this method, it can reduce the number of flow 
entries needed to build a backup link. However, these 
approaches have limitations in the implementation process, 
which is quite complex to overcome existing problems in the 
fast failover mechanism. 

Furthermore, in the research conducted [7], flow-based 
network management was proposed that can be programmed 
on the OpenFlow network. Researchers propose a method 
called Path Monitoring (PathMon), which encodes flow and 
path information as tags that can work flexibly. This method is 
implemented on a switch and uses OpenFlow 1.3, which 
supports VLAN tags to encode flow and path information as 
flexible tags so that the statistical data obtained to monitor 
network traffic on OpenFlow is more specific. The purpose of 
using VLAN IDs in this research is to make it easier for 
network administrators to monitor network traffic and collect 
the different statistical information needed. In further research, 
there are problems with the data center caused by the detection 
of elephant flow, which resulted in high network latency [8]. 
The proposed method is to use multipath routing, which can 
break down elephant flows into several mice flows that are 
distributed evenly on the network without detecting elephant 
flows. In this research, VLAN-based routing is used to reduce 
flow entry consumption, where the controller can instruct the 
switch to enter the path ID in the VLAN ID field in each 
packet from the flow when routing to the switch. The results 
showed a 32% reduction in flow entry on switches compared to 
the method without using VLANs. This research is distinct 
from one another in that researchers raise different issues. In 
the proposed approach, the problem to be solved is the use of 
fast failover, which requires a large number of flow entries 
when a link failure occurs. 

B. Software Defined Networking 

SDN provides a new approach to managing complex end-
to-end connectivity and knowing the big picture of a network. 
A centralized network at the control layer allows management, 
configuration, security, and network resources to be optimized 
flexibly, dynamically, and automatically on SDN. It can be 
used for a variety of purposes, including control manipulation 
and network management, network virtualization, and 
providing a platform for building fast services [9]. 

As shown in Fig. 1, there is an SDN architecture consisting 
of an infrastructure layer related to the data plane that is in 
charge of forwarding. In the control layer, there is a component 
where the SDN controller is located. The application layer 
functions to make rules for the network. The control layer and 
the application layer are connected by the northbound API, 
while the infrastructure layer and the control layer are 
connected by the southbound API. In the southbound API, 
there is an SDN protocol, which is known as OpenFlow. 

 
Fig. 1. SDN architecture 

C. OpenFlow 

OpenFlow is a standard protocol used in software-defined 
networks. This protocol is used for communication between the 
control plane and the data plane. The SDN controller can 
manage a collection of switches to manage network traffic. The 
controller communicates with the OpenFlow switch and 
manages the switch via the OpenFlow protocol [10]. Fig. 2 
shows the OpenFlow Controller and the OpenFlow Switch are 
the two most important components of OpenFlow. The 
OpenFlow Controller manages the performance of the Switch 
by controlling paths and flows. Then, the OpenFlow Switch is 
part of the data plane, which functions to process data such as 
forwarding packets. 

 
Fig. 2. Components of OpenFlow 

In the OpenFlow protocol, each flow table on the switch 
has a flow entry, where each flow entry has a match field, a set 
of instructions to be applied to matching packets [11]. There 
are three main components in OpenFlow: the first is the table, 
which contains the flow table, meter table, and group table. 
The second is a secure channel that contains an SSL channel 
that is between the switch and the SDN controller. The third 
component is the OF protocol, which is used to control and 
manage switches [12]. 

D. Failure Recovery 

Failure recovery is a network process that allows packets or 
flows that have experienced link failure to be recovered and 
forwarded to their destination. In the failure recovery process, 
there are two mechanisms: reactive mechanisms and proactive 
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mechanisms [13]. In a reactive mechanism, there is no backup 
path configured in the forwarding plane, so the controller 
immediately computes an alternative path after receiving a link 
failure notification message from the switch. Whereas in a 
proactive mechanism, there are two separate paths (the primary 
path and the backup path) that are configured by the controller 
in the forwarding plane before link failure occurs on the 
network. The fast failover feature is used to implement a 
backup path on a proactive mechanism. Fast failover is the 
ability of a flow table to create a group table that provides 
various ways of forwarding (primary and backup links) [14]. 
With this capability, fast failover can redirect disrupted flows 
to a backup link that has been configured in the flow table. 
Fault recovery is performed directly by the OpenFlow switch 
without involving the controller. In addition, failure recovery 
can be combined with backup path calculations, which are 
proactively installed by the controller. 

 
Fig. 3. Failure recovery mechanisms 

Fig. 3 is an example of how the failure recovery 
mechanism works. There are 5 switches connected to 1 
controller, and there are 2 hosts. In this topology, there is a 
primary path in switch A-B-D and a backup path in switch A-
C-E-D. When there is a link failure on link A-B, packets from 
host 1 will be diverted to the backup path that has been 
configured in the flow table to switch A-C-E-D, so that packets 
can be sent to host 2. 

