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Abstract—The drone will be a commonly used technology by
a significant portion of society, and simulating a given drone
dynamic will be an essential requirement. There are drone dy-
namic simulation models to simulate popular commercial drones.
In addition, there are many Newtonian and fluid dynamics-
based generic drone dynamic models. However, these models
consist of many model parameters, and it is impracticable to
evaluate the required model parameters to simulate a custom-
made drone. A simple method to develop a machine learning-
based dynamic drone simulation model to simulate custom- made
drones mitigates the issues mentioned above. Specifically, the
authors’ research is associated with the development of a machine
learning-based drone dynamic model integrated with a virtual
reality environment and validation of the user-perceived physical
and behavioural realism of the entire solution. A figure of eight
manoeuvring patterns was used to collect the data related to
drone behaviour and drone pilot inputs. A Neural Network-
based approach was employed to develop the machine learning-
based drone dynamic model. Validations were done against
real-world drone manoeuvres and user tests. Validation results
show that the simulations provided by machine learning are
accurate at the beginning and it decreases the accuracy with
time. However, users also make mistakes/misjudgments while
perceiving the real-world or virtual world. Hence, we explored
the user perceive motion prediction accuracy of the simulation
environment which is associated with the behavioural realism
of the simulation environment. User tests show that the entire
simulation environment maintains substantial physical realism.
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I. INTRODUCTION

Drone is an unmanned aircraft controlled by a ground
base station, used primarily to carry out air-based missions,
such as surveillance, transportation and entertainment [1],
[2]. Historically drones were first used by the military for
ground surveying and spying missions, and they were called
Unmanned Aerial Vehicles (UAVs) [3], [4].

Nowadays the term drone is widely used for quadcopters,
vertical takeoff and land (VTOL) type miniaturized aircraft,
with four propeller blades, pushing air downwards to maintain
itself on air, while moving back and forward using the thrust
created by the same propellers [5]. Such drones come in many
sizes ranging from a few inches up to several feet and are
used in many applications including for toys, entertainment,
photography, land surveillance and scientific research [1], [6],
[7], [8].

According to the Stanford University Intelligent Systems
Laboratory and National Aeronautics and Space Adminis-
tration (NASA), within the next few years, Low-Altitude
airspace will be congested with Low-Altitude Remotely Piloted
Aircrafts [9]. This will be a common technology used by
a significant portion of society. Due to the maturing of the
technology, it requires a skilled and qualified human resource
to use the technology and train pilots for specific tasks and
missions. At the same time, it allows individuals and various
organizations to build custom-made drones at their own pace.

Therefore, drone pilot training for custom-made drones
via simulations is essential. It provides the knowledge and
practical skills that are necessary to safely and efficiently
operate unmanned aircraft for commercial and non-commercial
use [10], [11]. Hence, drone pilot training simulators will be a
very important requirement. Depending on the safety-critical
level of the drone operation, there is a requirement of simulates
the drone operations prior to the real real-world operation.
This type of simulation supports the identification of potential
disasters due to the manoeuvring capability of the drone and
the pilot. Hence, drone simulators with required realism will
be essential in future [1].

There are solutions to simulate real-time drone dynamics,
such as the DJI drone simulator. These simulators are capable
of simulating the bundled series of drones belonging to a
particular vendor. There are many proposed generalized drone
dynamic simulation models and most of these models are
based on Newtonian dynamics and fluid dynamics. Simulating
custom-built drones with these generalized drone dynamics
is a highly challenging task. It requires evaluating model
parameters related to the custom build drone and it needs many
experiments to be conducted with the given ideal conditions,
domain-specific knowledge and a wide range of practical
issues. A machine learning-based drone dynamic model avoids
most of the above issues. There is significant value to explore
the possibility of developing a machine learning-based drone
dynamic model and incorporating it with a Virtual Reality
(VR) environment to simulate a custom-built drone. It is
highly essential to evaluate the realism level of such a drone
dynamic model and the VR environment. Overall realism of a
virtual environment can be expressed with physical realism
and behavioural realism. Behavioural realism expresses the
accuracy of dynamic activities such as motion predictions.
Physical realism expresses the physical infrastructure of the
simulated environment [12], [13], [14], [15].
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The remainder of this paper is structured as follows: State-
of-the-art drone simulation models are critically evaluated in
Section II. Section III discusses initial research initiatives such
as data collection techniques. The development processes of
the machine learning model and VR environment for the
proposed dynamic drone simulator are covered in Sections IV
and V, respectively. Section VI presents the experimental and
validation results of the simulator under different criteria. Fi-
nally, Section VII, concludes the paper along with prospective
research directions.

