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Abstract—Machine learning has advanced rapidly in the last 

decade, promising to significantly change and improve the 

function of big data analysis in a variety of fields. When 

compared to traditional methods, machine learning provides 

significant advantages in complex problem solving, computing 

performance, uncertainty propagation and handling, and 

decision support. In this paper, we present a novel end-to-end 

strategy for improving the overall accuracy of earthquake 

detection by simultaneously improving each step of the detection 

pipeline. In addition, we propose a Conv2D convolutional neural 

network (CNN) architecture for processing seismic waveforms 

collected across a geophysical system. The proposed Conv2D 

method for earthquake detection was compared to various 

machine-learning approaches and state-of-the-art methods. All of 

the methods used were trained and tested on real data collected 

in Kazakhstan over the last 97 years, from 1906 to 2022. The 

proposed model outperformed the other models with accuracy, 

precision, recall, and f-score scores of 63%, 82.4%, 62.7%, and 

83%, respectively. Based on the results, it is possible to conclude 

that the proposed Conv2D model is useful for predicting real-

world earthquakes in seismic zones.  

Keywords—Earthquake; prediction; deep learning; machine 

learning; classification 

I. INTRODUCTION 

Over the last decade, the number and magnitude of induced 
earthquakes have increased dramatically, and several 
technological innovations [1] for effective disaster 
management have been developed. Nonetheless, much work 
remains to be done to mitigate the impact and harm caused by 
uncontrollable natural disasters. The proposed study is an 
important step toward effectively implementing modern 
technologies for accurate disaster detection, which remains a 
critical and major goal for successful emergency management. 

Every year, a large number of seismic events occur around 
the world as a result of the release of cumulative pressure in the 
Earth's mantle. Catastrophic earthquakes in hilly areas may 
have caused several collapses on high mountainsides [2]. These 
and other seismic events may cause environmental issues, 
critical infrastructure problems, and housing developments, 
ultimately resulting in tragic economic losses and human 
casualties. Furthermore, earthquake-caused landslides dam 
river systems, forming lakes that may be threatened by debris 
flows and outburst floods that endanger people and property 
downstream [3, 4]. Characterizing and forecasting the 
geographical distribution of seismic activity landslides is 
recommended for disaster mitigation [5]. 

Determining the geographic patterns of earthquakes is 
difficult because the main determinants of earthquake 
occurrences are their parameters, landscape, soil 
characteristics, tectonic plates, and human impacts [6]. As a 
result, it may be difficult to predict where landslides will occur 
after an earthquake [7]. Over the last 20 years, many prediction 
models have been developed to pinpoint locations vulnerable 
to landslides caused by earthquakes, and they can be divided 
into two categories: (1) models with a physical and numerical 
foundation [8]; and (2) models for determining susceptibility 
[9].  

The physically based models were developed using the 
mechanisms of gradient commencement and runout. The first 
of these methods, pseudo-static analysis, proposed that the 
earthquake force represents an additional permanent physical 
force to statically conservation equations [10]. Despite the fact 
that selecting a pseudo-static coefficient requires criterion and 
always yields conservative results, pseudo-static modelling is 
theoretically simple [11]. Following that, the stress-
deformation assessment method was proposed as an extension 
of finite-element simulation that is capable of simulating slope 
dynamic deformation. 

This method, which is based on mathematical calculations 
and has the potential to resolve physical issues such as 
complicated geometries, material properties, and boundary 
conditions, is appropriate for investigating the stability of 
artificial slopes [12]. Permanent-displacement examination was 
proposed shortly after its deployment to calculate the 
displacements of landslides caused by seismic activity. Its 
sophistication is somewhere between the two methods 
discussed above. Landslides are modelled as rigid-plastic 
bodies sliding on an inclined plane in this analysis. The 
Newmark model and its variants are the most commonly used 
models in permanent-displacement analysis [13].  

Over the last few years, advances in EQIL mechanism 
analysis have greatly improved the accuracy of physically 
based models. Because of the enormous number of parameter 
values required, physical-based models can only be used in a 
limited number of locations [11]. 

Later, scientists began looking into vulnerable assessment 
methods that could reflect a possible link between earthquake 
detection and causal factors for identifying earthquake-prone 
areas [14]. Landslide susceptibility modelling has grown in 
popularity over the last decade due to rapid advances in 
technology, geographic information systems (GIS), and data 
analysis [15]. These models are divided into two categories: 
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knowledge-driven approaches based on expert knowledge data 
and data-driven models based on historical landslide 
inventories and associated spatial landslide causative data [16]. 

