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Abstract— In the field of smart farming, automated crop type 

mapping is a challenging task to guarantee fast and automatic 

management of the agricultural sector. With the emergence of 

advanced technologies such as artificial intelligence and 

geospatial technologies, new concepts were developed to provide 

realistic solutions to precision agriculture. The present study 

aims to present a machine learning-based model for automated 

crop-type mapping with high accuracy. The proposed model is 

based on the use of both optical and radar satellite images for the 

classification of crop types with machine learning-based 

algorithms. Random Forest and Support Vector Machine, were 

employed to classify the time series of vegetation indices. Several 

indices extracted from both optical and radar data were 

calculated. Harmonical modelization was also applied to optical 

indices, and decomposed into harmonic terms to calculate the 

fitted values of the time series. The proposed model was 

implemented using the geospatial processing services of Google 

Earth Engine and tested with a case study with about 147 

satellite images. The results show the annual variability of crops 

and allowed performing classifications and crop type mapping 

with accuracy that exceeds the performances of the other existing 

models.  
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I. INTRODUCTION  

Agriculture has been a challenging economical sector, and 
a vital pillar of development in many countries. The first 
challenge is to ensure food self-sufficiency and respond to the 
increasing requirements of a growing population. The Food 
and Agriculture Organization of the United Nations [1] global 
report highlighted food insecurity and its accelerating rising 
trend. The report suggested that to prevent severe hunger, 
daring transformation must be conducted in the agri-food 
systems. Many recent technics and systems aimed to ensure the 
sustainable development of agriculture [2] and new concepts 
were developed like precision agriculture [3]. The recent 
revolution of digital technologies has radically changed 
agricultural management, like the employment of geospatial 
technologies, remote sensing data [4], and artificial intelligence 
[5], [6]. This study proposes a new model to show the 
contribution of machine learning algorithms in the 

identification of crop types using both optical and radar 
satellite images with time series of different vegetation indices. 
The general aim is to establish a method for improving crop 
type mapping accuracies, with the demonstration of the 
contribution of optical and radar data and their 
complementarity.  

The paper proceeds as follows: providing related works in 
Section II.  Section III, introduces the proposed model. The 
case study is presented in Section IV. Section V presents and 
discusses the results, and Section VI concludes and gives the 
intended future works. 

II. RELATED WORKS 

Crop-type mapping using remote sensing data and machine 
learning technics is the subject of multiple research [7]–[10]. 
Optical data has been a reference data for crop mapping studies 
because of the ease to link phenological development and 
biological properties of crops with optical acquisitions to 
differentiate crop species [11]–[13]. Also, it identifies various 
growing stages of a single crop, rice as in this case study [14]. 
The author in [11] used Sentinel-2 time series data with gap 
filling method to overcome data discontinuity caused by cloud 
cover. Interpolation technics were also used by [11] in the 
DATimes software to capture seasonal vegetation dynamics. 
Different optical sensors were also combined to increase time 
series temporal frequency and to catch field-level phenologies 
[15]. Both optical and radar data were used by [16] to detect 
paddy rice fields using phenological variations and a textural-
based strategy. Radar images only were investigated by [17] to 
detect winter wheat phenological stages. They analyzed the 
temporal variations of the Sentinel -1 time series in the 
function of different phenological phases. The author in [18] as 
well used Sentinel-1 time series to conduct classification 
considering Spatiotemporal phenological information. 

Different machine-learning algorithms were employed to 
produce accurate crop maps. The support vector machine 
(SVM), and random forest (RF) classifiers have been the most 
popular in recent years for the classification of satellite images 
[19]. Many papers reported better performance of SVM [8], 
[20]–[22] as well as DT and RF algorithms compared to other 
techniques.  
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Fig. 1. Proposed model

The goal of mapping crops was approached using different 
methods, technics and datasets in the literature review. 
Although the obtained results presented good accuracies, the 
development of geospatial technics has imported its evolution; 
the integration of the Google Earth Engine allows producing 
large treatments instantly that can be employed to identify 
crops early in the season. The obtained accuracies in the state 
of the art are yet to be improved by exploiting complementarity 
between radar and optical time-series and their indices.  