II. RELATED WORKS

There are many proposed drone dynamic simulation mod-
els and most of these models are based on Newtonian dynamics
and fluid dynamics [16], [17]. These models were used to
simulate drones for different applications and comparisons of
different simulation models were reported [18], [19]. However,
the evaluation of required model parameters and simulations
of existing drones is not discussed.

There are commercial simulators that could use for the
simulation of drones. For example, the DJI Assistant 2 soft-
ware is a drone simulator provided by DJI used to simulate
selected DJI drones [20], [21]. The DJI Assistant 2 is pro-
grammed/programmable to simulate drones with offline remote
control data. Real Flight drone/flight simulator [22], Simpro
drone simulator [23], Liftoff by Immersion RC [24] and HELI-
X professional R/C flight simulator [25] are some of the
reviewed commercial drone simulators which can be employed
to simulate particular commercial drone.

There are many research and development works carried
out by employing machine-related theories in drone-related
ICT solution developments [26], [27], [28], [29], [30], [31],
[32]. However, most of these applications are related to de-
signing and developing autonomous drones and target tracking
in outdoor/indoor environments.

Jemin et al. presented a method to control a quadrotor
with a neural network trained using reinforcement learning
techniques [33]. They demonstrated the performance of the
trained policy both in simulation and with a real quadrotor.
The trained policy shows outstanding performance and remains
computationally cheap simultaneously. Furthermore, it shows
many other advantages of neural network policies that are not
limited to their versatility. This experiment is limited to a small
space covering approximately a 2m x 2m x2m controlled area.

Osman Çakira and Tolga Yükselb [34] developed a neural
network-based controller for quadrotors. In this study, neural
network control of quadrotors is aimed to obtain an artificial
intelligence-based drone controller and the results show that
neural network controllers achieve satisfactory trajectory track-
ing results. This experiment is also limited to a small space
that approximately covers 5m x 3m x3m controlled area.

Jeong, Baek and Lee propose a prediction model of the
vehicle trajectory [35]. Their approach is not based on physics-
based motion models and there are no kinematic and dynamic
models, laws of physics and fluid dynamics. They employed a
Deep Neural Network that takes as input vehicle velocity, ac-
celeration, yaw rate, steering, and road curvature. The authors

discussed the advantages of employing deep neural network-
based predictions to avoid several potential issues in similar
physics-based vehicle simulation requirements.

Jeong et al. proposed Deep Neural Network (DNN) that
considers preprocessed vehicle velocity, acceleration, yaw rate,
steering, and road curvature as the input layer and eventually
reaches the output layer via multiple hidden layers. DNN uses
an activation function with a function called a rectified linear
unit (ReLU) [36], [37]. However, a ReLU function is not a
perfect match to be used in this study because the final outputs
of our DNN model include expected future lateral movements,
which can be negative. Hence, Leaky ReLU was employed
for the activation function, which is slightly different from
the original ReLU [35]. The results of the proposed study
confirm the feasibility of Deep Neural Network-based long-
term trajectory prediction for vehicles driving on roads with a
certain level of road conditions such as varying curvature.

Jackson et al. employed the machine-learning technique to
design and develop a dynamic model of a rotorcraft [38]. Their
key justification for this approach is that widely used physical-
law-based and substantially accurate rotorcraft dynamic mod-
els need to be simplified to make real-time motion predictions.
Hence, it leads to motion prediction errors compared to the real
vehicle. In their current work, machine-learning techniques are
employed to train a rotorcraft dynamic model to predict the
dynamic on-axis motion responses such as pitch rate, roll rate
and yaw. The employed machine learning was designed with a
Gaussian Process (GP) non-linear autoregressive model [39].
They have proven that the machine-learning approach can
be successfully utilized to predict the on-axis motions of a
rotorcraft. The obtained level of accuracy is generally higher
than the physics-based dynamic models.

Punjani proposed a helicopter dynamic modelling method
with a Rectified Linear Unit (ReLU) Network Mode [40].
The reasons for selecting this approach are helicopter has
a complex dynamic system with rigid body dynamics with
aerodynamics, engine dynamics, vibration and other factors
such as manoeuvring patterns. They described several base-
line models and shows that the helicopter dynamics with
ReLU significantly outperformed other considered baseline
models. Furthermore, It improves acceleration prediction over
state-of-the-art methods and they presented performance gains
techniques with hyperparameters fine-tuning. They selected a
range of manoeuvres such as forward/sideways flight, vertical
sweeps, inverted vertical sweeps, stop-and-go, flips, loops,
turns, circles, dodging, orientation sweeps, orientation sweeps
with motion, gentle freestyle and aggressive freestyle.