The knowledge-based models, which use expert knowledge 
to explain the link between the incidence of landslides and 
causal causes in terms of quantity [17], believe the analytic 
hierarchy process to be the most representative. Numerous 
statistical and machine learning techniques have been 
developed to predict the likelihood of a landslide using data-
driven models. These approaches primarily include 
multivariate logistic regression and artificial neural networks 
(ANN) [18]. According to the results, data-driven models 
outperform knowledge-driven models in susceptibility 
mapping. Data-driven models can predict earthquake 
dispersion patterns, which the human eye cannot [19]. 

The majority of the data-driven models discussed above, 
which are classified as classic machine-learning techniques 
[20-21], can represent a single layer of linear or nonlinear 
relationships between causal variables and the incidence of 
landslides. As a result, when dealing with complex data, such 
models are prone to overfitting or becoming trapped on a local 
optimum [22]. However, due to an earthquake inventory 
constraint that always captures an earthquake as points or 
polygons, these landslide prediction models rarely take the 
distinction between landslide source and accumulation into 
account. 

In the last ten years, numerous deep learning algorithms 
have produced impressive results in computer vision, speech 
recognition, and intelligent robot control. Geohazard experts 
have gradually become aware of these algorithms' ability to 
exploit the potential of multiple relationships in massive data 
[23]. As a result, deep neural networks (DNNs), convolutional 
neural networks (CNNs), and their derivate models have been 
successfully used for landslide recognition and forecasting 
[24]. 

In seismic event prediction, there are some research gaps. 
The first issue in earthquake forecasting is a lack of data. 
Second, despite extensive research in the field of earthquake 
forecasting, forecasting accuracy remains low. 

Third, the majority of studies employ machine learning and 
traditional methods that are highly dependent on the type of 
dataset and cannot be extrapolated to other earthquake cases. 

In our research, we use the following contributions to solve 
these types of problems. First, we present a dataset of 
earthquake cases spanning the years 1906 to 2022. Second, for 
earthquake forecasting, we propose a Conv2D CNN model. 
We leave the groundwork for future research by highlighting 
various important parameters for training deep learning 
models. 

Reminder of this paper is as following: Section II presents 
related works in the extraction and categorization of features 
from seismic events. Section III discusses the imagery capture 
procedure and demonstrates the proposed method. Section IV 
summarizes the findings as well as the testing and discussions 
surrounding the proposed approach. Section V contains a 
conclusion and suggestions for future research. 

II. RELATED WORKS 

A. Machine Learning in Earthquake Forecasting 

Artificial intelligence techniques have been widely used to 
predict earthquakes [25-26]. One study [27] looked at how 
previous seismic occurrences in long short-term memory could 
be used to predict earthquake penetration rates. 

Several indicators were used to determine whether seismic 
activity would occur within the next five minutes, including 
magnitude, depth, time, place, statistics, and entropy factors. 
Based on a spatial analysis of magnitude dispersion, an 
automated clustering-based adaptive neuro-fuzzy inference 
system for earthquake prediction was proposed [28]. However, 
these techniques struggle to condense useful guidelines for 
EQP activities [29]. As solutions to the earthquake prediction 
problem, several superficial machine learning experiments, 
such as [29-32], have been proposed. Shi et al. [33] were the 
first to use an artificial neural network in earthquake 
prediction, and they also discovered a correlation between 
earthquake magnitude and epicentral severity. 

Subsequently, a support vector regressive and hybrid neural 
network was created to predict earthquakes [34]. The important 
indicators in this study were extracted using the criterion of 
greatest relevance and least redundancy. Eventually, 
earthquake predictions were made using traditional machine 
learning methods [35]. Another study [36] used a principal 
component analysis-based random forest to generate new 
datasets and reduce data dimension in order to generalize 
preexisting prediction models. The results show that these 
generalized techniques outperformed current methods in terms 
of average accuracy. Nonetheless, variations in geological 
features limit their applicability. 

B. Deep Learning in Earthquake Forecasting 

Deep learning techniques are capable of calculating 
hundreds of complex indicators on their own. As a result, 
recurrent neural networks (RNNs) and convolutional neural 
networks (CNNs) have piqued the interest of many earthquake 
prediction researchers (CNNs). For example, [37] developed 
static-stress-based criteria for forecasting aftershock locations 
without assuming fault direction. It also provided a more 
accurate method of predicting aftershock locations and 
pinpointing the physical factors that governed earthquake 
triggering while the earthquake cycle was still active. Due to 
the dynamic and unpredictable nature of earthquakes, [38] 
developed long short-term memory to investigate the 
spatiotemporal association between earthquakes at various 
sites. 