This research proposes a new machine-learning method 
combining time-series indices extracted from optical and radar 
satellite images and machine-learning classifiers to perform 
automated and high-accuracy crop-type mapping. 

III. PROPOSED MODEL 

The proposed model employs time series from both optical 
and radar data. The model was performed using the geospatial 
processing services of Google Earth Engine (Fig. 1): 

A. Preprocessing 

Cloud masking: An important step of pre-processing the 
image collection is to omit the disturbance caused by clouds 
and shadows from the imagery. The cloud masking process 
was performed using the cloud probability band that was 
created with the Sentinel 2 cloud detector library. The 
maximum cloud probability was limited to 25. The gaps in the 
masked image were then filled with the previous interpolated 
image. 

Speckle filtering: satellite images are usually affected by 
speckle noise. Multiple statistical methods were developed to 
remove the speckle in the concern to preserve image details. 
The study conducted by [23] compared different filtering 
methods dedicated to speckle suppression in SAR images and 
found that Lee-Sigma and Gamma-MAP are showing 
relatively good detail preserving abilities than other filter types. 
The author in [24] also concluded that the Gamma Map filter is 
reliable as proved by the comparison between the Lee filter, 
frost filter, and Gamma Map. In the present model, the 
Gamma-MAP filter is used, which is based on the Bayesian 
analysis of image statistics. It uses the Maximum A-Posteriori 
(MAP) estimation method. While using this filter, Gamma 
distribution is assumed for the underlying image and the 
speckle noise in it. Thus, this filter works best for geospatial 
images containing homogenous areas such as oceans, forests, 
fields, etc. 

B. Training Sample 

1) Indices calculation and time series composites: Optical 

data provide information in multiple bands that can produce 

valuable information about the state of vegetation. For the 

purpose to capture spatiotemporal variation in 

photosynthetically active vegetation, multiple optical indices 

were developed in the literature to characterize and monitor 

the development of crops [19], [25]. The author in [25] 

calculated the EVI and NDVI indices from the time series to 

extract metrics for crop discrimination. In this study, different 
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indices were calculated for each image in the image collection 

(Table I). The main used bands are Red (R), Green (G), Near 

InfraRed (NIR), and Short-Wavelength InfraRed (SWIR) from 

the optical images, and both polarization VV and VH from 

radar images. 

TABLE I. OPTICAL AND BACKSCATTER CALCULATED INDICES 

Index Abbreviation Formula 

Normalized Difference 

Vegetation Index 

 

NDVI 
NDVI = 

     

     
       (1) 

Normalized Difference 

Water Index 
NDWI NDWI = 

     

     
      (2) 

Normalized Difference 

Moisture Index 
NDMI NDMI =

        

        
  (3) 

Normalized Ratio Procedure 

between Bands 
NRPB NRPB=

       

       
    (4) 

The polarization ratio Ratio Ratio = 
   

   
           (5) 

2) Harmonic modelization of optical time series: Time 

series from the optical indices depends on the phonological 

cycle of crops throughout the year. The analysis of the 

variations is represented by applying harmonic modeling also 

named Fourier analysis. The analysis consists of decomposing 

the time-dependent periodic event into a series of sinusoidal 

functions, with phase and amplitude values. The general 

equation of a time series is presented by [26] in eq. (6). 

Acos(2πωt - φ) = β2cos(2πωt) + β3sin(2πωt)  (6) 

Considering the linear model, where A is amplitude, et is a 
random error, ω is frequency, and φ is phase: 

Pt = NDVIt= β0 + β1t + Acos(2πωt - φ) + et 

= β0 + β1t + β2cos(2πωt) + β3sin(2πωt) + et 

And β2 = Acos(φ) β3 = Asin(φ) 

A = amplitude = (β22 + β32) ½ φ = phase = atan(β3/β2) 

For each optical index, the harmonic modeling was then 
applied, and time series were decomposed into harmonic terms 
to calculate the fitted values of the time series. 