Considered, baseline models are based on Linear Accelera-
tion Model and it serves as a direct state-of-the-art performance
baseline. Validations, efficacy investigations, compare and con-
trast among baseline models and the ReLU-based model were
done by using data obtained from the Stanford Autonomous
Helicopter Project [41]. Following Fig. 2 presents observed and
predicted accelerations in the up-down direction for selected
three different aerobatic manoeuvres. It shows that the baseline
Linear Acceleration model performs poorly compared to the
novel ReLU Network Model [40].

Sandaruwan et al. proposed a machine learning-based
approach to simulate drone dynamics related to the figure of
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Eight Manoeuvering pattern [1]. Authors have obtained satis-
factory results and proven that the machine-learning approach
can be successfully utilized to predict drone motions. However,
they have not published the evaluation of the developed drone
dynamic model and simulation environment.

Zhang et al. investigated users’ situational awareness of vir-
tual outdoor, virtual indoor, real-world indoor, and real-world
outdoor environments. They considered distance judgment for
their experiments and identified potential error factors and
other considerations [42]. They also investigate the impact of
users’ real-world scene awareness on distance judgment in the
same simulated scene in a virtual environment. Their results
suggest that both the virtual and real-world environments have
an impact on distance judgment in VR which affects the users’
ability to perceive the realism of VR environment [42].

Ziemer et al. also explored the order in which people
experience real and virtual environments that influence their
distance estimates. They also identified potential error factors,
error percentages and other considerations in estimating dis-
tance in real and virtual environments. Their results provide
facts and figures to measure users’ situational awareness of the
virtual and real scenes [43]. They presented the importance
of presence and reality judgment in the VR environment and
aspects that contribute to creating a person’s reality judgment
in a given scenario in the VR environment. They discuss the
problem of “How do people decide whether something is real
or not?”. Their work aims to design a self-report measure that
assesses both constructs [44].

Sandaruwan et al. conducted several research studies to
design and deploy a Maritime VR Environment [14], [13].
They discuss essential factorsconsiderations related to val-
idating the user perception of the physical & behavioural
realism of a maritime VR environment. They employed several
techniques & methods to validate the physical & behavioural
realism of the maritime VR environment. Moreover, they used
techniques such as comparing real vehicle trials and simulated
vehicle trials, simulation of simple possible scenarios and user
tests [15]. However, those techniques & methods are applicable
to most VR environments with dynamic vehicle models.

By considering the above-reviewed literature and the main
objective of designing and developing a machine learning-
based drone dynamic model for outdoor simulation of a
custom-built drone, the following actions were executed: 1)
Deep Neural Network-based approach with Leaky ReLU or
any other appropriate activation function. 2) The figure of eight
manoeuvring pattern-based outdoor data collection to build
the machine learning model. 3) Conduct evaluation/validation
such as comparing real drone trials and simulated drone trials,
simulation of simple possible scenarios and user tests to
measure the user perceive realism of the develop machine
learning-based drone dynamic model.

Analysis of Newtonian dynamic and fluid dynamic-based
analytical solution used by the researchers [16], [17], [18], [19]
shows that takeoff & landing of the drone is more complicated
and needs more accurate complex dynamics. In addition, real-
world wind flows with a turbulent effect make the situation
further complicated. Hence, this research does not focus on
the takeoff & landing of the drone, and all experiments and
tests were carried out in a calm outdoor environment with

negligible wind effect.

III. PRELIMINARIES AND DATA COLLECTION

Four-rotor drones are a subset of multirotor systems and
these drones use four rotors to keep them flying. A popular
example of these multirotor drones is the widely used Phantom
drone made by the SZ DJI Technology Co. Ltd [45]. Drone
movements are controlled by a handheld radio controller. The
drone changes its position and orientation based on the given
radio controller inputs. This research focuses on a machine
learning-based four-rotor drone dynamic model to build the
relationship between the drone pilot’s radio controller inputs
and the drone’s position and orientation. The Phantom drone
by the SZ DJI Technology Co Ltd was selected for the
experiments and it has six degrees of freedom motions (Three
rotational motions & three translational motions).