 
Fig. 4. Components of fast failover group 

Fig. 4 shows the fast failover group component that is run 
by the SDN controller. Fast failover is a feature that 
reconfigures the link in the event of a failure. This feature 
utilizes OpenFlow 1.3 to run a group table that contains watch 
ports and action buckets that can monitor and act as long as the 

port status changes [15]. The SDN controller configures the 
switch with a flow table that can help the network recover 
when a link failure occurs. The flow table contains fast failover 
group rules that implement a path-switching mechanism if a 
link is down. 

E. VLAN ID 

VLAN-ID is one of the newest features introduced to 
OpenFlow in version 1.3. The VLAN mechanism can logically 
divide networks that are grouped based on VLAN ID. With this 
capability, VLANs can limit broadcast traffic on the network 
because they can only send packets to hosts that have the same 
VLAN ID. IEEE 802.1Q is the standard definition of VLANs. 
A VLAN tag contains 12 bits in the ethernet frame, so there 
can be up to 4,096 VLANs on a LAN. Implementation of 
VLAN tagging on the Ethernet protocol can create different 
broadcast sub-domains on the same LAN by including a 
VLAN number or tag for each subnet interface on the same 
switch [16]. 

In the OpenFlow protocol, in the flow table, there are flow 
entries that determine how a flow is processed and forwarded. 
Inside the flow entry, there are matching fields, actions, and 
counters. The matching field is used to match incoming 
packets. The action contains a set of instructions that are used 
to forward packets in various ways, for example, forwarding to 
a group table, one of which is the fast failover group. Then the 
counter is used to collect statistics on a particular flow, for 
example, the number of packets that have been received, the 
number of bytes, and the duration of the flow. 

 
Fig. 5. Fields in the OpenFlow protocol 

As shown in Fig. 5, there are 12 match fields, which are 
collectively referred to as the "basic twelve-tuple of match 
fields". Flow entries are processed sequentially, and when a 
match is found, the matching process against the flow table 
will be stopped [17]. In addition, the flow table is also 
equipped with a frame/byte counter that provides an indication 
of flow statistics on all ports so that the controller knows all the 
conditions that occur in the network [18]. Several actions can 
be performed by the OpenFlow protocol, such as sending 
packets to several ports, adding, removing, or modifying a 
VLAN tag, deleting packets, or sending packets to the 
controller. 

III. PROPOSED APPROACH 

 In OpenFlow, a specific flow can be defined as a collection 
of matching fields. Therefore, VLAN ID can be used as a flow 
ID, which can be forwarded based on flow entry. The use of 
VLAN ID can reduce interference with route flow and thus 
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reduce switch memory consumption. The failure recovery 
mechanism proposed in this research uses the VLAN ID 
feature on OpenFlow to collect failed flows. Each switch and a 
link is associated with a VLAN ID that can redirect flow to a 
backup path configured by fast failover on the switch. 

Based on the topology that will be used in this research, the 
failure recovery mechanism will be implemented using 
OpenFlow 1.3. This mechanism provides a primary path for 

forwarding and a backup path for diverting packets to an 
alternative path when a link failure occurs in the primary path. 
Based on Fig. 6, shows the failure recovery mechanism in the 
topology. In this topology, there is a primary path in S1-S2-S3-
S4, while the backup path is in S2-S5-S6-S7-S4. Then, with the 
backup path configuration that has been made in S2, traffic can 
be diverted from port 3 to S5-S6-S7-S4 without making a 
round trip to the controller, so that packets can be sent to the 
destination. 

 
Fig. 6. Experimental topology

In the network topology, there is a link failure in S2-S3, so 
packets cannot pass through the link. Furthermore, there is H1, 
which will send packets to H2, H3, and H4, so there are three 
traffic flows in the topology. When the S2-S3 link fails, the 
controller will update the network topology by removing the 
failed link. In flow table S2, traffic is forwarded to group table 
2 with the fast failover type, which is sent to output port 3. 

 
Fig. 7. Labelling process of VLAN ID 

In Fig. 7, when the packet arrives at S5, configure the 
VLAN ID in the access port by accepting all packets that do 
not have a VLAN header. Then add a VLAN ID tag with a 
value of 10 for each incoming packet in S5. Then, the value of 
the VLAN ID is used as a match field in the switch connected 
to S5 and S6 via port 2. When it arrives at the next switch, 
packets will become one flow with a match field VLAN ID of 
10. In S6, there is a packet with a VLAN ID as a match field 
with a value of 10 that has been configured on the previous 
switch. When a packet with a VLAN ID matches the flow 
match field, the packet can be forwarded based on the action 
specified in the flow table. Then, when the flow arrives at S7, 
there is an action with the Strip VLAN ID that functions to 
delete the value from the VLAN ID. The process is in the 
output access port, so the VLAN header has been deleted when 
it goes to the output port. Furthermore, when the flow arrives at 
S4, it will be returned to three traffic flows. Thus, in flow table 
S4, the three traffic flows can be forwarded according to the 
forwarding rules in S4 without requiring changes to the flow 
table S4. 