They were also able to demonstrate the dependability and 
efficiency of their approach. However, it is difficult for DL-
based EQP techniques to produce predictions based on 
historical data because they require a large amount of training 
data to ensure accuracy [25]. 

Several machine-learning techniques are used on historical 
earthquakes to predict impending tectonic events based on 
earthquake waveforms. These models are used in support 
vector machines, random forests, k-nearest neighbours, and 
artificial networks [39-40]. In this study, we focus on the most 
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powerful RNN methods for prediction on calm and seismic 
days, such as LSTM models. An artificial neural network was 
used in one study [35] to identify earthquake precursors using 
TEC data, while genetic algorithms were used in another study 
[41]. 

When using machine learning algorithms to identify 
earthquake precursors, the TEC data of the learning pattern is 
considered. A-TEC data irregularity may occur prior to the 
earthquake in certain machine learning-based situations. In 
Indonesia, particularly Sumatera, efforts have been made to 
identify earthquake precursors using machine learning methods 
based on N-Model Artificial Neural Networks [42]. According 
to the authors of [43], QuakeCast is a one-of-a-kind technique 
that uses global ionosphere TEC data to identify short-term 
earthquakes. Using a conventional logistic regression model 
and a deep learning ConvLSTM autoencoder, the proposed 
technique investigates whether signals in an ionosphere layer 
TEC dataset predict earthquakes. 

Without explicitly modelling specific properties, deep 
learning was able to forecast earthquakes. As a result, more 
academics are turning their attention to deep learning 
techniques. The authors proposed a novel ground vibration 
monitoring strategy for MEMS-sensed data using a deep 
learning approach [44]. The following study created a network 
for magnitude estimation using convolutional and recurrent 
layers [45]. In subsequent research, ConvNetQuake was 
developed to identify nearby micro-earthquakes based on 
signal waveforms. They also show how ConvNetQuake works 
well with different types of seismic data. Lomax et al. used 
CNN to quickly describe the earthquake's location, magnitude, 
and other characteristics [46]. S. Mostafa Mousavi investigated 
CNN-RNN to predict earthquakes quickly by detecting weak 
signals [47]. 

Authors then estimated the likelihood of earthquakes on the 
Indian subcontinent by looking at the CNN network [48]. The 
author in [49] investigated another CNN earthquake damage 
assessment model. J. A. Bayona provided two well-known 
seismic models to evaluate seismic dangers [50]. The 
experimental results indicate that certain implicit traits may be 
able to approach the earthquake forecasting problem from a 
different perspective. Although deep learning techniques can 
fully exploit the hidden information in earthquakes, they are 
not theoretically interpretable. Table I demonstrates 
comparison of different approaches for seismic events 
prediction.  

TABLE I.  COMPARISON OF APPROACHES FOR EARTHQUAKE 

MAGNITUDE PREDICTION 

Reference 
Applied 

method 
Features Dataset Results 

[33] SVM Magnitude CAPCEA 69% accuracy 

[34] KMC algorithm - 0.76 70% accuracy 

[35] HKMC, ANN Magnitude 
BMKG, 

USGS 

Between 56% to 

72% when M>=6 

[36] ACC algorithm - - 
41.488 average 

distance 

[37] HKMC, ANN - 
BMKG, 

USGS 
75% accuracy 

[38] 
RNN, RF, LP 

Boost 
- 

CES and 

USGS 
79% accuracy 

In this research, we want to characterize calm and 
earthquake days in the target station zone using total electron 
content (TEC) values from the ionosphere layer based on 
previous research in this area. The primary goal of this research 
is to predict faster earthquakes. 

III. DATA 

It was necessary to collect data for the training sample in 
order to build a mathematical model. At the same time, keep in 
mind that the model should have constant access to new data 
segments in order to predict within and for a specific time 
period. 

It is worth noting that data from the Institute of Seismology 
of the Republic of Kazakhstan were available during the 
hypothesis' development. However, because this data was only 
uploaded once and there was no integration with seismology 
institute endpoints, there was no guarantee that it could be 
supplied continuously. In this regard, it was decided to 
supplement it with additional data from the United States 
Geological Survey (USGS) database, which is accessible via 
API. 