DJI Phantom quadcopter drone comes with four propulsors
that enable vertical takeoff and landing. It has four key con-
trollable variables which move the drone in the 3D space [45],
named throttle, pitch, roll & yaw. Fig. 1 illustrates a radio
controller with key controllable variables. Based on the key
controllable variable inputs, the drone changes its position and
orientation.

Fig. 1. A radio controller with key controllable variables.

Movement in the horizontal frame is achieved by tilting
the platform with the different thrusts of the motors. Vertical
movement is achieved by changing the total thrust of the
motors.

DJI Phantom 4 [45] consists of many inbuilt sensors such
as accelerometers, proximity sensors, GPS and GLONASS.
That sensor assists with precision flying, precise hovering and
much more. In addition, it provides a flight log consisting of
flight position and orientation data & radio controller input data
with the frequency of 10 sample points per second (10Hz).
DJI Phantom 4 Pro [46] drone maintains 1.5-meter position
accuracy with inbuilt GPS sensors & it can be enhanced up to
1cm accuracy by configuring external sensors.

The required machine learning-based drone dynamic model
must predict the drone’s position and orientation against the
radio controller input. Hence, the required data can be catego-
rized into two main categories as given below:

• Drone pilot inputs are entered via the drone Radio
Controller (RC) and represent the given inputs, such
as throttle and rudder values that are responsible for
the drone position and orientation changes.

• The Drone’s position and orientation change with
time, and all other relevant sensor information vary
with time (E.g. Battery level, accelerations, velocities).
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If all manoeuvres are performed with fully charged bat-
teries and the battery level is within 97% and 100%. Then
it reduced the potential performance variation of the drone
due to the battery power variations. The recorded data set
consists of over forty parameters that vary with time. After
examining the time-varying fields of the raw data set, the
following observations were made:

• Certain sets of parameters directly imply the other set
of available parameters. E.g. Latitude, Longitude and
Altitude present the position of the drone in 3D space.
All data stamps were recorded with a constant time
gap. VelocityX ,VelocityY and VelocityZ also present
the position of the drone in 3D space.

• There are certain sets of parameters that are constant
during the experiment or indicate negligible variation.
E.g. GpsCount, GpsLevel Battery Power(%), Battery
Voltage, Battery Voltage Deviation, Battery Cell Volt-
ages.

• There are other sets of parameters that are static due to
the selected settings of the drone or provide Tips and
warnings. E.g. App Tip, App Warning, App Message
and Flight Mode.

Hence, after considering the above fact extracting the
required data and selected key parameters of the data set are
described below:

• Time (seconds): Time elapsed since the power-up.

• RcAileron: Rc signals for roll.

• RcElevator: Rc signals to control the horizontal pitch
attitude of the drone.

• RcRudder: Rc signals to control the yaw of the drone.

• RcThrottle: Rc signals control the engine’s speed and
indicate how fast or slow the drone’s movement.

• x,y,z: Cartesian conversion of Longitude and Latitude.

• Orientation: Bearing of the head of the drone in
degrees.

The above parameters describe the drone pilot input via
the radio controller & resultant position and orientation of the
drone. Hence, the above parameters were taken into consider-
ation to develop a machine-learning drone dynamic model.

IV. DEVELOPMENT OF MACHINE LEARNING MODEL

This research focuses on a machine learning-based drone
dynamic model based on a subset of artificial intelligence. Ma-
chine learning consists of several subsections. Deep learning is
one of the subsets of machine learning in which artificial neural
networks adapt and learn from a large amount of data [47].

Machine learning models/methods or learnings are based
on what it has learned only. Neural network structures/arrange
algorithms in layers of fashion that can learn and make
intelligent decisions on their own [48]. Neural networks are
more suited to solve complex machine-learning problems.
Neural networks can learn and model the relationships between
inputs and outputs that are nonlinear and complex. This can be

used to generalize input-output relationships, and reveal hidden
relationships, patterns and predictions. It supports modelling
highly volatile time series data and capable of predictions [49].
Neural networks require much more data than traditional
Machine Learning algorithms to complete the model develop-
ment. Depending on the requirement, building a customized
neural network model that is perfectly suited. However, it
takes more time compared to the traditional ML algorithm.
A neural network consumes a longer time to train rather than
a traditional machine learning model. It requires continuous
computational resources, depending on the architecture of the
neural network and the size of the data [50].