3) Training set selection: To guarantee a good 

presentation of each class, training samples should respect a 

good representation of each class taking into consideration 

spatial distribution. 20% of the samples are set for validation 

and accuracy calculations, and 80% were used for training and 

extraction features from the formulated time series. 

C. Classification and Validation 

In the literature, different classification methods are 
employed for land cover and land mapping. This study, 
employed two classifiers which are the most performant [8], 
[20]–[22]. 

1) Machine learning classification: Random Forest RF 

classifier is based on building multiple trees from samples of 

the training data. Each tree is built using a different subset 

from the original training variables. Its advantage is that the 

algorithm can handle a huge amount of input data. The 

decision of belonging to a given class is determined by the 

majority vote of the trees. 
Support Vector Machine (SVM) is a supervised non-

parametric statistical technique. The decision to separate 
between classes is made by calculating the hyperplane that 
maximizes the margin between classes. The separation 
between data points is based on the applied kernel function 
(Linear, Polynomial, Gaussian, Radial Basis Function (RBF), 
or Sigmoid) that determines the efficiency of the classification. 

2) Accuracy assessment: Two performance criteria were 

used to assess the result’s accuracy. The main index of 

Cohen’s kappa is a statistical measure of interrater reliability 

for categorical variables. It takes into account the possibility 

of the accord occurring by chance (eq. 7). 

 
     

    
 (7) 

While p0 = Observed accuracy. p is the sum of relative 
frequency in the diagonal of the error matrix. pc = Chance 
agreement. 

F1 score also a measure of a model's accuracy can be 
interpreted as a harmonic mean of the precision and recall of 
the confusion matrix. F1-score is calculated per class for a 
multiclass classification problem (eq. 8). 

         
 
 

      
  

         

 
                  

                
 (8) 

Where:  recall=  
  

     
 and precision = 

  

     
 

IV. CASE STUDY 

A. Study Area 

To evaluate the radar and optical indices using a supervised 
classification method, the proposed model is tested in an 
agricultural zone in Minnesota State in the United States 
(Fig. 2). Minnesota is located in the Western part of the Great 
Lakes region and ranks fifth in the United States for total crop 
sales, the major crops are corn, Soybean, sugar beets, and dry 
beans. 
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Fig. 2. Study area in the Minnesota state and the studied classes

B. Crop Inventory Data 

The reference data were collected from the cropland data 
layer (CDL) produced by unites state department of 
agriculture. The layer contains annual crops from extensive 
agricultural ground truth with 30m spatial resolution. The 
process of training started with random points selection taking 
into consideration to cover the totality of the study area, and 
covering all the agricultural types. 80 % of data presenting 
5989 points were selected for training the model, and 20% for 
validation. The selected zone contains 14 types of crops with 4 
major types. 

C. Optical and Radar Data 

Both radar (Sentinel 1) and optical (Sentinel 2) images 
were used in this study. The Sentinel 1 mission provides C-
band Synthetic Aperture Radar data (SAR). The image catalog 
of Sentinel 1 data provides preprocessed images, terrain 
corrected and radiometrically calibrated. A total of 29 scenes of 
Synthetic Aperture Radar images were used from 01-01-2019 
to 30-12-2019. The images were restricted to single-
polarization VV and VH. The active sensor expands the 
possibilities of acquiring data in cloudy weather allowing then 
better monitoring of the vegetation evolution. 

The Sentinel-2 mission provides multispectral high-
resolution imagery with 12 spectral bands. The image 
collection contains 145 optical images covering all the studied 
periods. 

D. Analysis Platform 

The development of the remote sensing field imported 
different offers and a large amount of data from different 
sensors, and several platforms have been elaborated to handle 
geospatial analysis and processing. The Google Earth Engine 
was introduced as a multi-petabyte catalog and cloud 
computing platform with high-performance computation 

capabilities and has been investigated in land cover studies [27] 
and agricultural studies [28], [29]. 