A combination of datasets from earthquake.usgs.gov and 
data from the Institute of Seismology of the Republic of 
Kazakhstan was used. Where there were columns such as 
place, time, magnitude, and depth. After some transformations, 
the dataset took the form of [year, region, 
rolling_aggregations_over_the_retro_data (depth and 
magnitude), binary target (where 1 means there will be a 
devastating event, and 0 means there will not be a devastating 
event)]. 

There were 2629 events detected in the Kazakhstan area 
from 1906 till 2022. The final shape of the dataset after all 
aggregation transformations is 1170 observations and 352 
parameters. 

A combination of datasets from earthquake.usgs.gov and 
data from the Institute of Seismology of the Republic of 
Kazakhstan was used. Where there were columns for place, 
time, magnitude, and depth. After some transformations, the 
dataset looked like this: [year, region, rolling aggregations over 
the retro data (depth and magnitude), binary target (where 1 
means there will be a devastating event, and 0 means there will 
not be a devastating event)]. 

From 1906 to 2022, 2629 events were detected in 
Kazakhstan. The dataset's final shape after all aggregation 
transformations is 1170 observations and 352 parameters. 

The actual records span the years 1906 to 2022. There are 
approximately 2.5 thousand records of unique earthquake 
events for this period in Kazakhstan and its surroundings. 

In terms of the general population, the majority of the 
events occurred outside of Kazakhstan (approx. 300 events). 
However, we believe that these events may have had an impact 
on Kazakhstani territory, even if they were recorded on the 
territory of neighboring countries in Fig. 1. 
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Fig. 1. Map with all events of earthquakes 

Fig. 2 demonstrates distribution of earthquake cases in 
Kazakhstan and its neighbourhoods. Most of data are fixed 
after 1960. There is a peak between 1998 and 2005. Moreover, 
it highlights a gradual growth of earthquake cases for last 25 
years, which is mainly caused by an increase of sensors and 
their accuracy. 

 
Fig. 2. Distribution of earthquakes for observed time 

In order to test the hypothesis, it is advisable to divide the 
map of Kazakhstan into segments to predict the probability of a 
target event. The following methods were proposed for the 
segmentation of objects in the context of which predictions will 
be made: 

1) Lithospheric plates 

2) Conditional grid that divides the map of Kazakhstan 

(polygons) 

3) Administrative areas 
In this approach, we will try to break the map of 

Kazakhstan into regions, and try to aggregate the indicators 
grouping by regions. Since most of the events took place 
outside of Kazakhstan, many coordinates could not be marked 
with an area. Out of 2.5 thousands, 300 events remained 
(~11%), which is insufficient for building high-quality 
analytics. Nevertheless, we managed to build a baseline from 
this amount of data. 

It is proposed to assign shocks that occurred outside the 
Republic of Kazakhstan, though being close to a separate area, 
to mark the event with a nearby area. For a purpose of forming 
the target events and the training sample, the main groups are 
specified by Area and Year parameters, aggregating the 
following indicators: 

1) Minimum values in the group by the "Magnitude" and 

the “Depth” parameters 

2) The maximum value in the group by the "Magnitude" 

and the “Depth” parameters 

3) Median value in the group by the "Magnitude" and the 

“Depth” parameters 

4) The average value in the group by the "Magnitude" and 

the “Depth” parameters 

5) Standard deviation in the group by the "Magnitude" 

and the “Depth” parameters 

6) Number of events in a group 
Afterwards, we filled empty standard deviation values with 

0. It is important to note that the sample is inconsistent over the 
years, as there are gaps without events between years, or they 
possibly were not recorded. For this reason, the following years 
were not indicated in the sample: 1980, 1981, 1982, 1983, 
1984, 1985, and 1986. 

IV. MATERIALS AND METHODS 

In this section, we show the materials and methods used in 
this study. In the first section, we show how a proposed system 
architecture and feature extraction problem work. The 
following section demonstrates the proposed earthquake 
forecasting model. The final section shows evaluation 
parameters for comparing the proposed model to other machine 
learning models for the given problem. 

A. Proposed System Architecture 

In this research, we aimed to forecast earthquake magnitude 
prediction using deep learning techniques. Fig. 3 demonstrates 
a flowchart of our research for the prediction of earthquakes. 
Firstly, we get earthquake waveforms data and clean the data. 
The data cleaning or preprocessing process consists of four 
parts data cleaning, data integration, data transformation, and 
data reduction or dimension reduction. After preprocessing we 
train a deep-learning model for earthquake prediction. The 
architecture of the proposed deep learning model for 
earthquake prediction is presented in Section 3.2. The next 
stage is the prediction and evaluation of the proposed deep 
learning model. 