This research deals with complex rapidly changing input
data set and output data set (Drone pilot’s radio controller
inputs and drone’s position and orientation). The relationships
between inputs and outputs are nonlinear. A single drone pilot
trial consists of thousands of data points and the entire data
set consists of over 200 thousand data points. A continuous
computational resource is not a vital issue with the available
technological infrastructure. Hence, an Artificial Neural Net-
work (ANN) based approach was selected.

An artificial neural network has parameters that cannot be
directly estimated from the data. This type of model parameter
is referred hyperparameter. No analytical solution is available
to calculate appropriate values for hyperparameters [51]. An
artificial neural network has many hyperparameters. However,
two key hyperparameters are the number of layers and nodes in
each hidden layer. It controls the entire architecture/topology
of the artificial neural network. In addition, there are other
hyperparameters such as activation function, the number of
epochs, batch size, learning rate, Mini-batch size, and Learning
rate, which are identified as other potential hyperparame-
ters [52].

Several frameworks and libraries have been developed in
the last few years to fulfil machine learning-related necessities.
Industry and academia use various frameworks and libraries to
expedite the neural network-based model development, train-
ing and good results. Hence, model development and training
have become easier. Based on the star ratings on Github, and
our similar project experiences in the field, TensorFlow [53]
was selected as the most effective and easy-to-use framework
and library.

TensorFlow is a full-fledged open-source deep learning
framework designed and developed by Google. It was initially
released in 2015 and it comes with documentation, training
support, scalability options and support for different platforms.
In addition, TensorFlow is associated with flexible, com-
prehensive community resources, libraries, frameworks and
tools that facilitate developing and deploying machine learning
solutions [53]. Keras [54] is a high-level neural network
library that runs on top of TensorFlow. Further,Keras supports
building high-level API to be used for easily building and
training models. Keras is a built-in Python. Keras is an open-
source software framework that provides a Python interface
for designing and developing artificial neural networks.

On top of TensorFlow and Keras, a sequential machine-
learning model was developed and tuned to produce optimum
results. The developed model has three layers, consecutively
56 and 112 nodes in the first and second hidden layers and one
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node in the output layer. The activation function for all three
layers is linear. The loss is calculated using the mean squared
logarithm error while using the Adam optimizer.

V. DEVELOPMENT OF VR ENVIRONMENT

According to the 3D graphics rendering pipeline and
commonly used game engine architectures, this type of 3D
drone simulation environment consists of a real-time compu-
tational drone motion prediction module, configuration module
(Configure environment, drone drill, etc.), The visual render-
ing engine, sound generation engine and seamless display
system/head-mounted display [55]. Real-time motion predic-
tion carries out by the proposed machine learning model which
considers user interactions and defined environmental condi-
tions to predict real-time drone motions. The visual rendering
engine considers the predicted state of the drone-requested
view of the virtual environment (first-person view, third-person
view, etc.) to generate the relevant scenery. Finally, the user
can see the generated visual through a seamless display system
or head-mounted display. Integration of a sound generation
engine brings more realism to the solution. A high-level
structure of the virtual environment is illustrated in Fig. 2.

Fig. 2. The high level structure of the 3D virtual environment

There are many open-source, free and commercial frame-
works, libraries and engines to develop 3D VR environ-
ments [56], [57], [58], [59]. Mairaj, et al. carried out com-
prehensive literature revive related to the design and develop-
ment of drone simulators and analyzed available frameworks,
libraries and engines [60]. Based on the Mairaj, et al. review,
authors’ own experience gained during the last ten years [61],
GitHub Star rating and other reviews, Microsoft Aerial In-
formatics and Robotics Simulation (AirSim) [62], [63] open-
source robotics simulation platform was selected to design and
develop the proposed 3D virtual environment to simulate drone
dynamics.

AirSim is developed for AI research to experiment with
deep learning, computer vision and reinforcement learning
algorithms for autonomous vehicles. However, AirSim pro-
vides APIs to retrieve data and control vehicles in a platform-
independent way. Hence, several modules of AirSim were
decoupled and several API facilities, such as retrieve data and
control vehicles were slightly modified to develop the pro-
posed 3D drone simulation environment [62]. Fig. 3 presents
the high-level architecture of the modified Microsoft AirSim

simulation platform which was used to develop the 3D drone
simulation environment.