The proposed process was all performed in the Google 
Earth Engine (GEE) platform, from the Sentinel image 
selection to the validation process. The GEE platform allowed 
the process of large-density images for pixel-based image 
analysis as well as the classification algorithms due to the high 
cloud calculation performance the platform offers. 

E. Time Series Formulation, Training, and Machine 

Learning Algorithms 

The first steps of processing time series are conducted as 
detailed in the previous section. After the preprocessing, 
calculating optical and radar indices of each imagery data was 
performed. 

SAR indices were extracted from the single-polarization 
bands. The Normalized Ratio Procedure between Bands 
(NRPB) and the ratio were estimated using the equation in 
Table I where σVH and σVV are the backscatter VH and VV 
polarization. In the same way, the NDVI, NDMI, and NDWI 
optical indices were calculated, then applied the harmonic 
modelization of the time series.   

The training was then applied to the formulated input, the 
training set was selected randomly from the time series stack 
generated from all the SAR and optical calculated indices. The 
input features are then fed to the employed machine learning-
based classifiers. 

Multiple parameters were tested for obtaining perfect 
results. The final parameters for the SVM classifier were set to 
the Radial Basis Function (RBF), 0.5 for gamma and 10 for the 
cost. Random Forest is applied using 800 trees and 20 variables 
per split. 

 

Corn 
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Other Hay/ Non Alfalfa 
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Dry Beans 
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Open Water 
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Developped /Low Intensity 
Developped /Med Intensity 
Developped /High Intensity 

Baarren 
Deciduous Forest 
Evergreen Forest 

Mixed Forest 
Shrubland 

Grass land/ pasture 

Woody weland 

Herbaceous weland 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 1, 2023 

776 | P a g e  
www.ijacsa.thesai.org 

V. RESULTS AND DISCUSSION 

A. Time Series of Vegetation Indices 

 
Fig. 3. NRPB index time series of major crops in the studied zone

 

Fig. 4. Ratio index time series of major crops in the studied zone 

From the SAR indices, the NRPB and ratio index time 
series were presented in Fig. 3 and Fig. 4 with a selection of 4 
major crops. The time series of the Normalized Ratio 
Procedure between Bands and the ratio index can monitor the 
vegetation changes. The temporal signature of different 
considered crop types is showing different signature behavior. 
The NRPB time series of corn alfalfa and soybean know 
significant variations whereas Fallow parcels responded 
smoothly and monotonously to changes over the year.  

 
Fig. 5. NDVI time series and fitted values of major crops in the studied zone 

The variations are a function of soil surface conditions, 
moisture, roughness, and biomass development of crops. The 
NRPB index was also used by [30] to generate metrics for the 
input set of the model to aid the prediction of NDVI and 
highlighted the similarity found in the NDVI and σVH/σVV 
ratios with crops and finally found that insertion of the NRPB 
variable in machine learning models, like RF, gives better 
results. 

Times series of the NDVI allows the characterization of 
each crop. Since the NDVI is a perfect index to describe the 
chlorophyll activity of crops, a dense and healthy state is 
presented by a high value of the NDVI index reaching 1, in the 
opposite case, the value approaches 0. Then, the time series is 
presenting the phonological cycle of each crop. 

Fig. 5 presents a selection of 4 crops of the NDVI time 
series in the studied area and the harmonic modeling values. 
The model is suitable for smoothing the spectral curves and 
allows distinction between crops. Corn, dry beans, and 
soybeans are presenting a unimodal periodic model, with a 
high value for corn culture. The resulting phonological cycles 
match the phonological calendar provided by the USDA 
National Agricultural Statistics. Corn starts in late April and is 
harvested in early November. While the phonological cycle of 
Soybean Starts with the plantation in early May and is 
harvested in late October. Alfalfa is presenting the highest 
amplitude values and a different curve from other crops due to 
agricultural practices. Alfalfa is harvested repeatedly during the 
growing season starting from early April to late October. The 
results of the obtained phonological cycles were compatible 
with the crop calendar as given by the USDA in the region of 
Minnesota.
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Fig. 6. Crop type mapping: Final results of RF and SVM classifications. 