 
Fig. 3. Proposed architecture of earthquake forecasting 
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B. Feature Extraction 

The timeline is one of the characteristics of earthquake 
prediction model training. Fig. 4 depicts a timeline for feature 
generation. Because we are at the start of the current year and 
have retro information about previous earthquake events 
(aggregated depth and magnitude parameters), our prediction is 
for the maximum magnitude during the year. 

 

Fig. 4. Earthquake timeline as a feature 

 
Fig. 5. Distribution of earthquakes for observed time 

Fig. 5 depicts a relationship between depth and magnitude. 
While smaller earthquakes can and do occur at all depths down 
to around 700 km, the largest earthquakes occur at shallower 
depths in the earth's crust. Earthquakes occur in the crust, the 
earth's highest layer, which ranges in thickness from 7 to 30 
km. The earth's crust, which contains numerous fault networks 
that can cause earthquakes, is the planet's coldest and most 
vulnerable region. These earthquakes are caused by frictional 
sliding on faults caused by tectonic stress accumulation. 

C. Proposed Model 

The proposed deep learning prediction architecture 
employs the Convolutional neural network strategy, as 
illustrated in Fig. 6. A Rectified Linear Unit (ReLU) activation 
function layer precedes the Maxpooling2D layer with a filter 
size of (33) and is followed by a Conv2D layer with a size of 
(128) and a filter size of (33). The first epoch assigns the 
autoencoder model's received output to these layers. The 
second stage, like the first, employs a Conv2D layer with a size 
of (64). From the third to the eighth stage, only the Conv2D 
layer with a filter size of (33) and ReLU activation are 
operational. 

The output of the eighth stage is flattened by the ninth 
stage. Following that, in stages 10 and 11, we use completely 
linked layers with 50 and 10 neurons, respectively. Two 
scenarios are also included in the proposed regression model. 
Initially, we use a single output neuron to estimate the 
magnitude. Second, we use three neurons to estimate both 
magnitude and position. 

The important feature mappings, which are retrieved by 
each convolutional layer in the proposed CNN technique, are 
adapted as a matrix of pixels from an image. Each feature 
mapping is identified by equation (1): 

 
Fig. 6. Proposed Conv2D CNN architecture
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The critical feature mappings are extracted from an image 
as a matrix of pixels by each convolutional layer in the 
proposed Conv 2D convolutional neural network approach. 
Equation (2) identifies each feature mapping of the proposed 
approach. 
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The Maxpoolying layer, which is described by following 
formula is subsequently used to increase the number of feature 
maps, deepen the proposed neural network, and reduce the 
network dimension. Equation (3) describes maxpoolying layer 
for the given deep learning model. 

 ),(max),( dnlmfnmMP   

where l and d are the Maxpooling window dimension. 

D. Evaluation Method 

The prediction outcomes are analyzed using the metrics of 
accuracy, precision, recall, and F1-score [43-46]. The accuracy 
indicator displays the rate of model prediction accuracy across 
all parameters. It is calculated as the proportion of correct 
predictions made by a model. This is especially useful when all 
of the courses have the same value. It is calculated by dividing 
the number of correct predictions by the total number of 
predictions made. This is the probability that the class will be 
adequately anticipated. The precision of the formula is shown 
in Equation (4).  
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Here, TP is true positives, TN is true negatives, FP is false 
positives, FN is false negatives. Sum of all this cases gives a 
number of all cases.  

Precision offers a reliable picture of the veracity of our 
positive detections in comparison to the unchanging truth. How 
many of the objects we predicted in a given image matched the 
ground truth annotation? Formula (5) describes precision [47]. 

 

FPTP

TP
precision


  

When striving to accurately describe the extent to which 
our pessimistic expectations match the reality, recall or 
sensitivity is a good statistic to utilize. Out of all the challenges 
in our ground truth, how many favorable forecasts did we get? 
[47] 

 

FNTP

TP
recall


  

The symbol F-measure stands for the harmonic mean of 
accuracy and completeness. This statistic decreases as accuracy 
or completeness approach zero. The formula for the F-measure 
evaluation parameter is shown in equation (7). 
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V. EXPERIMENT RESULTS 

This section presents the experimental results of the 
proposed model for earthquake detection and compares them to 

classical machine learning methods and state-of-the-art models. 
The confusion matrix for the given problem is shown in Fig. 4. 
The proposed deep model has a high prediction percentage, as 
evidenced by the results. 