Fig. 3. High-level architecture of the modified microsoft airsim simulation
platform

AirSim simulation platform was configured with an Unreal
environment because the Unreal Marketplace has several en-
vironments available that can be used to generate realistic 3D
scenaries easily. As illustrated in Fig. 3, AirSim physics engine
was replaced with a developed machine learning-based drone
dynamic model. The selected functionalities of the AirSim
sensor module and AirSim API layer were reused to connect
the real physical radio controller and virtual environment.
However, a real Fr-Sky Taranis radio transmitter & receiver
was used to capture drone pilot inputs and feed input stream
to develop a machine learning-based drone dynamic model
in the simulated environment. Hence, a separate calibra-
tion/preprocessing module was developed to align/map Fr-Sky
Taranis radio transmitter inputs and DJI Phantom 4 Pro drone
radio controller inputs. Fig. 4 presents the Fr-Sky Taranis radio
transmitter/radio controller, which can be configured to align
with DJI Phantom 4 Pro drone radio controller.

Fig. 4. Fr-sky taranis radio transmitter/radio controller

Fig. 5 presents the design and development of the proposed
machine learning-based drone dynamic simulation environ-
ment. It uses an Intel Core i7 CPU with 3.6 Hz, GTX 1070
graphic card and Ram 32 GB to run the entire solution-
inducing Unreal rendering engine and machine learning model.
32-inch screen connected to visualize the rendered image
stream, and it makes continuous sensation for the users (Drone
pilots) who interact with the virtual environment via Fr-Sky
Taranis radio controller. Depending on the user’s/drone pilot’s
preference instated of the screen, a head-mounted display such
as Oculus Quest-2 can be connected with the solution.

VI. EXPERIMENTAL RESULTS AND VALIDATION

The entire simulated environment can be validated under
different criteria. As discussed before, simulation represents
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Fig. 5. Developed machine learning based drone dynamic simulation
environment.

a real-world scenario with assumptions, limitations and sim-
plifications. Comparison of the simulated results against its
actual real-world scenario is one of the validation methods
employed in this type of research and development work. This
can be done by considering comparisons such as positions
and orientations with the timestamps. The user test is another
vital validation technique to validate the user’s perception
of the simulated environment. In this technique, the virtual
environment is validated based on the observations of pilots
with much drone experience.

Some of these validation techniques are quantitative, while
others are qualitative. For example, quantitative validation
methods can be used to validate activities such as the accuracy
of the motion predictions and qualitative validation methods
can be used to validate components such as user perception
enhancement and ecological validity of the simulated environ-
ment.

The validation process of the proposed virtual environment
was divided into the following four segments:

• Carry out short-term motion predictions with the de-
veloped machine learning model: In this approach,
real-world scenarios were simulated in the simulated
environment and investigate the accuracy of the pre-
dictions against the radio controller input variations.

• Carry out long-term predictions with simple possible
scenarios and investigate the acceptability of the ob-
tained results.

• Carry out long-term motion predictions: In this ap-
proach, real-world scenarios were simulated in the
simulated environment and compare-contrast the pre-
dictions against the real-world scenario.

• User tests: Compare the real-world user perception
and the user perception of the VR solution with drone
pilots who have much experience with drones. This
can be used to compare the numerical and user-
perceived accuracy and ecological validity of the VR
solution.

As mentioned in the related work, we analyzed previously
carried out research work such as [13], [14], [15], [42], [43],
[44]. The analysis shows that users’ awareness of the location
of a real-world outdoor scene or virtual-world outdoor scene
consists of percentage-based errors ranging from 10% to 25%.

As motioned above, the developed machine learning model
predicts the drone’s position and orations against the radio con-
troller inputs throttle, pitch, roll & yaw. Due to the assumptions
and limitations, it works under negligible wind effects while
drones perform forward and lateral movements. Under the
simulation of short-term motion predictions, a single prediction
was made by considering the drone’s current position, oration
and controller inputs throttle, pitch, roll & yaw. We considered
several figures of eight shape drone trials and considered the
drone’s actual position, orientation and ratio controller inputs,
then predicted the drone’s position and orientation after 0.1
seconds. Then closely investigate the effect of the factors on
prediction error. Fig. 6 illustrates the Actual positions of the
drone and predicted positions of the drone.

Fig. 6. Actual positions of the drone and predicted positions of the drone.

Fig. 7 illustrates the variation of the prediction error of the
developed machine learning model against the time. It shows
that the variation of the error is within 0.5 meters, and it is
required to investigate the factors that affect the error.

Fig. 7. Variation of the prediction error of the machine learning model
against the time.

Table I presents the correlation between radio controller
inputs (RcAileron, RcElevator, RcRudder, RcThrottle) and the
machine learning model’s prediction error. Further, it shows
that the prediction error highly depends on the RcRudder-radio
controller input.