B. Classification Results 

SVM and Random Forest have demonstrated their 
advantage in classifying agricultural cover maps. The 
validation of the classification results was conducted by 
calculating the confusion matrix. 20% of random samples were 
used to validate the final result. Both classifiers had given good 
results with the advantage of the random forest classifier with 
0.95 kappa index, and 0.85 for SVM. Table II presents 
accuracy metrics with good accuracy results, with the 
advantage of the RF classifier.  Other studies had demonstrated 
the complementary of optical and radar data [20], [31]–[34]. 
The authors in [35] have found an overall accuracy of 93.83% 
from combined inputs. The authors in [8] have found an overall 
accuracy between 73% and 95% depending on the input dataset 
used, using the SVM classifier. 

Fig. 6 presents the final classification using SVM and RF 
algorithms. The results are showing similar classes except for 
slight visual differences. 

Performances metrics were calculated, other than the kappa 
index, the F1-score, and Producer accuracy are presented in 
Table II. The Producer accuracy represents the probability that 
a particular sample of a particular class is classified correctly. 
The most correctly attributed classes are barley, corn, 
soybeans, and winter wheat. 

VI. CONCLUSION 

This research study deals with the problem of crop type 
identification. A machine learning-based model for automated 
crop type mapping is proposed. The novelty of the model is to 
improve crop type mapping accuracy using time series from 
both optical and radar images by extracting vegetation indices. 
The model presents several advantages. It demonstrate the 
complementarity between optical and radar satellite images for 
crop type mapping studies. Secondly, the results pointed the 
advantage of Random Forest classifier over SVM. The resulted 
accuracy outperformed existing models in the state of the art 
with a kappa index of 95%. 

The proposed model was implemented using Google Earth 
Engine and tested with a specific case study in an agricultural 
zone in Minnesota State in the United States. Future works 
intend to assess and compare the performances of deep 
learning and machine learning algorithms for crop-type 
mapping. 
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TABLE II. VALIDATION ACCURACY METRICS OF RANDOM FOREST AND 

SVM CLASSIFICATIONS 

Classes 

F1-

SCORE 

RF 

F1-

SCORE 

SVM 

Producer 

accuracy 

RF 

Producer 

accuracy 

SVM 

 

Corn 0.97 0.72 0.98 1 

Soybeans 0.96 0.89 0.97 0.78 

Sweet Corn 0.95 0.85 0.92 0.76 

Barley 1 0.89 1 0.69 

Spring Wheat 0.95 0.87 0.93 0.84 

Winter Wheat 0.96 0.85 0.96 0.7 

Rye 0.96 0.87 0.92 0.75 

Oats 0.96 0.87 0.97 0.69 

Alfalfa 0.88 0.95 1 0.7 

Other Hay/ Non 

Alfalfa 
0.87 0.87 0.87 0.79 

Sugarbeets 0.96 0.91 0.94 0.8 

Dry Beans 0.96 0.89 0.97 0.84 

Peas 0.95 0.93 0.88 0.87 

Clover/wildflower 0.85 0.66 1 0.7 

Fallow 0.95 0.93 0.96 0.77 

Open Water 0.99 0.89 0.97 0.69 

Developed /Open 

space 
0.94 0.90 0.94 0.86 

Developed /Low 

Intensity 
0.95 0.85 0.95 0.77 

Developed /Med 

Intensity 
0.89 0.98 0.94 0.94 

Developed /High 

Intensity 
0.83 0.85 0.8 0.82 

Baarren 0.88 0.79 0.84 0.75 

Deciduous Forest 0.97 0.85 1 0.78 

Evergreen Forest 0.90 0.88 0.86 0.80 

Mixed Forest 0.89 0.91 0.88 0.81 

Shrubland 0.91 0.88 0.93 0.82 

Grassland/ 

pasture 
1 0.9 0.86 0.75 

Woody wetland 0.90 0.93 0.94 0.83 

Herbaceous 

wetland 
0.90 0.80 0.93 0.75 
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