IV. PERFORMANCE EVALUATION 

A. Testbed Configuration 

The topology shown in Fig. 6 was implemented on Mininet 
as the network emulator and select Ryu as the controller. 
Mininet supports different types of switches. In this case, we 
used OpenVSwitch to support the fast failover group and 
VLAN ID features in OpenFlow 1.3. Furthermore, because our 
experiment was carried out in a controlled environment, we 
used OpenVSwitch to install the flows directly in each switch 
of the network topology using the script-line program ovs-ofctl. 
To collect statistics and monitor the behavior of TCP traffic 
generated by the IPERF application. The main characteristics 
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of the laptop on which the tests were conducted are as follows: 
Processor: Intel Core i7-8550U, CPU running at 1.99 GHz; 
RAM: 16 GB; operating system: Linux Ubuntu 20.04 LTS 64-
bit on a VMware workstation. 

B. Recovery Time 

The recovery time evaluation is carried out to find out how 
long it takes for packets to be diverted to the backup path when 
a link fails. The analysis compares the recovery time in failure 
recovery with VLAN ID and fast failover. 

 
Fig. 8. Failure recovery time 

In Fig. 8, there is a graph of the recovery time test. Based 
on the test results, the minimum time required for failure 
recovery with a VLAN ID is 1.02 ms, while the maximum time 
is 1.26ms. As a result, the time required to perform recovery in 
this mechanism is 1.02-1.26ms. Whereas for fast failover, the 
minimum time is 1.02ms, and has the maximum time of 1.4ms. 
As a result, when a link fails, recovery takes 1.02-1.4 ms on 
fast failover. Based on the results obtained in this test, the 
recovery time required in the failure recovery mechanism with 
VLAN ID is smaller than that required in the fast failover 
mechanism. 

C. Traffic Packets 

The Traffic packet evaluation is used to find out how much 
packet traffic is transmitted to the destination. The analysis of 
this evaluation is used to determine the performance of the 
VLAN ID as a matching field in sending packets to the 
destination. 

 
Fig. 9. Total number of traffic packets 

As shown in Fig. 9, there is a traffic packet evaluation. 
Based on the two mechanisms tested, the failure recovery 
mechanism with VLAN ID resulted in a total of 615,199 traffic 
packets. Meanwhile, in failure recovery, the number of packets 
generated in this test was 861,579 packets. According to the 
results obtained from the test, failure recovery with VLAN ID 
produces less packet traffic than the fast failover mechanism. 

D. Packet Loss 

Packet loss evaluation is carried out to find out how many 
packets are lost when sending packets from host 1 to host 2 
when a link failure occurs. The duration of each test to be 
carried out is 10 seconds, and the test is carried out five times. 
The test will be carried out with a different total number of 
streams. 

 
Fig. 10. Packet loss rate 

In Fig. 10, there is a graph of the results of the packet loss 
evaluation that has been done. In the first test using 5 streams, 
the failure recovery mechanism with VLAN ID has a packet 
loss value of 0.067%, and this value increases when the last 
test uses 25 streams at 0.28%. Whereas in fast failover, in the 
first test, it has the same packet loss value of 0.067%. But in 
the last test using 25 streams, the packet loss value was 0.46%. 
Based on the results obtained in this test, the smallest packet 
loss value for the two mechanisms is 0.067%. Whereas in the 
last test, the failure recovery mechanism with VLAN ID had a 
smaller packet loss value compared to fast failover. 

V. DISCUSSION 

In the recovery time test results, the failure recovery 
mechanism with VLAN ID shows results of 1.02-1.26ms with 
an average yield of 1.18ms to perform recovery after a link 
failure occurs. In research conducted [19], the time needed to 
detect and recover a single link failure is at least around 10-20 
ms. Then, research [20], states that the need to detect and 
perform recovery on operator-scale networks must be carried 
out in 50ms time intervals. The results of the packet loss test 
that has been carried out show that the average value of packet 
loss in the failure recovery mechanism with a VLAN ID is 
0.18%, with the highest packet loss being 0.28%. The results of 
the packet loss test are still considered good, based on research 
conducted [21] which states that packet loss with a ratio of 5-
10% can affect network quality. Whereas in audio and video 
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stream scenarios, the range of acceptable packet loss is 
between 1 and 2.5%. 

VI. CONCLUSION 

Based on the results of the analysis of this research it can 
be concluded that compared to the fast failover method used in 
SDN, it mainly has three advantages: First, in the recovery 
time test results, the failure recovery mechanism with VLAN 
ID shows results of 1.02-1.26ms to perform recovery after a 
link failure occurs. Whereas in the fast failover mechanism, the 
time needed to perform recovery is 1.02-1.4ms. Second, it 
shows that the use of VLAN ID in failure recovery is proven to 
be able to reduce the amount of traffic packet when a link 
failure occurs. Third, the results of the packet loss evaluation 
that has been carried out show that the average value of packet 
loss in the failure recovery mechanism with a VLAN ID is 
0.18%, with the highest packet loss is 0.28%. Based on the 
evaluation results, our proposed approach has better results 
than the fast failover method. However, the major drawback of 
our proposed approach is that the mechanism is less dynamic 
because we implement fast failover groups and VLAN IDs 
directly in the switch. Perhaps we can present a solution to the 
problem and provide direction for our future work. 
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