Fig. 8 illustrates the acceleration error of the machine
learning model against time. Fig. 9 depicts the magnified
segment of Fig. 8 that illustrates the acceleration error of the
machine learning model against time.

Fig. 8 and 9 show that most of the time, acceleration
error is significantly less. Compared with the rudder variation
pattern and acceleration error, it shows that the acceleration
error rapidly increases with the rudder. However, smaller
rudder variations in the developed machine-learning model

www.ijacsa.thesai.org 889 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

TABLE I. CORRELATION BETWEEN CONTROLLER INPUTS (RCAILERON,
RCELEVATOR, RCRUDDER, RCTHROTTLE) AND PREDICTION ERROR

Correlation between Prediction Error
and Radio Controller Inputs Correlation Coefficient

Correlation between Prediction Error and RcAileron 0.003580433
Correlation between Prediction Error and RcElevator 0.369202804
Correlation between Prediction Error and RcRudder 0.989092821
Correlation between Prediction Error and RcThrottle 0.242975470

Fig. 8. Acceleration error of the machine learning model against time.

provide substantial accuracy. As previously mentioned, a real-
world outdoor scene or virtual-world outdoor scene consists of
percentage-based errors ranging from 10% to 25%. Hence, the
developed model and its short-term motion prediction results
provide encouraging results to perform long-term predictions
and further validate the model.

A. Long-Term Drone Motion Predictions with Simple Possible
Scenarios

As explained above (Subsection: Design and development
of the VR solution), the Fr-Sky Taranis radio transmitter &
receiver was connected to the solution and make enabled user
interactions via an actual radio controller. Fig. 5, presents
the designed and developed machine learning-based drone
dynamic simulation environment. Three experienced pilots
were exposed to the VR environment and asked to perform
simple drills such as the figure eight type manoeuvre, ma-
noeuvre along a straight line and circular manoeuvre. Their
responses were assigned to a typical Likert scale with a five-
point agreement scale related to simulation results produced by
the solution. The five points of the Likert scale are strongly
agreed, agree but no idea, disagree, and strongly disagree. The
overall Likert scale results show that the three experienced
pilots agreed with the results produced by the designed and
developed simulation environment.

B. Long-Term Drone Motion Predictions and Validate against
Real-World Scenario

Under the assumptions and limitations of the drone dy-
namic model, a simulation of long-term motion predictions
was made. We consider several figures of eight-shape drone
trials for this validation. We considered the drone’s initial
settled/stabled position, orientation in the outdoor environment
and ratio controller inputs, then predicted the drone’s position,
and orientation continuously. Then closely investigate the
deviations between the actual drone trial results and predicted
results. Fig. 10 and Fig. 11 illustrate the actual trajectory of
the drone and the predicted trajectory of the drone.

Fig. 9. Magnified segment of the previous graph that presents the
acceleration error against time.

Fig. 10. Actual trajectory of the drone.

The above results show that the predictions are devi-
ated/deviating with the time, and initial position predictions
are closer to the actual position of the drone. As we discussed
above, users perceive the position of an outdoor drone or users
perceive the position of a drone in an outdoor VR environment
is accoladed with a percentage-based error ranging from 10%
to 25%. We consider the average of this error and define error
merging for the predicted results. Fig. 12 illustrates the initial
segment of the predicted drone trajectories and real drone
trajectory with probable user perceive rejoin of the drone.

C. User Tests

The developed machine learning-based drone dynamic
simulation environment needs to be validated to determine
the immersive feeling “sense of being there” or “how users
perceive” in the VR environment. The most common method
of measuring this presence or “sense of being there” is to use
questionnaires [64], [65]. Questionnaires give subjective mea-
surement, and in most questionnaires, participants’ responses
to each question are assigned to a numerical scale [14]. Finally,
the immersive feeling “sense of being there” in the VR solution
can be reflected as a percentage. In the research validation
phase, our primary focus is on subjective measurements.
Hence, the user test was designed with a questionnaire. It
targets three experienced drone pilots, including the drone pilot
involved in the data gathering/recording pace, and the user test
can be summarized as follows:

Simulate known conditions and record experienced drone
pilots’ responses. First, concerning each participant’s response
(feeling about the simulated scenario), qualitative properties of
the simulated scenario will be assigned to a numerical scale
(Likert scale) as follows [66]. Next, the quantitative properties
of the simulated scenario will be directly recorded. Finally, the
deviation from the expected value will be calculated. Under

www.ijacsa.thesai.org 890 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 14, No. 1, 2023

Fig. 11. Predicted trajectory of the drone

Fig. 12. Initial segment of the predicted drone trajectory and real drone
trajectory with probable user perceive rejoin of the drone.

the simulated scenarios, many responses were recorded and
selected questions/statements are given below:

• Approximated travel distance ≈ 300m-400m� What
is the approximated travel distance?