 
Fig. 7. Earthquake timeline as a feature 

Fig. 7 depicts the results of earthquake forecasting. There, 
we show the results of three machine learning algorithms for 
earthquake detection after ten training epochs. As the results 
show, the light gradient boosting machine (lightgun) 
outperforms other machine learning methods in terms of 
accuracy and ROC-AUC. In each evaluation parameter, the 
neural network has the lowest efficiency. Random Forest 
performs well in some parameters such as ROC-OUC, recall. 

 
Fig. 8. Precision and recall for 10 epochs 

Table II compares various machine learning algorithms and 
the proposed deep learning model for earthquake forecasting 
problems. According to the test results, the proposed deep 
model outperforms traditional machine learning algorithms in 
every evaluation parameter. It means that the proposed deep 
model is practical (see Fig. 8). 
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TABLE II.  COMPARISON OF APPROACHES FOR EARTHQUAKE MAGNITUDE PREDICTION 

Algorithm Accuracy Precision Recall F-score AUC-ROC Threshold 

Proposed Model 0.874 0.63 0.824 0.627 0.83 0.998 

LightGBM 0.832 0.500 0.712 0.587 0.801 0.998 

Random Forest 0.795 0.443 0.797 0.570 0.758 0.774 

Neural Network 0.766 0.365 0.525 0.431 0.595 0.766 

SVM 0.742 0.387 0.506 0.428 0.587 0.628 

Decision Tree 0.512 0.536 0.483 0.417 0.561 0.637 

 
Fig. 9. ROC curve for 10 epochs 

 
Fig. 10. Ratio between impacts on model output (SHAP value) to feature 

value 

The area under the curve receiver operating characteristics 
(AUC-ROC) curve for the proposed model for earthquake 
forecasting problems is depicted in Fig. 9 in terms of the 
combination of false positive rate and true positive rate for 10 
training epochs. The AUC-ROC curve is greater than 0.5, 
indicating that the proposed deep model is practically 
acceptable and feasible in real life. The horizontal axis stands 
for false positive rates, the vertical axis means true positive 
rate. The results show that the proposed deep convolutional 
neural network demonstrates high AUC-ROC value by 
achieving higher value than the other applied models in ten 
epochs. Obtained results show that the proposed model can be 
applied for real case (see Fig. 10). 

VI. DISCUSSION AND FUTURE RESEARCH 

As shown in the figures above, the results appear 
promising, though it is worth noting that the model is not stable 
due to a lack of training data. The hypothesis is that earthquake 
events occur in cycles, and that retro data based solely on 
magnitude and depth predictors can predict the future 
appearance of destructive earthquakes. Machine learning 
algorithms are clearly based solely on statistics, and they 
should not be regarded as magical black boxes. The model has 
no idea what an earthquake is. There is a hypothesis that goes 
something like this: "In order for computers to understand 
earthquake concepts, we should pass fundamental features that 
describe physical concepts of earthquake nature." 

Many suggestions are aimed at improving the model. For 
example, a hypothesis is proposed to test with new features 
such as:  The impact of lithospheric plate movements: 

 The impact of natural disasters and macroeconomic 
indicators on climate change 

 The impact of events in neighboring regions (Relative 
features) 

 Mining's impact on deposits 

 Formulas for physical sense. 

Other suggestions include: Scaling down the grid - Making 
predictions in quarters and months rather than years. 

 Create a project with a trigger so that local emergency 
services can respond. 

VII. CONCLUSION 

The proposed approach demonstrates that the presented 
deep learning model outperforms approaches using traditional 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 14, No. 1, 2023 

795 | P a g e  
www.ijacsa.thesai.org 

machine learning methods and cutting-edge deep models that 
employ traditional features. The provided time series-based 
method has the potential to improve the accuracy of earthquake 
forecasting issues. The applied dataset of earthquakes for the 
years 1906 to 2022 with magnitudes between 4 and 7 increases 
by 8.5% using the proposed deep learning architecture with the 
provided features, indicating that the proposed approach is 
somewhat successful on datasets with a pretty large size. 
Recent studies have shown that massive data analytics and 
machine learning can improve earthquake prediction accuracy. 
The proposed deep learning model performed well in 
earthquake forecasting, with accuracy, precision, recall, f-
score, and AUC-ROC of 87.4%, 63%, 82.4%, 62.7%, and 
83%, respectively. Specifically, incorporating the proposed 
deep learning architecture provided spatial and temporal 
characteristics, allowing earthquakes to be predicted to some 
extent. 
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