• What is the current velocity?

• Asked to perform figure eight manoeuvre. What is
the approximate size of the performed figure eight
manoeuvre?

• Compared to the real-world figure eight manoeuvre
with Phantom 4 Pro, the drones’ response to the radio
controller during that figure eight manoeuvre carried
out in the simulated environment is realistic.

• Used radio controller: Ease of Use/ realism level com-
pared to the real-world Phantom 4 Pro radio controller
is it perfect/realistic?

• How many vehicles were there on the ground surface?

• Presence (the user’s sense of immersion or “being
within” the environment) is perfect.

• Three drone pilots were exposed virtual environment
with large flat screen-based visualization. Do you
recommend HMD or any other visualization method?

The actual and simulated scenarios’ qualitative and quan-
titative properties were compared throughout this user test.

TABLE II. SELECTED RESULTS OF THE CARRIED OUT USER TESTS

Simulated Scenario Pilot Response
Numerical Indicator

Physical realism of the entire VR environment
(Input Methods/ Controllers/Output methods/ Visualizations) 1.4 (from -2 to 2)

Realism of the Drone Maneuverability 1.0 ( from -2 to 2)

Deviation of the size of the performed trial/covered
area during the circular/ figure eight maneuvers 20%

Deviation of travel distance judgment 25%

Deviation of speed judgment 15%

Awareness and information gathering capability 1.4 (from -2 to 2)

Presence (immersion or “being within” the environment) 1.0 (from -2 to 2)

The main focus is to identify spatial awareness (The user’s
implicit knowledge of his position and orientation within the
environment - during and after travel), information gathering
(the user’s ability to actively obtain information from the
environment - during travel), and accuracy of the drone motion
prediction against the real-world situation. Table II presents
selected results of the carried out user tests.

VII. CONCLUSIONS AND FUTURE WORK

The overall objective of the presented work is to propose a
machine learning-based drone dynamic model and VR environ-
ment that can simulate existing drones without domain-specific
knowledge and sophisticated laboratory infrastructure. Under
selected circumstances, the proposed solution’s accuracy and
user-perceived accuracy were evaluated, and the authors were
able to get promising results. The following conclusions and
recommendations can be made based on the entire research.

• The proposed and developed machine learning model
and its evaluation experiments were carried out by
using Commodity-Off-The-Shelf hardware.

• If an accurate location tracker is available, the same
procedure can be followed, and a similar machine-
learning model can be developed for any existing
drone.

• Short-term predictions of the proposed and developed
machine learning model are within the user-perceived
accuracy of both the real-world outer door scene and
the virtual world outer door scene.

• The accuracy of the predictions mainly depends on
the rudder variation. If the rate change of the rudder
is more significant, then predictions of the proposed
and developed machine learning model are less.

• Long-term predictions of the proposed and developed
machine learning model are within the user-perceived
accuracy of both the real-world outer door scene and
the virtual world outer door scene for a limited period,
and it gradually deviates with time.

• However, user test results show that the experience
drone pilots agree with the simulated drone’s physical
realism and manoeuvrability. Moreover, there is a
deviation between the user perceived position/speed
of the simulated drone and the actual position/speed
of the simulated drone.
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• According to the evaluation results, early-stage predic-
tions provided by the proposed and developed drone
simulator are substantially accurate with rudder varia-
tions. Hence, drone piloting drills/missions/exercisers
that require a short period (less than 25 seconds) for
the entire activity can be simulated with substantial
user perceive realism, behavioural realism and physi-
cal realism.

There is physical and behavioural realism in the proposed
machine learning-based drone simulation environment. How-
ever, a wide range of further research work can be carried out
to improve existing physical and behavioural realism. Some
of the most critical and selected future research works are
described below.

• Perform a wide range of drone manoeuvres and collect
larger data sets that cover more drone dynamics and
enhance behavioural realism by increasing the accu-
racy of the machine learning-based drone dynamic
model.

• Design and develop a cylindrical or spherical display
system, connect head-mounted display (HMD) and
carry out experiments to enhance the physical realism
and user perceive accuracy.
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